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Abstract: In this study, a honeycomb-like porous-structured nickel–iron–cobalt layered double
hydroxide/Ti3C2Tx (NiFeCo–LDH@MXene) composite was successfully fabricated on a three-dimensional
nickel foam using a simple hydrothermal approach. Owing to their distinguishable characteristics, the
fabricated honeycomb porous-structured NiFeCo–LDH@MXene composites exhibited outstanding
bifunctional electrocatalytic activity for pair hydrogen and oxygen evolution reactions in alkaline
medium. The developed NiFeCo–LDH@MXene electrocatalyst required low overpotentials of 130
and 34 mV to attain a current density of 10 mA cm−2 for OER and HER, respectively. Furthermore,
an assembled NiFeCo–LDH@MXene‖NiFeCo–LDH@MXene device exhibited a cell voltage of 1.41 V
for overall water splitting with a robust firmness for over 24 h to reach 10 mA cm−2 current den-
sity, signifying outstanding performance for water splitting reactions. These results demonstrated
the promising potential of the designed 3D porous NiFeCo–LDH@MXene sheets as outstanding
candidates to replace future green energy conversion devices.

Keywords: LDH; water splitting; HER; OER; MXene

1. Introduction

The enormous utility of fossil fuels has appeared as the foremost source of the improve-
ment of poisonous ground-level ozone and airborne matter, which has attracted global
concerns [1,2]. Hydrogen, a clean, abundant, renewable, and pollution-free source and sus-
tainable energy carrier element on earth, is considered as an alternative to non-renewable
and toxic fossil fuels [3–5]. Hydrogen exhibits numerous attractive properties as an energy
transferor and a high energy density of 140 MJ/kg, which is three times higher than those
of solid fuels [6]. Electrocatalytic water splitting is an easy method to produce high-purity
hydrogen [4,7]. Typically, electrocatalytic splitting strategies are driven by two reactions:
oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) [8–10]. Pt-based
materials and IrO2/RuO2-based metal oxides are considered efficient benchmark catalysts
for HER and OER, respectively, owing to their low overpotential, small Tafel slope, and
high catalyst activity to facilitate HER/OER processes; however, their natural scarcity,
inadequate durability, and high cost have limited their widespread commercial applica-
tion [11,12]. Therefore, remarkable efforts have been dedicated to develop and improve
earth-copious high-enactment catalysts for OER and HER.
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The two dimensional (2D) materials offer attractive electronic properties, high me-
chanical characteristics, superior conductivity, and enormous specific surface area, which
supports the promotion of electrocatalysis [13,14]. Recently, the use of numerous elec-
trocatalysts from the layered transition metal chalcogenides (TMDs), carbides (TMC),
phosphides, and nitrides to reduce the overpotential of HER has attracted significant re-
search attention owing to their intriguing properties, such as cost, adjustable bandgap
alignment, suitable layer spacing, intrinsic behavior, and environmental properties [15–18].
The most feasible electrocatalyst candidates for OER include metal oxides, layered double
hydroxides (LDHs), metal organic framework (MOF) structures, and various carbon-based
derivatives [19–21]. Among these candidates, LDHs are electrocatalysts with a crystal
lamellar organization containing different interlayer anions, metal cations, water molecules,
and hydroxyl groups [22,23]. The electrocatalysis of oxygen involves a multi-step redox
process, wherein the fundamental process with a maximum overpotential regulates the
total turnover frequency [24,25]. However, experimental outcomes have demonstrated the
occurrence of electrocatalysis oxygen redox process on the oxide surfaces. LDHs contain
earth-abundant elements and are suitable ion/current collectors, environmentally friendly,
and exhibit superior stability [26]. Moreover, owing to their distinctive lamellae structure
and the interrelated connection among the constituent binary metal, LDH exhibits signif-
icant potential for improving electrocatalytic performance [22]. However, binary metal
LDHs exhibit a sluggish HER enactment in alkaline solution because of their deficient
active edges and meager conductance for HER, which results in large overpotentials and
poor kinetics [27]. Various methodologies have been industrialized to increase the HER
behavior of LDH, such as development of LDH using trivalent cation and the effective
design of composites to enhance the specific area, activate the active edge, and improve
the conductance of LDH [22]. Among these approaches, the use of mixed-metal cations
containing Fe, Co, and Ni has attracted widespread attention as one of the most profi-
cient electrocatalysts for OER/HER in aqueous environments [28–30]. For example, Yao
et al. [29] recently developed an efficient CoNiFe–LDH for effective overall water splitting
reactions. However, the fabrication of trivalent LDH-containing composites to enhance
electrochemical conductivity and generate the numerous catalytic edges to facilitate charge
transfer during the HER/OER process has been challenging [24,28,31].

