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Abstract: Regardless of its good electron-transfer ability and chemical stability, pure Zn2SnO4

(ZSO) still has intrinsic deficiencies of a narrow spectral response region, poor absorption ability,
and high photo-activated carrier recombination rate. Aiming to overcome the deficiencies above-
mentioned, we designed a facile hydrothermal route for etching ZSO nanoparticles in a dilute acetic
acid solution, through which efficient oxygen vacancy defect engineering was accomplished and
SnO2−x nanocrystals were obtained with an ultrafine particle size. In comparison with the untreated
ZSO nanoparticles, the specific surface area of SnO2−x nanocrystals was substantially enlarged,
subsequently leading to the notable augmentation of active sites for the photo-degradation reaction.
Aside from the above, it is worth noting that SnO2−x nanocrystals were endowed with a broad
spectral response, enhancing light absorption capacity and the photo-activated carrier transfer rate
with the aid of oxygen vacancy defect engineering. Accordingly, SnO2−x nanocrystals exhibited
significantly enhanced photoactivity toward the degradation of the organic dye rhodamine B (RhB),
which could be imputed to the synergistic effect of increasing active sites, intensified visible-light
harvesting, and the separation rate of the photo-activated charge carrier caused by the oxygen
vacancy defect engineering. In addition, these findings will inspire us to open up a novel pathway to
design and prepare oxide compound photocatalysts modified by oxygen vacancy defects in pursuing
excellent visible-light photoactivity.

Keywords: hydrothermal synthesis; SnO2−x; oxygen vacancy; visible-light; photocatalytic degradation

1. Introduction

In the 21st century, human society has been entering into a new stage of rapid de-
velopment, and the industrialization process has increasingly intensified, simultaneously
accompanied by the two major serious problems of environment pollution and energy
source shortage. Thus, how to reasonably address the two problems above-mentioned has
become the focus of global concern. As is well-known, water pollution is one of the most
important types of environment pollution, which originates from industrial discharge into
the wastewater, containing pesticides, polychlorinated biphenyls, chlorophenols, dyes, and
other organic pollutants [1–6]. Among these organic pollutants, dyes are considered as
serious contributors to water pollution, because almost all textile industries excessively
use different kinds of dyes, resulting in an excess of dyes being discharged into indus-
trial waste water. Some of the dyes are hard to naturally decompose in water as their
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composite molecular structures can enable them to be more stable and resistant to biodegra-
dation [7]. Therefore, it is extremely urgent to explore novel efficient methods to remove
hazardous dyes.

In contaminated water without secondary pollution, among the physical, chemical,
biological and acoustical methods of dye removal, advanced oxidation processes (AOPs)
are reckoned as potentially effective strategies to remediate water pollution due to its main
merits of easy control, ecological safety, and sufficient decomposition to different dyes.
More interestingly, AOPs can also produce highly reactive peroxy and hydroxyl radicals
to dominate the oxidation reaction of composite organic molecules [8–15]. Nowadays,
the photodegradation process of dyes has become one of the most widely investigated
AOPs, as it can covert solar energy into steady chemical energy and generate reactive
species to decompose composite molecular structured substances [16–18]. Although the
photodegradation of dyes has made great progress since the first discovery of photocatalytic
hydrogen evolution over the TiO2 electrode [19], the photocatalytic efficiency toward the
photodegradation of dyes is still limited to a narrow spectral response region, low solar-
energy conversion efficiency, poor absorption ability, and high photo-activated carrier
recombination rate of wide band-gap photo-catalysts. Therefore, developing novel catalysts
with higher solar-energy conversion and photo-degradation efficiency to address the
remediation of water pollution is the primary task for scientific researchers worldwide.

