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Abstract: The tin dioxide (SnO2) photocatalyst has a broad application prospect in the degradation of
toxic organic pollutants. In this study, micron-sized spherical SnO2 and flower indium oxide (In2O3)
structures were prepared by a simple hydrothermal method, and the In2O3/SnO2 composite samples
were prepared by a “two-step method”. Using Rhodamine B (RhB) as a model organic pollutant, the
photocatalytic performance of the In2O3/SnO2 composites was studied. The photocurrent density of
1.0 wt.% In2O3/SnO2 was twice that of pure SnO2 or In2O3, and the degradation rate was as high
as 97% after 240 min irradiation (87% after 120 min irradiation). The reaction rate was five times
that of SnO2 and nine times that of In2O3. Combined with the trapping experiment, the transient
photocurrent response, and the corresponding characterization of active substances, the possible
degradation mechanism was that the addition of In2O3 inhibited the efficiency of electron–hole pair
recombination, accelerated the electron transfer and enhanced the photocatalytic activity.

Keywords: In2O3/SnO2; photocatalysis; Rhodamine B; electron transfer

1. Introduction

The rapid development of modern industry has led to a large number of new organic
pollutants that are difficult to degrade into water bodies, which pose a significant potential
threat to human, animal and environmental health [1]. Therefore, there is an urgent need
for economic and efficient catalysts and technologies to degrade organic pollutants [2]. It
is worth noting that the textile industry discharges the largest amount of dye wastewater,
accounting for almost half of the organic pollutant wastewater worldwide [3]. Textile
dyes are also classified as carcinogenic and neurotoxic, causing respiratory infections, skin,
gastrointestinal irritation and eye infections, with developmental and mimic toxicity in
animals and humans [4]. Therefore, it is still a great challenge to find an efficient method
for handling industrial wastewater.

The catalysts are the “chip” of wastewater treatment, which have always been closely
related to the development and application of the modern chemical industry, and are
also emerging as a potential material to promote energy conversion and storage appli-
cations [5,6]. In recent years, advanced oxidation processes (AOPs) have received more
and more attention as an effective method to decompose organic wastewater [7]. At the
same time, researchers emphasize that the varying chemical and structural properties of
catalysts should be the focus when analyzing the active factors of catalysts [8]. It is well
known that various AOPs have been used for the decontamination of wastewater, in which
photocatalytic degradation is one of the most fascinating techniques owing to its simplicity,
superior removal efficiency and lack of secondary pollution.
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Rhodamine B (RhB) is one of the most toxic dyes in textile wastewater. Due to
its high stability and non-biodegradability, it is often chosen as a typical model dye for
photocatalytic degradation experiments. Many scientists tried to degrade RhB with dif-
ferent semiconductor photocatalysts, such as TiO2 [9], SnO2 [10], ZnO [11], WO3 [12] and
In2O3 [13]. Among all the photocatalysts, due to its advantages of environmental friendli-
ness, non-toxicity, low cost, excellent photoelectrochemical properties, and especially its
lower conduction band (CB) position, SnO2 is a better electron acceptor than TiO2 and
ZnO [14]. However, due to the high recombination rate of photogenerated electron–hole
pairs in pure SnO2, the photocatalytic efficiency is low. Therefore, it is crucial to promote
the photocatalytic performance of SnO2 by accelerating the separation of photoinduced
charge pairs. In particular, the preparation of composites by coupling SnO2 with other pho-
tocatalytic materials has been shown to be an effective strategy for suppressing the rapid
complexation of photogenerated electron–hole pairs [15]. Furthermore, the photocatalytic
activity of SnO2 is significantly enhanced when the metal oxide is coupled with short-
bandgap or wide-bandgap semiconductors [16]. Indium oxide (In2O3) is also an important
metal–oxide semiconductor, which has been proved to be an effective sensitizer. Due to
its perfect physicochemical properties, aqueous stability and low toxicity, it is a suitable
candidate for the effective photodegradation of pollutants in wastewater [17]. Therefore,
the coupling effect of SnO2 and In2O3 was chosen to enhance the photocatalytic activity.