MXenes, a member of a 2D group with a combination of metal carbides and nitrides
from the MAX phase, exhibit outstanding properties including, outstanding electrical con-
ductivity, superb intercalation characteristics, and large interlayer spacing with an easily
tunable structure composition [32,33]. MXenes exist naturally in semiconductors, semimet-
als, or superconductors depending on the surface termination or composition. Moreover,
they exhibit flexible and superior mechanical properties compared to previously reported
2D materials and exhibit satisfactory operability and easy solubility in any solvent [34,35].
MXenes exhibit enhanced catalytic activity owing to their tuned operative basal edges
with exposed metal faces, hydrophilic surface presence with numerous functional groups
(–O, –F, –OH, and –Cl), large surface area, and rich porous structure [36,37]. However,
designed MXene sheets exhibit poor properties owing to flake/surface terminations that
occur during delamination and etching, defective structure, aggregation and restacking
of nanosheets, and easy oxidation [38]. Hence, to fully utilize the aforementioned ad-
vantages, 2D MXenes can be hybridized with various materials to arrange MXene-based
composites to enhance its electrochemical and physical performances. Recently, transi-
tion metal oxides, TMDs, polymers, and carbon nanomaterials have been exploited as
insertions to avoid the restacking/aggregation and surface terminations of MXene for
MXene-based nanocomposites [39,40]. Moreover, to develop inexpensive and effective
electrocatalysts for OER/HER, MXene could act as a conductive platform to increase the
evolution kinetics of LDH, whereas LDH prevents the restacking of the composite and
maintains material stability. To date, various studies have reported the effective water
splitting potential of MXene–LDH-based composites, such as CoFe–LDH/MXene [41]
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FeNi–LDH/Ti3C2-MXene nanohybrids [42], ripple-like ternary sulfides (sNiFeCo/NF) [43],
and MXene/TiO2/NiFeCo LDH composites [44].

In this study, we fabricated NiFeCo–LDH@MXene on a 3D nickel foam (NF) to realize
an efficient HER/OER catalytic activity through the synthesis of LDH nanostructure-
stacked MXene interspace nanosheets on a superiorly interconnected 3D conductive net-
work using an in situ grown hydrothermal reaction. The resulting surface characteristics
of the composite verified the in situ self-assembly of the NiFeCo–LDH nanoparticle on
the well interconnected porous MXene network. Further, the electrocatalytic activity
of the fabricated NiFeCo–LDH@MXene heterostructure for OER and HER was investi-
gated, and the results revealed that the heterostructure required a miniature overpoten-
tial of 130 and 34 mV to attain a current density of 10 mA cm−2 and Tafel slopes of 52
and 62 mV dec−1, respectively, in alkaline medium, which is relatively superior to NiFe–
LDH@MXene as well as those of pure MXene and NiFe–LDH. Furthermore, a fabricated
NiFeCo–LDH@MXene‖NiFeCo–LDH@MXene device exhibited a cell voltage of 1.41 V
for overall water splitting with a robust firmness for over 24 h to realize a 10 mA cm−2

current density. The solid interface electrical connections and superior electronic pairing
between the two constituents not only reduced the contact resistance but also accelerated
electron/ion transport within the NiCoFe–LDH@MXene.

2. Materials and Methods
2.1. Synthesis of NiFeCo–LDH@MXene Composite

MXene (Ti3C2Tx) was extracted from pure MAX (Ti3AlC2) phase by the perceptive
etching of the Al layer engaging hydrogen fluoride (HF) acid, as reported in our previ-
ous study [38,45]. To assemble the NiFe–LDHs, FeCl3·6H2O (0.25 mmol), NiCl2·6H2O
(0.75 mmol), and NH4F (2.5 mmol) were added into deionized (DI) water (100 mL), and
the solution was blended by continuous smooth magnetic agitation. Subsequently, the
aliquots were moved to a stainless steel-braced autoclave. Thereafter, sized NF substrates
were vertically incorporated to the autoclaved solution periodically, and the solution tem-
perature was maintained for 12 h at 200 ◦C. Subsequently, the NiFe–LDHs-deposited NF
was collected and dried in a vacuum oven. To fabricate the MXene-based composites, first,
the as-prepared MXene was suspended in DI and subjected to 20 min ultrasonic vibra-
tion for homogeneous dispersion. Subsequently, FeCl3·6H2O (0.25 mmol), NiCl2·6H2O
(0.75 mmol), and NH4F (2.5 mmol) were added sequentially into the homogeneous MXene
solution mixture. Thereafter, NiFe–LDH@MXene composites on NF were fabricated using
hydrothermal reaction, which was also used to fabricate the NiFeCo–LDH@MXene compos-
ites. Briefly, FeCl3·6H2O (0.25 mmol), NiCl2·6H2O (0.75 mmol), CoCl2·6H2O (0.58 mmol),
and NH4F (2.5 mmol) were added sequentially into the well-dispersed MXene solution to
form a homogeneous solution mixture, after which the NiFeCo–LDH@MXene composites
on NF was synthesized using the hydrothermal method. The characterization details are
described in the supporting section.