Oxygen defect engineering is a reliable and efficient approach to modulate the elec-
tronic structure of wide band-gap catalysts, resulting in narrowing the band-gap, enhancing
the conductivity, and extending the light absorption range. Simultaneously, surface oxygen
defects exert a critical influence on the efficient transfer and separation of photo-activated
charge carriers [20–23]. Nowadays, oxygen defect engineering has been successfully
utilized to modify TiO2, ZnO, SnO2, Bi2WO6, and other oxide compounds for the im-
provement of photodegradation efficiency [22–38]. For example, Feng et al. synthesized
partially reduced TiO2 by using a facile one-step combustion method, and the reduced TiO2
exhibited improved hydrogen photocatalytic evolution under visible-light irradiation [24].
Li et al. previously designed and prepared a ternary structure of C@TiO2-TiO2−x via a
solvothermal route with enhanced photocatalytic performance [25]. With respect to ZnO,
Xu et al. introduced a surface oxygen defect to narrow the band gap to achieve excellent
solar-driven photodegradation toward tetracycline with long-term stability [30]. Moreover,
Wang and his coauthors prepared ZnO with oxygen vacancy defects by annealing ZnO2
under different atmospheres, and their results showed that oxygen vacancy defects in
crystals facilitated the photo-decomposition of 2,4- dichlorophenol in the presence of visible
light illumination [31]. As for SnO2−x, some recent research work has also focused on the
modification of oxygen vacancy. Dong and his coauthors adopted a molten-aluminum
reduction route to achieve SnO2−x nanoparticles with rich oxygen vacancy, and the SnO2−x
nanoparticles exhibited significantly improved visible-light absorption capacity and electri-
cal property [32]. Anuchai et al. obtained oxygen-deficient SnO2 nanocrystals at a relatively
low temperature, and confirmed the obtained samples with enhanced photodegradation
performance [33]. Xu et al. designed a synproportionation reaction to achieve Sn2+ self-
doped SnO2−x with the improvement in the decomposition of methyl orange [34]. Chen
et al. prepared SnO2−x/In2O3−y composites with different vacuum levels, and investigated
the relationship between the vacuum levels and the formation of oxygen vacancy [35].
All of the above findings on the SnO2 system with oxygen vacancy defects are impres-
sive and inspiring; however, the present synthetic processes of SnO2−x are still subject
to multiple complicated steps, harsh conditions, and difficult control. Therefore, it still
remains a great challenge to develop a facile approach for the large-scale synthesis of
SnO2−x ultrafine nanocrystals with oxygen vacancy defects for the significant improvement
of photodegradation toward dyes.

As is well-known, pure Zn2SnO4 (ZSO), with a relatively wide bandgap approximate
to SnO2, has good electron-transfer ability and chemical stability [39]. However, pure
ZSO is still restricted by its intrinsic deficiencies of narrow spectral response region, poor
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absorption ability, and high photo-activated carrier recombination rate. Up to now, few
studies have previously investigated the evolution of SnO2−x ultrafine nanocrystals with
oxygen vacancy defects from ZSO nanoparticles. Herein, we innovatively conceived a novel
two-step hydrothermal route to achieve oxygen vacancy SnO2−x nanocrystals. First, ZSO
nanoparticles were hydrothermally obtained using SnCl4·5H2O and Zn(CH3COO)2·2H2O
as starting materials. Second, efficient oxygen vacancy defect engineering was launched
to achieve SnO2−x nanocrystals by hydrothermally etching ZSO nanoparticles in a dilute
acetic acid solution. In order to evaluate the effect of oxygen vacancies on the photoactivity,
we carried out the photodegradation of rhodamine B (RhB) over different photocatalysts
under visible-light irradiation. The results showed that SnO2−x ultrafine nanocrystals with
oxygen vacancy defects exhibited a higher photodecomposition efficiency compared to
the pure ZSO nanoparticles. To our knowledge, this investigation is, for the first time,
concerned with the preparation and photodecomposition behavior of SnO2−x ultrafine
nanocrystals originating from a hydrothermal etching process.

2. Materials and Methods
2.1. Materials

All of the chemicals used in this investigation including tin(IV) chloride penthydrate
(SnCl4·5H2O), zinc acetate dehydrate (Zn(CH3COO)2·2H2O), sodium hydroxide (NaOH),
and rhodamine B (RhB) were of analytical grade and purchased from Sinopharm Chemical
Reagent Co. Ltd., Shanghai, China.

