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Abstract: Organic-inorganic hybrid perovskite solar cells (PeSCs) attract much attention in the field
of solar cells due to their excellent photovoltaic performance. Many efforts have been devoted to
improving their power conversion efficiency (PCE). However, few works focus on simultaneously
improving their electrical and optical property. Herein, a simple strategy is proposed to improve
the PCE from 19.8% of a reference device to 22.9%, by utilizing cesium carbonate (Cs2CO3) to
modify indium tin oxide (ITO) substrate. The insertion of a Cs2CO3-modification layer between
ITO substrate and SnO2 electron transport layer simultaneously offers two benefits: improving the
electron extraction capability and adjusting the light field distribution in the device. The optical
optimization effect of Cs2CO3 revealed in this work has not been reported before. This work provides
a new and simple strategy to obtain high performance PeSCs by improving the electrical and optical
properties of the devices at the same time.

Keywords: solar cells; optical materials; thin films; electrical properties; interface structure

Organic-inorganic hybrid halide perovskite solar cells (PeSCs) have greatly impacted
the field of solar cells and have received a lot of attention from researchers. The high PCE
of up to 25.6% is derived from the suitable and adjustable optical band gap, high light
absorption coefficient, low exciton binding energy, direct band gap, long carrier diffusion
length, high defect tolerance of perovskite materials and so on. Researchers have done much
work and proposed various strategies, especially for interface modification to improve
the performance of PeSCs [1–3]. These efforts promoted the device performance with
an internal quantum efficiency (IQE) approaching 100%, which means that the electrical
performance of the device is almost impossible to improve [4–6]. However, there is still a
gap between the current device PCE and the theoretical limit (31% according to the detailed
balance model) [7]. An analysis by a revised detailed balance model pointed out that
optical loss can account for 40% of total energy loss [8]. Therefore, reducing the optical
loss while improving the electrical properties of the device at the same time could provide
an alternative strategy to further enhance the PCE of PeSCs, where little attention has
been paid.

Cesium carbonate (Cs2CO3) is an excellent interface modification material widely
used in organic light emitting diodes (OLED), organic solar cells (OSCs), organic field-effect
transistors (OFET) and other devices. Cs2CO3 can also be used as an interfacial passivation
layer for ETL/perovskite to improve the efficiency of perovskite solar cells by reducing
the recombination rate at the interface [9]. We have used Cs2CO3 to electrically modify
the electron transport layer (ETL) of p-i-n type PeSCs and improved device efficiency [10].
On the other hand, due to the different refractive index of Cs2CO3 from indium tin oxide
(ITO) and tin oxide (SnO2), it is possible to use Cs2CO3 to manage optical properties
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of SnO2-based PeSCs while utilizing its electrical advantages. In this work, Cs2CO3 is
inserted between the ITO substrate and SnO2 ETL to modify both electrical and optical
properties of n-i-p type PeSCs. Thanks to the Cs2CO3 modification, all the short-circuit
current density (Jsc), open-circuit voltage (Voc) and fill factor (FF) are improved, leading to
a high PCE of 22.9%. The greatly improved Jsc and then external quantum efficiency (EQE)
are ascribed to the Cs2CO3 modification induced by electrical and optical improvements.
Moreover, the better electrical properties (the higher carrier extraction capability) with
Cs2CO3 modification in the device is considered to be the reason for the improvement
of Voc and FF. The better optical properties induced by Cs2CO3 modification is the main
reason for the enhanced Jsc.

Here, the n-i-p type PeSCs with a structure of ITO/SnO2/perovskite (FA0.9MA0.1PbI3)/Spiro-
OMeTAD/Ag is selected as a reference device (see Supplementary Material Note 1 for
details) [11]. As mentioned above, a Cs2CO3 buffer layer is inserted between ITO and SnO2
to get a final structure of ITO/Cs2CO3/SnO2/perovskite/Spiro-OMeTAD/Ag. To obtain
the best performance in the Cs2CO3-modification device, an optimization process has
been conducted by changing the concentration of Cs2CO3 solution, as shown in Figure S1.
Considering the performance and solubility, a 40 mg/mL solution of Cs2CO3 in ethanol is
finally selected in this work. The champion Cs2CO3-modification device is compared with
the reference device in Figure 1 (with corresponding EQE results shown in Figure S2). The
Cs2CO3-modification device exhibits a PCE of 22.9%, a VOC of 1.19 V, a JSC of 24.49 mA·cm−2