2.2. Electrochemical Measurements

All the electrochemical experiments were performed by a three-electrode system using
PARSTAT (PMC-1000) electrochemical workstation and a 1 M KOH media for HER and
OER operation at room temperature. Linear sweep (LSV) polarization measurements
were collected once iR rectification at a sweep speed of 10 mV s−1. The active material
(MXene, NiFe–LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene) on NF were used as
the working electrode, an Hg/HgO electrode was utilized as the reference electrode, and
a graphite rod was applied as the counter electrode in presence of an alkaline electrolyte
for OER and HER. The complete water splitting reactions were performed using NiFeCo–
LDH@MXene‖NiFeCo–LDH@MXene, NiFe–LDH@MXene‖NiFeLDH@MXene, and Pt–
C‖RuO2 device structures. The measured potential values were transformed into reversible
hydrogen electrode (RHE) using the ensuing calculation: E(RHE)HgO = E(vs. Hg/HgO) +
E0

(Hg/HgO) + 0.0592 × pH. Electrochemical impedance spectroscopy (EIS) measurements
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were attained at an applied overpotential in the frequency sort of 1 Hz–1 MHz with an
amplitude of 5 mV.

3. Results and Discussion
3.1. Materials Characteristics

First, MXene sheets were fabricated by a simple HF etching process from the MAX
phase Ti3AlC2, as described in Section 2, and NiFeCo–LDH@MXene and NiFe-LDH@MXene
composites were fabricated on 3D NF using a hydrothermal reaction, as shown in Figure 1.
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Figure 1. Schematic illustration of the synthetic of mesoporous-structured binary or ternary LDH-
decorated MXene composite.

Figure 2 displays the FESEM images of the synthesized MXene, NiFe–LDH@MXene,
and NiFeCo–LDH@MXene nanostructures. The delaminated MXene exhibited a layered
sheet-like structure (Figure 2a,b), and the high-magnification micrograph revealed that the
etching process resulted in a sequentially-stacked ordered MXene. Figure 2c,d shows the
FESEM images of the NiFe–LDH@MXene composites. Homogeneously-dispersed, well-
oriented porous-structured micro-leaved grains were largely gathered on the outward of
the NiFe–LDH@MXene composite. In addition, the high-magnification image revealed the
cross-sectional intersection of the micro-leaves on the porous structures. Figure 2e,f shows
the FESEM images of the NiFeCo–LDH@MXene composites. The NiFeCo-LDH@MXene
composite exhibited a honeycomb-like morphology, which could be attributed to the in-
clusion of Co into the NiFe–LDH@MXene matrix. In addition, its high-magnification
image confirmed the presence of porous-structured honeycomb grains. Further, to ver-
ify the formation of the NiFeCo–LDH@MXene composites, elemental composition and
mapping analyses were performed. Figure S1 shows the elemental profile of the NiFeCo–
LDH@MXene, which reveals the amalgamated different atom peaks for verifying the
composite formation. The elemental profile revealed that the composite was composed
of 30, 14.08, 13.7, 22.6, 12.2, and 7.42 at% O, C, Fe, Ni, Co, and Ti, respectively. Figure S2
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shows the elemental mapping images of the prepared NiFeCo–LDH@MXene composites.
The elemental mapping analysis established the uniform scattering of Ni, Fe, Co, Ti, C, and
O elements in the NiFeCo–LDH@MXene composites.
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Figure 2. Morphological micrographs of the composites at various magnifications: (a,b) MXene,
(c,d) NiFe–LDH@MXene, and (e,f) NiFeCo–LDH@MXene composites.

The synthesized MXene, NiFe–LDH@MXene, and NiFeCo–LDH@MXene nanostruc-
tures were investigated using TEM. Figure 3a–c shows the TEM images of MXene at differ-
ent magnifications. Bundles of grain clusters were observed in the TEM image of the sample
(Figure 3a). In addition, the surface of the MXene nanostructures was almost completely
occupied by disseminated sheets. The fast Fourier transform (FFT) pattern of MXene
revealed its polycrystalline crystal direction, which is reliable with the XRD outcomes
(Figure 3c). The inset of Figure 3c shows a lattice fringe spacing of 0.338 nm, which parallels
the (008) lattice direction of MXene. The TEM images of the NiFe–LDH@MXene composites
are shown in Figure 3d–f. Groups of petal-like micro-leaves, which represent dark fringes,
were observed in the low-magnification TEM images of NiFe–LDH@MXene (Figure 3d and
its inset). In addition, a layered structure and the accumulation of leaf-like grains were
detected in the high-magnification imagery (Figure 3e,f). Further, distinctive rod-like grains
were perceived in the high-magnification micrographs, which could be attributed to the
accumulated leaf structures. Figure 3g shows the FFT profile of the NiFe–LDH@MXene
composites. Notable moire fringes with bright doublets were observed in the profile, in-
dicating the formation of LDH polycrystalline crystal. In addition, a lattice arrangement
of 0.786 nm was observed in the extracted phase profile (Figure 3h), which corresponded
to the (003) lattice direction of LDH, indicating the formation of LDH on the composites.
Figure 3i–m shows the TEM images of the NiFeCo–LDH@MXene composite structures.