2.2. Synthesis of SnO2−x Ultrafine Nanocrystals

According to our previous studies [40–42], first, ZSO nanoparticles were prepared
through a facile hydrothermal route. The obtained white product was collected through
centrifuging, washed with deionized water and ethanol, and then dried at 60 ◦C for 12 h.

Second, 0.5 g of ZSO nanoparticles was dissolved into a mixed solvent containing
72 mL deionized water and 8 mL acetic acid (HAC) under constant stirring. After being
stirred for 30 min, the resulting suspension was poured into a 100 mL Teflon-lined auto-
clave. Then, the autoclave was heated to different temperatures and kept for 15 h. After
naturally being cooled down to room temperature, the resulting precipitates were treated by
centrifuging, washing, and drying. By varying different temperature (65 ◦C, 85 ◦C, 105 ◦C,
125 ◦C), a series of SnO2−x ultrafine nanocrystals were obtained and respectively named as
SnO2−x-65T, SnO2−x-85T, SnO2−x-105T, and SnO2−x-125T for convenience. For comparison,
SnO2 nanoparticles were also synthesized via a hydrothermal route. The details for the
synthetic process are described as follows. According to a previous study [43], a certain
amount of SnCl4·5H2O and NaOH was dissolved into a mixed solvent containing 30 mL
deionized water and 10 mL ethanol, respectively, then NaOH was added into the solution
of SnCl4 until the pH reached 7. Then, the mixture was kept in a 100 mL Teflon-lined
autoclave at 180 ◦C for 20 h. The final product was collected by centrifuging, washing,
and drying.

2.3. Characterization

The X-ray diffraction patterns (XRD) of ZSO and SnO2−x samples were obtained on
an X-ray diffractometer (D8 Advance, Bruker, Billerica, MA, USA) with Cu-Kα irradiation
(1.5406Å). The morphological observation of the as-prepared catalysts was accomplished
using a transmission electron microscope (JEM-2100F, JEOL Ltd., Tokyo, Japan). To explore
the surface composition and chemical status, X-ray photoelectron spectroscopy (XPS)
measurements were achieved on an X-ray photoelectron spectrometer (XPS, ESCALAB
250Xi, Thermo Fisher Scientific cooperation), taking C1s (284.6 eV) as the criterion to
calibrate the binding energies of other elements. Through the virtue of the nitrogen
adsorption and desorption method, the specific surface area measurement was realized
on a Tristar II 3020 sorption analyzer (Micromeritics, Norcross, GA, USA). Taking BaSO4
as the reflectance standard reference, UV–Vis diffuse reflectance spectra (DRS) of ZSO
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and SnO2−x catalysts were recorded on a UV–Vis spectrophotometer (TU 1901, Puxi,
Beijing, China). A LS55 fluorescence spectrometer (LS55, PE cooperation) was employed
to measure the photoluminescence (PL) spectra of the ZSO and SnO2−x samples with an
exciting wavelength of 320 nm.

2.4. Photoelectrochemical Measurements

The electrochemical property was measured on a CHI660E electrochemical worksta-
tion comprising a standard three-electrode system, in which the working electrode, counter
electrode, and reference electrode were made of as-obtained catalysts, Pt wire, and satu-
rated Ag/AgCl, respectively. The detailed procedure on the electrochemical measurements
was demonstrated in our previously reported study [44,45].

2.5. Photocatalytic Experiments

As reported in our previous research work [46], RhB photodecomposition experiments
were carried out in a home-made device. In each run, we took RhB aqueous solutions
(60 mL, 1.0 × 10−5 mol L−1) combined with 100 mg of catalysts. After being irradiated for a
certain time, the absorbance intensities at the characteristic peak (554 nm) were recorded on
a UV–Vis spectrophotometer to reflect the concentration variation of the reacted solution.