and a FF of 0.78. In comparison, a PCE of 19.8% is observed in the reference device with a
VOC of 1.15 V, a JSC of 22.83 mA·cm−2 and a FF of 0.75. Obviously, the PCE is significantly
improved due to all parameter (VOC, JSC and FF) enhancements in the Cs2CO3-modification
device compared to the reference device with the greatest contribution from the JSC (from
22.83 mA·cm−2 of the reference device to 24.49 mA·cm−2, with ~7.2% enhancement). The
stabilized photocurrent measurement at the maximum power point (MPP) and hysteresis
test are performed and shown in Figures S3 and S4, respectively.
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Figure 1. The current-voltage characteristics of the device with structure ITO/(with and without)
Cs2CO3/SnO2/FA0.9MA0.1PbI3/Spiro-OMeTAD/Ag.

The increased Voc and FF should be attributed to the improvement of carrier extraction
of the device brought by Cs2CO3 modification, which is verified by transient photocurrent
decay (TPC) tests. The TPC test is conducted under short circuit condition by recording the
decay of photocurrent caused by a pulsed laser. Thus, the TPC signal reflects the carrier
extraction capacity inside the device. In general, the faster the TPC signal decays, the easier
it is for carriers in the device to be collected for a given laser intensity [12]. The normalized
TPCs of the two devices are compared in Figure 2. Clearly, the decay time, defined as
the time scale from the maximum current to no current, of the reference and Cs2CO3-
modification device are ~40 and 10 ns, respectively. Thus, the Cs2CO3-modification device
shows a faster decay behavior compared to the reference device, which suggests a much
higher extraction capability of charge carriers in the Cs2CO3-modified device. It should be
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highlighted that the protrusion in the TPC curve at ~6 ns is attributed to the broadening
of the laser itself. The corresponding J-V characteristics displayed in Figure S5 reflects the
improvement of electrical performance of ITO/SnO2 substrate after Cs2CO3 modification,
which should be the reason for the improved carrier extraction ability. Two samples with
the structure of ITO/(with or without) Cs2CO3/SnO2/PEDOT:PSS/MoO3/Ag have been
designed to verify the electrical advantage of Cs2CO3 modification. As evidenced in
Figure S5, the Cs2CO3-modification layer increases the current at the positive bias and
decreases the current at the negative bias, which suggests a relative high electron extraction
capability and a low leakage current in the PeSCs device after Cs2CO3 modification. The
improved carrier extraction ability may be attributed to the effect of Cs2CO3 on the work
function of ITO and the smoother and denser SnO2 layer after Cs2CO3 modification. A
large number of references have proven that Cs2CO3 can reduce the work function of
the ITO substrate, so that electrons are more easily transferred from SnO2 to ITO [13]. In
addition to that, the introduction of Cs2CO3 improves the wettability of the ITO substrate
to the SnO2 solution, thus making the prepared SnO2 film more dense and flat, as shown
in Figures S6 and S7. However, these small changes are not reflected in the morphology
and then the properties of perovskite layer on SnO2. SEM images of perovskite films
in Figure S8 and transient photovoltage decay (TPV) test results in Figure S9 prove that
positive effects of Cs2CO3 to the device performance are not realized via changing the
perovskite layer. In addition, XPS tests on the surface of the sample ITO/Cs2CO3/SnO2
show that SnO2 effectively prevents the diffusion of Cs to the perovskite, which prove that
the effect of Cs2CO3 modification is not caused by the incorporation of Cs elements into
perovskite, as shown in Figure S10.
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Figure 2. The TPC tests of the reference and the Cs2CO3-modification devices.