Nanomaterials 2022, 12, 2886 6 of 18

The low-magnification TEM images revealed that the NiFeCo–LDH@MXene composite
exhibited a layered architecture under the nanostructured leaf-like grains (Figure 3i and its
inset). In addition, a dark mode of porous structures, which was similar to a honey-comb
morphology, was observed in the high-magnification images (Figure 3j,k). Further, the
extracted FFT profile of the NiFeCo–LDH@MXene composite revealed the presence of
moire fringes with ring-patterned bright spots. In addition, a fringe positioning of 0.526
and 0.239 nm was observed in the extracted phase profiles, which could be attributed to
the presence of Fe double hydroxide (Figure 3l) and Co double hydroxide (Figure 3m),
respectively.
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The structure of the fabricated nanostructures was verified using XRD. Figure S3
shows the XRD profile of the pure MAX phase Ti3AlC2 MXene. Peaks corresponding to
(002), (004), (100), (101), (102), (103), (008), (104), (105), (106), (107), (108), (109), (110), and
(1011) lattice planes were observed in the XRD pattern of the pure phase [46]. Further,
peaks corresponding to the (002), (006), (008), (0010), (0012), and (110) orientations were
observed in the XRD patterns of the delaminated MXene sheets, which are highly consistent
with the findings of previous studies (Figure 4a) [47,48]. In addition, crystal planes of (003),
(006), (002), (104), (004), (420), (402), (113), (512), (440), and (205), which are also detected in
the XRD pattern of NiFe LDH alloys (JCPDS: 89-7111 & 81-2022), as well as low-intensity
MXene-related peaks, which could be ascribed to the surface coverage of hydroxide layer,
were perceived in the XRD profile of the NiFe–LDH@MXene composite. The combined
peaks of NiFe–LDH@MXene and novel peaks of (100), (011), and (200) owing to the presence
of Co in the resulting composite (JCPDS: 89-8616) were detected in the XRD profile of the
NiFeCo@MXene composites. Moreover, the observed low diffraction angle peak confirmed
the layered structure of the composite. These results verified the blending of the strongly-
established LDH structure with MXene structure and were consistent with the reports of
various reported literatures [49].
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Figure 4. (a) X-ray diffraction (XRD) profiles of MXene, NiFe–LDH@MXene, and NiFeCo–
LDH@MXene composites; X-ray photoemission spectra of NiFeCo–LDH@MXene composites; (b) Ti
2p, (c) C 1s, (d) Fe 2p, (e) Ni 2p, (f) Co 2p, and (g) O 1s regions.

The oxidation state and composition of the honeycomb-structured NiFeCo–LDH@MXene
composites were corroborated by XPS. The XPS survey scan band of the NiFeCo–LDH@MXene
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composite discovered the occurrence of Co, Ni, Fe, Ti, C, and O elements in the composite
(Figure S4). Figure 4b shows the XPS Ti 2p spectrum containing Ti–C, Ti 2p3/2, Ti 2p1/2,
and TiO2-related satellite (sat) bonds [45,50]. The observed Ti–C and sat peaks could be
attributed to the realization of diversified carboxides (TiCxOy) and oxides (TiOxFy) for
the arrangement of MXene [47,51]. In addition, peaks conforming to C–O and sp2 C–C
bonds in MXene were observed in the C 1s profile of the composite (Figure 4c). Figure 4d
shows the Fe 2p region XPS profile of the NiFeCo–LDH@MXene composite. Peaks related
to Fe3+ and sat peaks related 2p3/2 and 2p1/2 state, which enabled the mixed bonding
of metal alloy and hydroxide in the NiFeCo–LDH@MXene composite, were observed in
the XPS profile of the composite [52]. Furthermore, peaks at 853.8 eV (Ni2+ 2p3/2) and
871.1 eV (Ni2+ 2p1/2), and two sat (Ni3+) peaks at 861.3 (2p3/2) and 877.2 eV (2p1/2) were
observed in the core-level Ni 2p XPS spectrum, indicating the presence of the metallic
state and hydroxide form of nickel (Figure 4e). Additionally, the bands conforming to
the Co 2p3/2 and Co 2p1/2 states were observed at 780.1 and 796.2 eV, respectively, in the
Co 2p core level spectrum of NiFeCo–LDH@MXene (Figure 4f). The sat peaks observed
at 785.8 and 803.6 eV were assigned to the Co(II) state in LDHs [52]. Figure 4g shows
the O 1s profile of NiFeCo–LDH@MXene, and peaks corresponding to O2- and O- were
observed in the de-convoluted spectrum, which could be attributed to the oxygen defects
and lattice oxygen [21]. The XPS results confirmed the formation of NiFeCo–LDH@MXene
composites.

Raman analysis was explored to check the vibrational mode of the MXene, NiFe–
LDH@MXene, and NiFeCo–LDH@MXene nanostructures as given in Figure S5. For MXene,
the characteristic Raman vibrations are at 204, 392, 619, and 722 cm−1, along with the
graphene related broad and weak D and G bands at 1358 and 1576 cm−1, respectively, which
concurs with the previous results [38]. For nanocomposites, the peak around 548.3 and
458.8 cm−1 are assigned to Fe3+−O−Fe3+ and Fe3+/Ni2+−O−Ni2+ bonds, which suggested
the formation of NiFe-LDH@MXene and NiFeCo-LDH@MXene composites. Moreover, the
exhibit of additional peak around 749.3 cm−1 represents the Co–Co stretching mode for
the NiFeCo-LDH@MXene composites [53]. The well propelled graphitic carbon-related
D and G band are exhibited for the LDH nanocomposites, which proved the interactive
relations between the MXene and LDHs highly beneficial for improving electrochemical
properties [38].