3. Results
3.1. Formation Mechanism of SnO2−x Nanocrystals with Oxygen Vacancy

ZSO exhibits excellent chemical stability whether in an acid media or alkaline media
under room temperature conditions. However, ZSO nanostructures are capable of being hy-
drothermally etched in alkaline media, which was verified in a previous study [46]. Similar
to that of ZSO in alkaline media, the crystal structure of ZSO is likely to become unstable
when undergoing a hydrothermal process in acid media. Thereby, a possible formation
mechanism is proposed for the SnO2−x nanocrystals as follows. With an increase in the
hydrothermal temperature and pressure, the solubility of ZSO is progressively enhanced
according to the thermodynamics under the hydrothermal condition. Simultaneously, a
large number of CH3COO− groups and hydrogen protons (H+) could be generated in the
solution through acetic acid ionization, and the transfer rate of the hydrogen protons and
CH3COO− groups was significantly accelerated with an increase in the temperature upon
the effect of thermal convection. When subjected to a certain concentration solution of
HAC, Zn atoms located at crystal lattice of ZSO were capable of being attacked by groups of
CH3COO− from the solution, as depicted in Figure 1a. In the hydrothermal condition, Zn2+

can coordinate with CH3COO− to generate a soluble component of Zn(CH3COO)2, which
would subsequently enter into the solution through the solid–liquid interface between ZSO
and HAC. At the same time, O atoms located at the crystal lattice of ZSO are also capable of
being attacked by hydrogen protons in a weak acid hydrothermal environment, resulting
in the formation of H2O. Thereafter, the crystal structure of ZSO is about to gradually
dissociate and form a novel crystal structure under the constant etching of CH3COO−

groups and hydrogen protons. However, hydrogen protons are more active and provided
with more rapid transfer rate in the hydrothermal etching process compared with the
CH3COO− groups. The factors above-mentioned could lead to the fact that the ratio of O
atoms to Zn atoms stripped from the crystal lattice of ZSO is larger than 1:1. Thus, Sn atoms
with partial O atoms remain therein, although the integrity of the ZSO crystal structure is
destroyed. After experiencing the dissolution–recrystallization and in-situ growth process,
non-stoichiometry SnO2−x is about to form in a subsequent step, as depicted in Figure 1b.
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Figure 1. The formation schematic diagram of SnO2−x nanocrystals in an acetic acid media under the
hydrothermal condition. (a) ZSO structure; (b) SnO2−x structure.