The improvement of Jsc after Cs2CO3 modification is not only related to the im-
provement of the electrical performance of the device, but also to the increase of the
transmittance of the substrate. The transmittance changes of ITO and ITO/SnO2 substrate
after CS2CO3 modification is obtained using a Shimadzu UV-2550 Spectrophotometer
(Shimadzu, Kyoto, Japan), with the optical path shown in Figure S11. As shown in Figure 3,
the transmittance ratios of both ITO and ITO/SnO2 substrates before and after CS2CO3
modification are greater than 1 at almost all wavelengths, which means that CS2CO3
greatly improves the transmission of the substrate. The matrix optical calculation results
of the device confirm this observation. The structure of Air/glass (700,000 nm)/SiO2
(30 nm)/ITO (135 nm)/SnO2 or Cs2CO3/SnO2 (SnO2 for 45 nm and Cs2CO3/SnO2 for
50 nm)/perovskite (600 nm)/Spiro-OMeTAD (135 nm)/Ag (100 nm) is used in the optical
simulation, as shown in Figure S12 (the details of calculation program and parameters are
given in the Supplementary Material Note 2). The thickness of each layer was verified by
cross-sectional SEM as shown in Figure S13. The optical constants of SnO2 or Cs2CO3/SnO2
layers were obtained by an ellipsometer, and the optical constants of other layers were given
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in the literature [14–16]. All optical constants are shown in the spreadsheet file “Optical
Constants” in the Supplementary Material. After calculation, the light absorptions of the
perovskite layer before and after Cs2CO3 modification are shown in Figure 4a. Figure 4b
shows the ratio of light absorption of the perovskite layer after Cs2CO3 modification di-
vided by the one before Cs2CO3 modification. It can be seen that the light absorption of
the perovskite layer in the 300–800 nm wavelength range after Cs2CO3 modification has
been enhanced to certain degrees. SEM results show that this increase in transmittance may
be due to the unique structure of the Cs2CO3 layer after being washed by SnO2 solution.
As shown in Figure S14, a continuous layer with some pinholes is formed on ITO after
spin-coating Cs2CO3. Then, the same amount of deionized water as the SnO2 solution
used in preparing SnO2 layer was spin-coated on Cs2CO3 to mimic the real experimental
condition. It is found that the Cs2CO3 layer changes to a discontinuous distribution, which
is also confirmed by energy dispersive X-ray spectroscopy (EDS) test, which can be the
reason for the increased optical transmission of the substrate, as shown in Figure S15.

Nanomaterials 2022, 12, x 4 of 6 
 

 

as shown in Figure S12 (the details of calculation program and parameters are given in 
the Supplementary Material Note 3). The thickness of each layer was verified by cross-
sectional SEM as shown in Figure S13. The optical constants of SnO2 or Cs2CO3/SnO2 layers 
were obtained by an ellipsometer, and the optical constants of other layers were given in 
the literature [14–16]. All optical constants are shown in the spreadsheet file “Optical Con-
stants” in the Supplementary Material. After calculation, the light absorptions of the per-
ovskite layer before and after Cs2CO3 modification are shown in Figure 4a. Figure 4b 
shows the ratio of light absorption of the perovskite layer after Cs2CO3 modification di-
vided by the one before Cs2CO3 modification. It can be seen that the light absorption of 
the perovskite layer in the 300–800 nm wavelength range after Cs2CO3 modification has 
been enhanced to certain degrees. SEM results show that this increase in transmittance 
may be due to the unique structure of the Cs2CO3 layer after being washed by SnO2 solu-
tion. As shown in Figure S14, a continuous layer with some pinholes is formed on ITO 
after spin-coating Cs2CO3. Then, the same amount of deionized water as the SnO2 solution 
used in preparing SnO2 layer was spin-coated on Cs2CO3 to mimic the real experimental 
condition. It is found that the Cs2CO3 layer changes to a discontinuous distribution, which 
is also confirmed by energy dispersive X-ray spectroscopy (EDS) test, which can be the 
reason for the increased optical transmission of the substrate, as shown in Figure S15. 

 
Figure 3. The transmittance changes of ITO and ITO/SnO2 substrate after CS2CO3 modification. 

 
Figure 4. (a) The calculated absorption of perovskite layer in devices with or without Cs2CO3 mod-
ification. (b) The result of calculated light absorption of perovskite layer with Cs2CO3 modification 
divided by light absorption of the unmodified one. 

In summary, we have fabricated a high efficiency PeSC device by modifying the ITO 
substrate with the Cs2CO3 layer. The PCE increases from 19.8% of the reference device to 

Figure 3. The transmittance changes of ITO and ITO/SnO2 substrate after CS2CO3 modification.