3.2. Hydrogen Evolution Reaction

The electrochemical HER performance of the assembled (MXene, NiFe-LDH@MXene
and NiFeCo-LDH@MXene) electrocatalysts was evaluated in an N2-saturated alkaline
(1 M KOH) medium. To expand the comparison scope, the electrochemical behavior of
noble Pt/C (20 wt%) electrocatalyst and bare NF and NiFe–LDH were also investigated.
Figure S6 displays the FESEM imagery of the pure NiFe–LDH. The LSV polarization
curves of the samples were recorded at a sweep speed of 10 mV s−1 at room temperature.
Figure 5a spectacles the LSV profiles of the bare NF, Pt/C, MXene, NiFe–LDH, NiFe–
LDH@MXene, and NiFeCo–LDH@MXene electrocatalysts for HER. The profiles indicated
that the NiFeCo–LDH@MXene exhibited a noble metal-like behavior. Figure 5b shows the
overpotential required by the prepared catalysts to attain a 10 mA cm−2 current density.
The NiFeCo–LDH@MXene desired a 34 mV vs. RHE of HER overpotential to realize a
current density of 10 mA cm−2, whereas the noble metal Pt/C required an overpotential of
43 mV vs. RHE to touch the same current density, indicating the superior electrocatalytic
activity of NiFeCo–LDH@MXene. In addition, the NF, MXene, NiFe–LDH, and NiFe–
LDH@MXene electrocatalysts required HER overpotential of 268, 124, 84, and 61 mV
vs. RHE, respectively. Figure 5c shows the comparison of the HER overpotential of the
prepared NiFeCo–LDH@MXene and those of various previously reported electrocatalysts,
as presented in Table S1.
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Figure 5. Hydrogen evolution reaction (HER) performance of the electrocatalysts: (a) linear sweep
voltammetry (LSV) polarizations and (b) the HER overpotential variations of bare NF, Pt/C, MXene,
NiFe-LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene at a scan speed of 10 mV s−1; (c) compar-
ison of the HER overpotential of NiFeCo–LDH@MXene composite and those of previously reported
electrocatalysts; (d) Tafel and (e) electrochemical impedance spectroscopy (EIS) profiles of bare NF,
Pt/C, MXene, NiFe-LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene; (f) time-dependent cur-
rent density variations of the NiFeCo–LDH@MXene composite for continuous HER operation for
over 24 h at a constant overpotential; (g) LSV profiles before and after 24-h continuous HER reaction;
(h) SEM micrograph of NiFeCo–LDH@MXene composite catalyst after 24 h HER reaction.

The HER inherent kinetics in the catalytic process was further examined using Tafel lines.
Figure 5d shows the Tafel lines of bare NF, Pt/C, MXene, NiFe–LDH, NiFe–LDH@MXene,
and NiFeCo–LDH@MXene electrocatalysts. The Tafel slope values of the bare NF, Pt/C,
MXene, NiFe–LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene were 136, 48, 107, 98,
73, and 62 mV dec−1, respectively. The Tafel slope of the NiFeCo–LDH@MXene composite
(62 mV dec−1) was less than those of the other designed catalysts, further confirming
its enhanced electrocatalytic behavior through the substitution of Co in the NiFe–LDH
lattice to form composites. The Co cations modification enhanced the conductivity of
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the resulting LDH and altered the oxidation state of the surrounding Ni3+ or Fe3+ sites,
thus generating active sites and facilitating swift charge transfer [20]. The formation of
binder free 3D microporous NF skeleton interconnected NiFe-LDH@MXene and NiFeCo–
LDH@MXene composites greatly enhances the exposure of active site and eliminates the
internal resistance caused by use of binder. The low Tafel slope of the NiFeCo–LDH@MXene
composite (62 mV dec−1) was used to propose the following favorable HER kinetics [54,55].

H2O + e− → Hads + OH− (Discharge or Volmer step) (1)

Hads + H2O + e− → OH− + H2 (Electrochemical desorption or Heyrovsky step) (2)

Hads + Hads → H2 (Chemical combination or Tafel step) (3)

where Hads is an adsorbed species. The observed Tafel slope value indicated that the
NiFeCo–LDH@MXene composite electrocatalyst conformed to the Volmer–Heyrovsky
and/or Volmer–Tafel combined kinetics. Additionally, the exchange current density was
appraised by the extrapolation of Tafel lines to the current [7]. The NiFeCo–LDH@MXene
electrocatalyst (1.36 mA cm−2) exhibited higher estimated exchange current density val-
ues than the Pt/C (1.28 mA cm−2), bare NF (0.006 mA cm−2), MXene (0.08 mA cm−2),
NiFe-LDH@MXene (0.45 mA cm−2), and NiFeCo–LDH (0.09 mA cm−2) electrocatalysts.
Moreover, the HER characteristics of NiFeCo–LDH@MXene was associated to various
described LDH and MXene based electrocatalysts (Table S1).