In this study, micron-sized spherical SnO2 and flower In2O3 structures were prepared
by a simple hydrothermal method. In2O3-doped SnO2 (In2O3/SnO2) samples with different
percentages of In2O3 contents were prepared by a “two-step method”. The crystal structure
and physical properties of the In2O3/SnO2 composites were studied in detail. Using RhB as
a model organic pollutant, the photocatalytic performance of the In2O3/SnO2 composites
was studied. Finally, the photodegradation mechanism of the In2O3/SnO2 composites
was discussed.

2. Materials and Methods
2.1. Materials

All the chemicals used in this study were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China), and were of analytical grade purity and did not
require further purification. All the solutions were prepared with deionized (DI) water.

2.2. Synthesis of Photocatalysts

SnO2 was prepared by the hydrothermal method [18]. Firstly, 1.4 g SnCl4·5H2O,
2.94 g Na3C6H5O7·2H2O and 0.16 g NaOH were dissolved in a mixture of 30 mL absolute
ethanol and 45 mL deionized (DI) water, and then stirred vigorously for 1 h to form a
homogeneous solution. Then, it was transferred to a Teflon-lined stainless-steel autoclave
and heated at 180 ◦C for 12 h. After cooling to room temperature, the precipitate was
collected by centrifugation, then washed successively with deionized water and absolute
ethanol. Finally, the obtained SnO2 was dried at 60 ◦C in air for 12 h.

In2O3 was also prepared by a simple hydrothermal route [19]. Firstly, 0.42 g InCl3·4H2O
and 1.22 g sodium dodecyl sulfate (SDS) were dispersed into 80 mL deionized water and
stirred for 30 min. Next, 0.42 g CO(NH2)2 was added to the above mixed solution and
stirred vigorously for 1 h. The solution was completely dissolved and transferred to a
stainless-steel autoclave lined with Teflon, placed in an electric oven and heated at 120 ◦C
for 12 h. The following steps were the same as synthesizing the SnO2. Finally, the syn-
thesized samples were calcined in a Muffle furnace at 500 ◦C for 2 h at a heating rate of
2 ◦C/min. After cooling to room temperature, In2O3 was obtained.

In2O3/SnO2 was prepared by the hydrothermal method. Firstly, 30 mL absolute
ethanol and 45 mL DI water were mixed and stirred for 30 min to form solution A. Different
amounts of In2O3 were dispersed into solution A and ultrasonically dispersed for 30 min to
form solution B. Next, 1.4 g SnCl4·5H2O was added to solution B and fully dissolved. Then,
2.94 g Na3C6H5O7·2H2O was added and stirred for 20 min until completely dissolved.
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Finally, 0.16 g NaOH was added and stirred for 10 min to form solution C. The following
steps were the same as the synthesis of SnO2. The synthesized sample was calcined in
Muffle furnace at 700 ◦C for 1 h. After cooling to room temperature, the composite material
In2O3/SnO2 was synthesized. The amounts of In2O3 were 0.1, 0.5, 1.0 and 1.5 wt.%.

2.3. Characterization of Photocatalysts

The crystal structure of the composite was studied by Mini Flex600 X-ray diffractom-
etry (XRD, Rigaku, Tokyo, Japan, Cu-Kα, 10◦~80◦, 5◦ min−1). A field emission scanning
electron microscope (SEM, Oxford Anta-450, FEI, Oxford, England) characterized the mor-
phology of the synthetic materials. Transmission electron microscopy (TEM, Tecnai G2,
FEI, Oxford, England) was used to obtain the morphology and element distribution. The
surface chemical composition was investigated by X-ray photoelectron spectroscopy (XPS,
Thermo ESCALAB 250X, Waltham, MA, USA, C1s revised at 284.8 eV). The absorption
spectra were carried out by a UV–Visible spectrophotometer (Lambda 750, Perkin-Elmer,
Shelton, CT, USA) and the electron–hole binding capacity was examined by photolumines-
cence spectroscopy (PL, HORIBA FluoroMax-4, Piscataway, NJ, USA) using an excitation
wavelength of 320 nm.