Nanomaterials 2022, 12, x 4 of 6 
 

 

as shown in Figure S12 (the details of calculation program and parameters are given in 
the Supplementary Material Note 3). The thickness of each layer was verified by cross-
sectional SEM as shown in Figure S13. The optical constants of SnO2 or Cs2CO3/SnO2 layers 
were obtained by an ellipsometer, and the optical constants of other layers were given in 
the literature [14–16]. All optical constants are shown in the spreadsheet file “Optical Con-
stants” in the Supplementary Material. After calculation, the light absorptions of the per-
ovskite layer before and after Cs2CO3 modification are shown in Figure 4a. Figure 4b 
shows the ratio of light absorption of the perovskite layer after Cs2CO3 modification di-
vided by the one before Cs2CO3 modification. It can be seen that the light absorption of 
the perovskite layer in the 300–800 nm wavelength range after Cs2CO3 modification has 
been enhanced to certain degrees. SEM results show that this increase in transmittance 
may be due to the unique structure of the Cs2CO3 layer after being washed by SnO2 solu-
tion. As shown in Figure S14, a continuous layer with some pinholes is formed on ITO 
after spin-coating Cs2CO3. Then, the same amount of deionized water as the SnO2 solution 
used in preparing SnO2 layer was spin-coated on Cs2CO3 to mimic the real experimental 
condition. It is found that the Cs2CO3 layer changes to a discontinuous distribution, which 
is also confirmed by energy dispersive X-ray spectroscopy (EDS) test, which can be the 
reason for the increased optical transmission of the substrate, as shown in Figure S15. 

 
Figure 3. The transmittance changes of ITO and ITO/SnO2 substrate after CS2CO3 modification. 

 
Figure 4. (a) The calculated absorption of perovskite layer in devices with or without Cs2CO3 mod-
ification. (b) The result of calculated light absorption of perovskite layer with Cs2CO3 modification 
divided by light absorption of the unmodified one. 

In summary, we have fabricated a high efficiency PeSC device by modifying the ITO 
substrate with the Cs2CO3 layer. The PCE increases from 19.8% of the reference device to 

Figure 4. (a) The calculated absorption of perovskite layer in devices with or without Cs2CO3 modifi-
cation. (b) The result of calculated light absorption of perovskite layer with Cs2CO3 modification
divided by light absorption of the unmodified one.

In summary, we have fabricated a high efficiency PeSC device by modifying the
ITO substrate with the Cs2CO3 layer. The PCE increases from 19.8% of the reference
device to 22.9% of the Cs2CO3-modification device. Through TPV, TPC, AFM, UV-vis, etc.
measurement, the roles of the Cs2CO3-modification layer have been addressed: improving
the electron extraction capability and adjusting the light-field distribution in the perovskite
layer at the same time. The improved electron extraction capability is presumably from
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the more compact and denser SnO2 layer after Cs2CO3-modification and work function
change of ITO substrate, thus contributing a part improvement of Jsc, Voc, and FF in the
device. On the other hand, the light field distribution adjustment is beneficial for utilizing
more photons in the perovskite layer due to enhanced transmission of the ITO substrate.
Undoubtedly, this work provides a new strategy to improve the PCE of PeSCs devices
by simultaneously enhancing the electrical and optical properties, which has rarely been
reported before.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano12183144/s1, Figure S1: The data statistics of VOC,
JSC, FF and PCE; Figure S2: The EQE and Jin results; Figure S3: The stabilized photocurrent mea-
surement at the maximum power point (MPP) of the device; Figure S4: The hysteresis tests of the
devices; Figure S5: J-V curves test; Figure S6: Contact angle test results; Figure S7: AFM results;
Figure S8: SEM images of the perovskite layer; Figure S9: The TPV tests results; Figure S10: XPS tests
results; Figure S11: The optical path diagram; Figure S12: The device optical structure; Figure S13:
Cross-sectional SEM images of the device; Figure S14: The SEM images; Figure S15: The EDS image;
Supplementary Material Note 1: Device fabrication and test methods; Note 2: Optical transmission
matrix calculation details.
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