In this study, EIS was performed to explore the interfacial coupling resistance and
current transporting behavior across the catalyst for HER reaction. Figure 5e displays the
Nyquist plots with an inset of fitted electrical circuit for the bare NF, Pt/C, MXene, NiFe–
LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene. A strong interconnection of the
hydrothermal grown film on NF was observed in the profiles of the all the catalysts, which
could be attributed to their low series resistance (Rs). The exhibited RS values are at 4.8, 3.5,
2.9, 4.9, 4.7, and 4.2 Ω for the bare NF, Pt/C, MXene, NiFe–LDH, NiFe–LDH@MXene, and
NiFeCo–LDH@MXene, respectively. In addition, the NiFeCo–LDH@MXene (1.4 Ω) com-
posite exhibited a lower charge transfer resistance (Rct) compared to NiFe–LDH@MXene
(3.9 Ω), NiFe (3.9 Ω), and MXene (3.8 Ω), indicating its rapid electron transfer efficiency
and high conductivity for HER reaction. The low Rct of the NiFeCo–LDH@MXene com-
posite for HER also indicates a rapid charge transfer kinetic and a high ionic/electronic
conductivity by the ternary metal cation-induced MXene layers pathway, which enhanced
the conductivity of composite. The HER durability of NiCoFe–LDH@MXene was verified
using chronoamperometry measurement for 24 h at a fixed overpotential. Figure 5f shows
the time-dependent current variation profile of the NiCoFe–LDH@MXene electrocatalysts
for the HER process. A slight decrement in the current density after 24 h HER reaction
owing to the formation of hydrogen bubbles and a robust performance was observed.
The polarization profiles of the NiCoFe–LDH@MXene catalyst before and after the 24-h
HER reaction indicated the persistent stability of the catalyst (Figure 5g). Furthermore,
there were no significant changes in the shape of the LSV curves before and after the 24 h
continuous HER, implying the robust HER activity of the catalyst for long-term water
splitting. Figure 5h shows the SEM micrograph of the catalyst later the 24 h HER operation,
which verified the steadiness of prepared NiCoFe–LDH@MXene catalyst.

3.3. Oxygen Evolution Reaction

The OER electrocatalytic properties of the designed electrocatalysts were investigated
in an alkaline medium. To expand the comparison scope, the electrochemical behavior of
a noble OER electrocatalyst (RuO2) was also investigated. Figure 6a shows the OER LSV
polarization profiles of the bare NF, RuO2, MXene, NiFe–LDH, NiFe–LDH@MXene, and
NiFeCo–LDH@MXene electrocatalysts. The OER polarization profile demonstrated the
significant importance of LDH structure formation for efficient OER kinetics. Figure 6b
shows the variation in the overpotential required by the bare NF, RuO2, MXene, NiFe–LDH,
NiFe–LDH@MXene, and NiFeCo–LDH@MXene to touch a current density of 10 mA cm−2.
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The NiFeCo–LDH@MXene composite required a lower overpotential (∼130 mV vs. RHE)
compared to commercial RuO2 (~290 mV) to reach a current density of 10 mA cm−2. In
addition, the bare NF, MXene, NiFe–LDH, and NiFe–LDH@MXene catalysts needed an
overpotential of 760, 520, 320, and 220 mV vs. RHE, respectively. These results confirmed
the assumption that the high OER catalytic activity of the NiFe–LDH@MXene and NiFeCo–
LDH@MXene could be ascribed to the active porous conductive structure, homogeneous
incorporation of Co element in NiFe@MXene, ameliorative crystallinity, and the low re-
sistance of the composite to mass transfer between metal cations. Figure 6c shows the
comparison of the OER activity of the arranged NiFeCo–LDH@MXene and those of previ-
ously reported catalysts as decorated in Table S2. Figure 6d shows the OER Tafel lines of
the bare NF, RuO2, MXene, NiFe–LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene
electrocatalysts. The NiFeCo–LDH@MXene composite displayed a narrow Tafel slope
of approximately 52 mV dec−1, which indicates its outstanding inherent characteristics
compared to those of NiFe–LDH@MXene (54 mV dec−1), RuO2 (73 mV dec−1), NiFe–LDH,
(72 mV dec−1), and MXene (68 mV dec−1). The low Tafel slope of the composite could be
credited to the efficient hybridization of transition metal LDH (Fe, Ni, and Co) with MXene,
which favored faster and proficient OER reaction kinetics.