2.4. Photocatalytic Activity Tests

The photocatalytic performances of the catalyst were investigated by the photodegra-
dation of RhB under the ultraviolet light irradiation of a 200 W Hg lamp (CEL-LAM500,
Beijing Au Light, Beijing, China). In all the experiments, 50 mg of the catalyst powder was
dispersed into 50 mL of the RhB solution (10 mg·L−1). Before the photoreaction began,
the solution was magnetically mixed in the dark for 30 min to complete the adsorption–
desorption equilibrium. During the photoreaction, 1.6 mL of the suspension was collected
every 20 min and centrifuged. The strongest absorption peak of the RhB solution was
determined by a UV–Vis–NIR PE Lambda 950 spectrophotometer. In the cycle experiment,
the samples were washed with DI and absolute ethanol several times before starting the
new cycle photocatalytic test. In addition, triethanolamine (TEA) was used as hole radical,
p-benzoquinone (BQ) as a superoxide radical, and tert-butanol (TBA) as a hydroxyl radical.

2.5. Photocurrent Experiments

The photochemical properties of the samples were studied by a photocurrent ex-
periment. The prepared samples were coated onto FTO glass as the working electrode,
platinum wire was used as the counter electrode, Ag/AgCl as the counter reference elec-
trode, and 0.1 M Na2SO4 as the electrolyte solution. A bias potential of 0.5 V was applied
to the photoanode when the photocurrent test was performed under switching light con-
ditions. Electrochemical impedance spectroscopy (EIS) measurements were carried out
in the frequency range of 0.01 Hz–10 kHz in 0.1 M Na2SO4 solution, and were performed
using ZENNIUM electrochemical workstation (Zahner Instruments, Kronach, Germany).
The electrochemical signals for all the tests were recorded by a CHI660E electrochemical
analyzer (Chenhua Instruments, Shanghai, China).

3. Results and Discussion
3.1. Morphology and Structure of the Catalyst

The crystalline phases of the synthesized materials were investigated using the XRD
method, and the effects are shown in Figure 1. The significant characteristic peaks of
pure SnO2 at 2θ = 26.6◦, 33.9◦, 37.9◦, 51.8◦, 54.8◦ and 65.9◦ were attributed to the (110),
(101), (200), (211), (220) and (301) crystal planes of tetragonal SnO2 (JCPDS No.41-1445),
respectively [20]. The distinctive characteristic peaks of In2O3 at 2θ = 30.6◦, 35.5◦, 51.0◦

and 60.7◦ were attributed to the (222), (400), (440) and (622) crystal planes of cubic In2O3
(JCPDS No.89-4595), respectively [19]. The SnO2 peak intensity of the 1.0 wt.% In2O3/SnO2
photocatalyst was lower than that of pure SnO2. The study determined that the doping of
In2O3 did not appreciably alter the crystal shape of SnO2. This may have also been due to
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the low-doping-content material of In2O3 in the composites. Additionally, it was shown
that “In” was integrated into the SnO2 lattice.
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Figure 1. XRD patterns of pure SnO2, In2O3 and 1.0 wt.% In2O3/SnO2 composite photocatalysts.

The morphology and structure of the synthesized materials were investigated by SEM.
The effects are shown in Figure 2, and Figure 2b,d,f show the magnifications of Figure 2a,c,e,
respectively. Figure 2a,b show that SnO2 was a spherical structure in which the particle
size was about 2.8 µm. Figure 2c,d show that In2O3 was a three-dimensional flower-like
structure consisting of an effective stacking of nanosheets, of which the particle size was
about 8.3 µm. Figure 2e,f show the morphological structure of the 1.0 wt.% In2O3/SnO2
photocatalyst, and a layer of In2O3 attached to the surface of SnO2.
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Figure 2. SEM images: (a,b) of the pure SnO2; (c,d) of the prepared In2O3; (e,f) of the prepared
1.0 wt.% In2O3/SnO2 composite photocatalysts.