Further, the OER durability of the NiCoFe–LDH@MXene catalysts was investigated.
Figure 6e shows the time-dependent current variations of the NiCoFe–LDH@MXene cat-
alyst under continuous OER process for 24 h at a constant overpotential. The ternary
LDH composite electrocatalyst exhibited a robust OER performance. Figure 6f shows the
polarization profiles of the catalyst before and after the 24 h OER reaction. There was no
significant change in the shape of the LSVs before and after the 24 h OER reaction, implying
the robust OER activity of NiCoFe–LDH@MXene. To further confirm the robustness of the
designed NiFeCo–LDH@MXene electrocatalysts, XPS measurements were obtained after
the 24 h OER reaction and the outcomes are exposed in Figure S7. In addition, the NiFeCo–
LDH@MXene OER performance were extensively compared to those of various hitherto
stated LDH- and MXene-based electrocatalysts (Table S2). Figure 6g shows the Nyquist
plots (inset—fitted circuit) of the bare NF, RuO2, MXene, NiFe–LDH, NiFe–LDH@MXene,
and NiFeCo–LDH@MXene electrocatalysts at an applied OER overpotential voltage. The
exhibited RS values for the OER reaction are at 2.9, 3.9, 2.9, 3.6, 3.6, and 3.8 Ω corresponding
to the bare NF, RuO2, MXene, NiFe–LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene,
respectively. Further, the squat Rct of 0.35 Ω observed for NiFeCo–LDH@MXene composite
compared to NiFe–LDH@MXene (0.64 Ω), NiFe (0.9 Ω), and MXene (1.2 Ω), signifying
the swift electron transfer characteristics for OER reactions. The NiFeCo–LDH@MXene
catalyst exhibited a low Rct and small Rs for OER activity. Moreover, to explore the inherent
electrochemical surface area (ESA), the double-layer capacitance (Cdl) was defined by the
cyclic voltammograms (CVs) of the catalysts which is described in the supporting informa-
tion [7,56]. The CV measurement was performed at different sweep speed to examine the
electrocatalytic properties of the exposed composite catalysts. Figure 6h,i displays the CV
profiles of the NiFe–LDH@MXene and NiFeCo–LDH@MXene in the non-faradaic zone at
various sweep speeds. The area of the curves of the both electrocatalysts increased with
an increase in the scan speed. Figure S8 shows the change in the current density of the
NiFe–LDH@MXene and NiFeCo–LDH@MXene composites at 0.9 V vs. RHE at different
sweep rates. NiFeCo–LDH@MXene exhibited a significantly higher Cdl (19.7 mF cm−2)
than NiFe–LDH@MXene (13.8 mF cm−2). The ESA values of the catalysts were calculated
using the estimated Cdl based on a formulated methodology [9]. The ESA values of NiFeCo–
LDH@MXene and NiFe–LDH@MXene were 347 and 494 cm2, respectively. The petal-like
structure of the NiFeCo–LDH decoration on the MXene sheets considerably decreased
the resistivity of the composite and exposed more active facets, thus enlightening the
electrical conductance of the nanocomposites. The presence of more active enriched sites
can promote the strong intimate contact with the electrolyte, and facilitate the transport of
electrons and the existence of more faradaic process, thus enhancing the electrochemical
characteristics.
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Figure 6. Oxygen evolution reaction (OER) performance: (a) LSV polarizations and (b) the variations
in the OER overpotential of the bare NF, RuO2, MXene, NiFe–LDH, NiFe–LDH@MXene, and NiFeCo–
LDH@MXene electrocatalysts at a scan speed of 10 mV s−1; (c) comparison of the OER overpotential
of the NiFeCo–LDH@MXene composite to those of previously reported electrocatalysts; (d) Tafel
profiles of the bare NF, RuO2, MXene, NiFe–LDH, NiFe–LDH@MXene, and NiFeCo–LDH@MXene;
(e) variations in the time-dependent current density of the NiFeCo–LDH@MXene composite for
24 h continuous OER operation at a constant overpotential; (f) LSV OER profiles before and after
the 24 h continuous OER reaction; (g) Nyquist profiles of the bare NF, RuO2, MXene, NiFe–LDH,
NiFe–LDH@MXene, and NiFeCo–LDH@MXene catalysts; non-faradaic region cyclic voltammetry
(CV) profiles of (h) NiFe–LDH@MXene and (i) NiFeCo–LDH@MXene composite catalysts at different
scan rate.

3.4. Overall Water Splitting

Based on the superior electrocatalytic characteristics of NiFe–LDH@MXene and NiFeCo–
LDH@MXene catalysts for both HER and OER, two-electrode NiFe-LDH@MXene (anode)
‖NiFe–LDH@MXene (cathode) and NiFeCo-LDH@MXene (anode) ‖NiFe-CoLDH@MXene
(cathode) devices were assembled for water overall water splitting reaction at room temper-
ature under alkaline electrolyte. To compare the performance of noble electrocatalyst-based
device behavior, the device characteristics of Pt/C‖RuO2 was also examined. Figure 7a shows
the LSV polarization profiles of the fabricated NiFe–LDH@MXene‖NiFe–LDH@MXene,
NiFeCo–LDH@MXene‖NiFe–CoLDH@MXene, and Pt/C‖RuO2 cells. The prepared noble
NiFeCo–LDH@MXene‖NiFe–CoLDH@MXene device exhibited a low cell voltage of 1.41 V
for overall water splitting to realize a current density of 10 mA cm−2 at a scan rate of
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10 mV s−1, which is superior to the other two-electrode alkaline electrolyzer based on NiFe–
LDH@MXene‖NiFe–LDH@MXene (1.61 V) and Pt/C‖RuO2 (1.75 V). Figure 7b shows the
comparison of the cell voltage of the designed NiFe–LDH@MXene device to those of vari-
ous LDH and MXene-based electrocatalysts for overall water splitting. Figure 7c shows the
Nyquist profiles of the assembled electrolyzers at an applied overpotential with an inset of
fitted electrical circuit. The observed Rct value of 4.6 Ω (NiFeCo–LDH@MXene) and 5.4 Ω
(NiFe–LDH@MXene) assures the intense decay of the charge transfer resistance of NiFeCo–
LDH@MXene‖NiFeCo–LDH@MXene, indicating a swift overall water splitting process.
Furthermore, the NiFe–LDH@MXene and NiFeCo–LDH@MXene electrolyzer exhibited
excellent stability for long-term overall water splitting. Figure S9 and Figure 7d show the
chronoamperometric performance of the NiFe–LDH@MXene and NiFeCo–LDH@MXene
catalysts at an applied constant corresponding cell voltage for the continuous overall water
electrolysis process for over 24 h, respectively. The results demonstrated the robust be-
havior of the prepared catalyst for overall water splitting without notable degradation at
a stable current for over 24 h, confirming the great potential of the catalyst bi-functional
water splitting kinetics.
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The hierarchical NiFeCo–LDH@MXene hybrid structure as prime electrocatalysts
for HER/OER processes exhibited numerous advantages: (i) The unique intrinsic metal-
lic/electronic structure, which enabled a high electronic conductivity of oxide/hydroxide
interaction with MXene, significantly enhanced the charge transfer. (ii) MXene functioned
as a template to grow the layered NiFeCo–LDH, which significantly enhanced the profi-
cient active edges for high electrocatalytic activity. (iii) The developed hierarchical porous
nanosheets acted as “core-shell” arrays structure to facilitate the diffusion of more to access
the numerous active sites and make strong intimate contact with electrode, thus promot-
ing ionic/electric diffusion and transport, which enable rapid gas release and a constant
working area. (iv) The incorporation of NiFeCo–LDH between the MXene layer enhanced
the interlayer spacing, which further enhanced the catalytic activity. (v) The activation of
the multi-edges of the 3D network of NF backbones within the MXene and NiFeCo–LDH
improved the conductivity of the composite catalyst, thus enhancing its catalytic perfor-
mance. (vi) The insertion of the NiFeCo–LDH nanosheets hindered the aggregation of
MXene layer to enable the full utilization of its entire inherent characteristics, enhance
its electrical conductivity and improve the reaction kinetic, thus enhancing the intrinsic
catalytic activity of the catalyst.

4. Conclusions

This work demonstrated the synthesis of porous-structured NiFeCo–LDHs sheet-
embedded MXene composites on a 3D NF network via hydrothermal reaction. The ex-
perimental results revealed that the formation of the composites effectively contributed
to the tuning of the electronic configuration and surface engineering to efficiently pro-
mote the charge/ion diffusion pathways during the HER/OER process and accelerate the
reaction kinetics. Electrochemical studies revealed that the fabricated catalyst required
small overpotentials of 130 and 34 mV vs. RHE to reach a current density of 10 mA cm−2

and Tafel slopes of 62 and 52 mV dec−1 for OER and HER, respectively. Furthermore,
the NiFeCo–LDH@MXene exhibited prolonged robust performance for over 24 h of con-
tinuous and sustained HER/OER owing to their hierarchical structure. Furthermore, an
NiFeCo–LDH@MXene‖NiFe-CoLDH@MXene two-electrode device exhibited a low cell
voltage of 1.41 V to accomplish a current density of 10 mA cm−2 and a robust overall water
splitting reaction kinetics for 24 h continuous HER/OER, which exceeded those of the most
recently described electrocatalysts and Pt/C–RuO2. The outcomes of this study established
that the decoration of honeycomb-like porous NiFeCo–LDH@MXene on a 3D network
improved the conductivity of the composite and activated multi-active facets for efficient
electrocatalytic activity. In addition, the insertion of NiFeCo–LDH nanosheets between the
MXene layers effectively reduced the aggregation of MXene layers, thereby enhancing their
electrical conductivity and HER/OER reaction kinetics.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/nano12162886/s1, Figure S1: (a,b) SEM- EDX spectrum analysis of NiFeCo-LDH@MXene; (c)
elemental wt% their element distribution for Ni, Fe, Co, Ti, and C; Figure S2: (a) FESEM image of
NiFeCo-LDH@MXene and (b–f) their elemental mapping images; (b) Ni; (c) Fe; (d); Co; (e) Ti and (f) C
elements; Figure S3: XRD pattern of MAX phase Ti3AlC2; Figure S4: XPS survey spectrum of NiFeCo-
LDH@MXene; Figure S5: Raman spectrum of MXene, NiFe-LDH@MXene and NiFeCo-LDH@MXene;
Figure S6: SEM images of NiFe-LDH (a) low and (b) high magnification; Figure S7: XPS analysis of
NiFeCo–LHD@MXene hybrid after 24 h OER performance: (a) survey scan; (b) Fe 2p; (c) Ni 2p; (d) Ti
2p; (e) and (f) Co 2p binding energy; Figure S8: CV profiles current variation at different scan rate at
0.9 V vs. RHE for NiFe-LDH@MXene and NiFeCo-LDH@MXene; Figure S9: Time dependent current
density variations of NiFe-LDH@MXene‖NiFe-LDH@MXene device at a constant applied voltage
for continuous water splitting operation over 24 h; Table S1: HER catalytic performances LHD-
based electrocatalysts; Table S2: OER catalytic performances LHD-based electrocatalysts; Table S3:
Comparison of overall water splitting of NiFeCo-LHD@MXene with various electrocatalysts. More
detail refer to Refs. [41–44,57–94].
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