TEM and HRTEM analysis was performed on the 1.0 wt.% In2O3/SnO2 composite
photocatalyst material. Figure 3a is the TEM image of the 1.0 wt.% In2O3/SnO2 pho-
tocatalyst. It was found that not only was a layer of In2O3 attached to the surface of
SnO2, but a portion of In2O3 was also embedded in the SnO2 sphere. Figure 3b shows
the HRTEM image of the selected part of Figure 3a. The fringes with the surface spacing
of 0.2308 nm and 0.334 nm belonged to the lattice surface of SnO2, corresponding to the
spacings of (111) and (110) of SnO2 (JPCDS 41-1445), respectively. The fringe with a surface
spacing of 0.253 nm belonged to the lattice surface of In2O3, corresponding to the (400)
spacing of In2O3 (JCPDS No.89-200 4595). The crystallinity and composition of the samples
were analyzed by TEM–EDS. The elemental composition and distribution of the 1.0 wt.%
In2O3/SnO2 samples were studied by TEM–EDS spectroscopy (Figure 3c–f). In the 1.0 wt.%
In2O3/SnO2 sample, the elements of Sn, In and O were uniformly distributed. These re-
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sults confirmed the formation of the In2O3/SnO2 heterostructure, which was beneficial for
suppressing electron–hole recombination.
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The chemical state and surface composition of the synthesized materials were investi-
gated by XPS. As shown in Figure 4a, the XPS survey spectrum showed characteristic peaks
of Sn, In, O and C elements. The spectrum was calibrated relative to the C-element peak.
Figure 4b shows the Sn3d spectrum of SnO2 with two peaks at 486.80 eV and 495.20 eV
for the Sn3d5/2 and Sn3d3/2 orbitals of Sn4+, respectively [21]. In addition, after binding
with In2O3, the binding energies of Sn3d5/2 and Sn3d3/2 of the 1.0 wt.% In2O3/SnO2
photocatalyst shifted to 487.20 eV and 495.60 eV, respectively.
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Figure 4c shows that the In3d spectrum of In2O3 has two peaks at 440.07 eV and
451.64 eV, belonging to the In3d5/2 and In3d3/2 orbitals of In3+, respectively [22]. In
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addition, the binding energies of the 1.0 wt.%In2O3/SnO2 photocatalysts for In3d5/2 and
In3d3/2 were shifted to 444.47 eV and 452.04 eV, respectively. The characteristic peaks of
Sn3d and In3d for the 1.0 wt.% In2O3/SnO2 photocatalyst had a negative shift of 0.4 eV.
This was due to the strong electronic interaction between SnO2 and In2O3, was beneficial
to improve the migration efficiency of photogenerated carriers at the interface [23].

Figure 4d shows the XPS spectra of In2O3, SnO2 and the 1.0 wt.% In2O3/SnO2 photo-
catalyst O1s. The asymmetric O1s in SnO2 was decomposed into two peaks located around
529.95 eV and 531.80 eV. One of the bands placed at 531.80 eV (Ov) belonged to the O atoms
close to OVs or hydroxyl-like groups. Another band at 529.95 eV (Olatt) was viewed to be
the Sn-O-Sn oxygen bond. The asymmetric O1s in In2O3 was decomposed into two peaks.
One of the bands at 531.11 eV (Ov) belonged to the O atoms close to OVs or hydroxyl-like
groups. Another band at 529.45 eV (Olatt) was considered to be the In-O-In oxygen bond.
The O1s spectrum of the 1.0 wt.% In2O3/SnO2 photocatalyst was decomposed into three
peaks. The binding energy around 529.63 eV corresponded to the lattice oxygen of the
In-O-In bond, the binding energy around 530.05 eV corresponded to the lattice oxygen of
the Sn-O-Sn bond, and the peak at 532.20 eV should be from the oxygen of the -OH group
at the composite surface [21]. All the binding energies were negatively shifted relative to
those of pure SnO2 and In2O3. The XPS analysis implied the coexistence of SnO2 and In2O3
in the 1.0 wt.% In2O3/SnO2 photocatalyst.

The optical absorption characteristics and bandgaps of In2O3, SnO2 and the 1.0 wt.%
In2O3/SnO2 were studied by UV–Vis DRS. As shown in Figure 5a, the absorption edges
of In2O3, SnO2 and the 1.0 wt.% In2O3/SnO2 were located at about 550, 459 and 455 nm,
respectively. Compared with pure SnO2, the absorption edge of the 1.0 wt.% In2O3/SnO2
showed a slight red shift, which indicated that the composite photocatalyst had the most
reliable absorption capacity. The absorbing edge was calculated using the usual Tauc’s
diagram [24]:

(αhv)n = A
(
hv− Eg

)
(1)

where α is the absorption coefficient, hυ is the energy of the incident photon, Eg is the
optical bandgap energy (hereinafter referred to as the bandgap energy), A is a constant,
and n depends on the type of electronic transition. Here, In2O3 and SnO2 were both direct
bandgap semiconductors, and their n values were both taken as 2.
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As shown in Figure 5b, the Eg obtained by In2O3 and SnO2 were 2.65 eV and 3.19 eV,
respectively, and the band energy of the 1.0 wt.% In2O3/SnO2 heterojunction was reduced
to 3.04 eV, which was due to the strong interaction between In2O3 and SnO2. In order to
find out about the separation mechanism of photogenerated cost carriers in the system
of degrading pollutants, the CB and VB potentials of In2O3 and SnO2 were preliminarily
calculated by Equation (2):

ECB = EVB − Eg (2)

ECB and EVB are the conduction band and valence band potential, respectively. Eg is
the bandgap of the semiconductor material. As shown in Figure 5c,d, the positive slope
of the Mott–Schottky curve confirmed that In2O3 and SnO2 were N-type semiconductors.
Compared with saturated Ag/AgCl electrodes, the flat-band potentials of In2O3 and SnO2
were −0.82 and −0.70 eV. The flat-band potentials transformed to NHE were −0.63 eV and
−0.51 eV. Meanwhile, the CB position of the N-type semiconductor was 0.1~0.3 eV greater
than the flat-band potential [25]. Therefore, the CB potentials of In2O3 and SnO2 were
speculated to be −0.93 and −0.81 eV. Combining the CB and bandgap, the VB potentials of
the In2O3 and SnO2 were obtained using Equation (2). Therefore, the VB positions of In2O3
and SnO2 were +1.72 eV and +2.38 eV, respectively.

3.2. Photocatalytic Performance

The degradation of RhB was investigated using the synthesized SnO2 samples and
In2O3/SnO2 composites under UV light. Figure 6a shows the degradation of RhB. It was
observed that the synthesis of the In2O3/SnO2 composites had a synergistic effect on
the decomposition of RhB. In total, 54% of RhB was degraded by SnO2 after 240 min of
UV-light irradiation. The composite of a small quantity of In2O3 and SnO2 considerably
improved the effectivity of the photocatalytic degradation of RhB. The degradation rate of
the 1.0 wt.% In2O3/SnO2 composite photocatalyst reached about 97% after 240 min, and
reached 87% after 120 min of UV-lamp irradiation.
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As shown in Figure 6b, the photodegradation kinetics of the synthesized sample in
terms of RhB were investigated. Table 1 shows the photodegradation kinetic constant
ln(C0/C) = κ · t, the fitting equation, the rate constant κ and the correlation coefficient R2.
The reaction rate constant of SnO2 was 0.00305 min−1. The reaction rate constant of the
1.0 wt.% In2O3/SnO2 was five and nine times that of SnO2 and In2O3, respectively. This
result also indicated that In2O3 facilitates the increase in photoactivity.

Table 1. The fitted equation, the rate constant κ and correlation coefficient (R2) of as-prepared samples.

Samples Fitted Equation κ (min−1) Correlation Coefficient (R2)

Blank ln(C0/C) = 0.0002056 t 0.0002056 0.91181
SnO2 ln(C0/C) = 0.00305 t 0.00305 0.98214
In2O3 ln(C0/C) = 0.00158 t 0.00158 0.96773

0.1 wt.% In2O3/SnO2 ln(C0/C) = 0.01049 t 0.01049 0.97336
0.5 wt.% In2O3/SnO2 ln(C0/C) = 0.01087 t 0.01087 0.9719
1.0 wt.% In2O3/SnO2 ln(C0/C) = 0.0002056 t 0.01347 0.98141
1.5 wt.% In2O3/SnO2 ln(C0/C) = 0.0002056 t 0.00958 0.98119

We studied the stability and reproducibility of the 1.0 wt.% In2O3/SnO2 photocata-
lyst. Under the identical experimental conditions, two additional cycles of degradation
experiments were performed on RhB. Figure 6c indicates that the degradation rate did not
change much after three cycles of the photocatalytic process. The synthesized 1.0 wt.%
In2O3/SnO2 photocatalyst had good consistency and reproducibility.

The catalytic degradation process of RhB by the samples was studied. As shown
in Figure 6d, the UV–Vis absorption spectrum images of the 1.0 wt.% In2O3/SnO2 for
RhB dye degradation at unique times were investigated. During photodegradation, the
depth of the attribute height of RhB at 554 nm decreased drastically between 0 min and
240 min of light radiation. The maximum absorption peak was shifted from 554 nm to
526 nm. These changes may have been caused by the generation of intermediates in the
reaction mixture as well as the n-demethylation and conjugated structure damage of RhB
during photodegradation [26]. The disruption of the conjugated chromophore structure
of RhB caused a rapid decrease in RhB uptake, indicating that RhB could be degraded to
small molecules such as CO2 and H2O [19]. The above results indicated that the process
of n-demethylation and the destruction of the conjugated chromophore structure were
synchronized for the duration of the photocatalytic reaction [27].

3.3. Catalytic Mechanism

The electron–hole separation efficiency during photocatalytic degradation was investi-
gated using the transient photocurrent response. As shown in Figure 7a, the photocurrent
of the 1.0 wt.% In2O3/SnO2 was higher than that of SnO2 and In2O3. The photocurrent
density of the 1.0 wt.% In2O3/SnO2 (1.92 µA·cm−2) was 1.5 and 2.3 times that of pure
SnO2 (1.32 µA·cm−2) and In2O3 (0.84 µA·cm−2), respectively. The elevated photocurrent
signified that the carriers generated in the 1.0 wt.% In2O3/SnO2 could be separated more
efficiently than those in pure SnO2 and In2O3. In general, the electron–hole transport effec-
tivity was positively related to the photocurrent depth [28]. Therefore, in order to acquire
higher photocatalytic activity, the 1.0 wt.% In2O3/SnO2 generated a greater number of
electron–hole pairs to participate in the photodegradation process. As shown in Figure 7b,
the EIS Nyquist plot of the samples was investigated. Compared with the pure SnO2,
the 1.0 wt.% In2O3/SnO2 composite photocatalyst had the smallest arc radius in the EIS
Nyquist diagram. The results indicated that In2O3/SnO2 composite photocatalyst could
effectively increase the electron–hole separation rate [29].
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Meanwhile, in order to further confirm of the photoactivity of the 1.0 wt.% In2O3/SnO2,
photoluminescence (PL) spectroscopy tests were performed. It is well known that PL
emission spectroscopy has been widely used to study the capture, transfer, and separation
efficiencies of photogenerated charges in semiconductor materials. The lower the PL
emission intensity, the lower the recombination rate of photogenerated electron–hole
pairs [30]. Figure 7c shows the PL spectra of SnO2, 0.1, 0.5, 1.0 and 1.5 wt.% In2O3/SnO2.
It can be seen that the luminescence intensity of the composite photocatalysts was lower
than that of pure SnO2. With the increase in the In2O3 doping amount, the luminescence
intensity first decreased and then increased, and reached the minimum value at 1.0 wt.%
In2O3/SnO2. This means that the recombination of electron–hole pairs was hindered and
the photocatalytic activity was enhanced [31].

To explore the degradation of RhB by a range of active species, trapping experiments
were carried out. The influence of the main substances exposed to the 1.0 wt.% In2O3/SnO2
on the degradation of RhB was studied. As shown in Figure 7d, benzoquinone (BQ) was
used to remove •O2

−, triethanolamine (TEOA) to remove h+, and tert-butanol (TBA) to
remove •OH. After the addition of BQ and TEOA, the effectivity of the degradation of RhB
was significantly reduced. The photocatalytic activity of TBA was also decreased, but the
decrease was smaller than that of the others. Therefore, •O2

− and h+ played the leading
role in RhB degradation, while •OH played an auxiliary role.

According to the above evaluation results, the feasible photocatalytic mechanism of
the composite In2O3/SnO2 photocatalyst material was proposed. As shown in Figure 8,
the energy band positions of In2O3 and SnO2 were well matched, which can effectively
separate photogenerated electrons and holes. In2O3 and SnO2 can be excited by ultraviolet
light. A hole (h+) was generated in VB, and an electron (e−) was generated in CB. The
high carrier-recombination rate of pure SnO2 led to the poor photocatalytic performance.
The synergistic effect of the nanocomposites reduced the composite defects that generate
charge, which in turn improved the photocatalytic activity of SnO2.
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The semiconductor components generate the electron–holes pairs, which is initi-
ated by the absorption of photons with energy equal to or higher than the bandgap
(Equations (3) and (4)). A part of the h+ of SnO2 was transferred to the VB of In2O3
(Equation (5)), and a part of the e− of In2O3 was transferred to the CB of SnO2 (Equation (6)).
Some h+ on the surface of SnO2 remained in the VB, oxidizing pollutants. The e− reacts
with oxygen molecules to form the superoxide anion (•O2

−) (Equation (7)). At the same
time, the photocatalytic degradation of RhB in the VB may be due to a direct reaction with
holes instead of •OH (Equations (8)–(10)). The viable response steps were summarized as
follows [19,27].

SnO2 + hv→ e−(SnO2) + h+(SnO2) (3)

In2O3 + hv→ e−(In2O3) + h+(In2O3) (4)

h+(SnO2)→ h+(In2O3) (5)

e−(In2O3)→ e−(SnO2) (6)

e−(SnO2) + O2 → •O−2 (7)

RhB + •O−2 → CO2 + H2O (8)

RhB + h+ → CO2 + H2O (9)

RhB + •OH→ CO2 + H2O (10)

Table 2 shows the photocatalytic activity of the 1.0 wt.% In2O3/SnO2 nanocompos-
ites for the degradation of RhB compared with several recently reported papers for the
photocatalytic degradation of organic dyes. The 1.0 wt.% In2O3/SnO2 exhibited both the
Fenton effect and photocatalytic activity under UV-light irradiation, verifying that it was an
efficient photocatalyst. The reaction conditions such as the concentration of the dye and the
content of the catalyst will have a great influence on the performance of the photocatalyst.
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Table 2. Comparison of photocatalytic efficiencies of various SnO2-based photocatalysts for degrada-
tion of organic pollutants.

Catalyst Pollutant
Concentration

Catalyst
Dosage (mg) Light Source Irradiation

Time (min) Activity (%) Reference

SnO2
a RhB (10 mg/L) 45 mg high-pressure Hg lamp

(175 w) 270 min ~92% [32]

Fe/SnO2 RhB (10 mg/L) 25 mg UV light (250 w) 120 min ~55% [33]
Bi2O3/In2O3 RhB (10 mg/L) 10 mg Hg lamp (175 w) 240 min ~92% [34]
ZnO/SnO2 RhB (2 × 10−6 M) 50 mg two 6 W UV tube lamps 120 min ~80% [35]

1.0 wt.%
In2O3/SnO2

RhB (10 mg/L) 50 mg high-pressure Hg lamp
(200 w)

120 min
180 min
240 min

~87%
~92%
~97%

This work

a RhB = Rhodamine B.

4. Conclusions

In this study, micron-sized spherical SnO2 and flower In2O3 structures were prepared
by a simple hydrothermal method. In2O3-doped SnO2 (In2O3/SnO2) samples with different
percentages of In2O3 contents were prepared by a “two-step method”, and their catalytic
performance in RhB degradation was studied. The results showed that the photocurrent
density of the 1.0 wt.% In2O3/SnO2 (1.92 µA·cm−2) was about 1.5 and 2.3 times that of
pure SnO2(1.32 µA·cm−2) and In2O3(0.84 µA·cm−2), respectively. Compared with pure
SnO2, the 1.0 wt.% In2O3/SnO2 composite photocatalyst had the smallest EIS Nyquist
graph arc radius, which indicated that the In2O3/SnO2 composite photocatalyst could
effectively increase the electron–hole separation rate. When the optimal loading capacity
of In2O3 was 1.0 wt.%, the rate constant κ value of In2O3 was five and nine times that of
SnO2 and In2O3, respectively. After 240 min irradiation, the photocatalytic performance of
In2O3 was improved from 54% to 97%, and the degradation rate reached 87% after 120 min.
These results indicated that the photocatalytic performance of the In2O3/SnO2 composite
in RhB degradation was enhanced. A small quantity of In2O3 modified SnO2 to synthesize
the composite In2O3/SnO2 materials, which accelerated the photocatalytic efficiency of
pure SnO2 and suppressed the electron–hole recombination efficiency. Therefore, the
In2O3/SnO2 composite was an effective method to improve the photocatalytic activity of
SnO2.
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