3.2. Surface Composition and Defect Analysis

X-ray diffraction patterns were recorded to examine the variation of the crystal phase
before and after undergoing an acid-assisted hydrothermal process. The XRD results
are presented in Figure 2. For comparison, we also prepared pure SnO2 via a simple
hydrothermal route, and its XRD pattern is presented in Figure 2. As clearly seen from
Figure 2a, all diffraction peaks for the ZSO nanoparticles were relatively sharp and narrow,
and they perfectly coincided with those of the hexagonal phase Zn2SnO4 (JCPDS No. 74-
2184). After undergoing an acid-assisted hydrothermal process, obvious changes occurred
in the diffraction patterns of the measured samples. The XRD diffraction patterns of
SnO2−x-105T were almost in agreement with those of the tetragonal phase SnO2 (JCPDS No.
41-1445). Compared with those of ZSO and SnO2, the diffraction peaks became broader
and weaker, suggesting that SnO2−x-105T might have a much smaller size, originating
from the special acid-assisted hydrothermal process. Moreover, as is clearly seen from the
(110) crystal plane in Figure 2b, the diffraction peak of SnO2−x-105T exhibited a slight shift
in comparison with that of pure SnO2.
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XPS measurements were executed to probe the surface composition and gain insights
into the oxygen vacancy of the SnO2−x-105T sample. Figure 3 presents the high resolution
XPS spectra of the Sn 3d and O1s of ZSO and SnO2−x-105T samples. It is very clear from
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Figure 3 that the SnO2−x-105T sample only consisted of Sn and O elements, coinciding
with the results of the XRD measurements. Specifically, from Figure 3a, the Sn 3d orbital
peaks for ZSO displayed two binding energies positioned at around 495.8 eV and 487.4 eV,
respectively, corresponding to the Sn 3d5/2 and Sn 3d3/2 orbits. Obviously, Sn 3d5/2 and
Sn 3d3/2 peaks of SnO2−x-105T (positioning at around 495.3 eV and 486.8 eV) exhibited a
notable red-shift toward low energy direction compared with those of ZSO. According to
the previously reported study [47], the binding energy (BE) of Sn 3d5/2 orbits for Sn2+ was in
the region of 486.4 eV to 486.5 eV, while this value for Sn4+ ranged from 487.2 eV to 487.5eV.
Thereby, it could reasonably be inferred that Sn4+, accompanied by Sn2+ ions, coexisted in
the SnO2−x-105T sample because the BE of the Sn 3d peaks for SnO2−x-105T was slightly
larger than those of Sn2+, but was a bit smaller than those of Sn4+ simultaneously. For
this purpose, the Sn 3d3/2 spectrum could be deconvolved into two peaks centering at
495.8 eV and 495 eV, individually belonging to the Sn4+ and Sn2+ ions. As for the Sn
3d5/2 spectrum, it can be analogously split into two characteristic peaks positioned at
around 487.4 eV and 486.6 eV. Furthermore, the O 1s spectra were deeply examined to
disclose the oxygen vacancy defect. As can clearly be seen in Figure 3b, the O 1s spectrum
of ZSO was obviously different to that of SnO2−x-105T. Referring to previous work, the
O1s orbital peak for SnO2−x-105T could be well-fitted with three characteristic peaks of
the crystal lattice oxygen (OCL), oxygen vacancy (OV), and absorbed hydroxyl oxygen
(OAH), individually located at around 530.5 eV, 531.1 eV, and 532.3 eV. As for ZSO, the O1s
spectrum could be perfectly divided into the OCL peak (530.5 eV) and OAH peak (532.3 eV).
The aforementioned result could provide strong proof to verify the existence of oxygen
vacancy in SnO2−x-105T. In our work, it is rational to speculate that oxygen vacancy might
originate from excess oxygen atoms stripped by hydrogen protons to form H2O, which
leads to the variation in the electron density around Sn–O bond. Hence, the bonds of
Sn4+–O–Sn4+ are partially substituted by the bonds of Sn2+–O–Sn4+ in order to compensate
the oxygen vacancy to make the whole maintain charge neutrality. Based on the above
demonstration, the XPS results are in good agreement with the formation mechanism of
non-stoichiometry SnO2−x nanocrystals.
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3.3. Morphology and Surface Characteristics

Figure 4 presents the TEM and HRTEM images of the ZSO and SnO2−x-105T samples.
Through contrastive analysis from Figure 4a,b, an obvious difference was observed from
the microstructure of the ZSO and SnO2−x-105T samples. Specifically, the ZSO sample
was composed of numerous nanoparticles with relatively larger size, which was in good
agreement with our previously reported study [40,41]. After undergoing the acid-assisted
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hydrothermal synthesis process, SnO2−x-105T exhibited a specially disordered mesostruc-
ture, and the crystal sizes significantly decreased, ranging from 5 nm to 7 nm. Such a
special mesostructure of SnO2−x can be attributed to the dissolution–recrystallization and
in situ growth process. From Figure 4c, it is quite evident that the lattice fringes with a
d-spacing of 0.33 nm corresponded to the (110) crystallographic planes of tin oxide. This
result also revealed the good crystalline characteristic of ultra-fine SnO2−x particles.
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The decrease in the nanocrystal size could enlarge the surface area of the SnO2−x-
105T sample, which was mostly likely to intensify the absorption capacity and provide
more active sites for the photodegradation reaction. In order to accurately analyze the
surface area, the nitrogen sorption isotherm, together with the corresponding Barret–Joyner–
Helenda (BJH) pore size distribution plot of the SnO2−x-105T sample, are presented in
Figure 5. This is very distinct from Figure 5a, where the isotherm belongs to a type IV
isotherm accompanied by a typical H3 loop according to IUPAC classification, indicating
the mesoporous structure feature of the SnO2−x-105T sample. Abiding by the Brunauer–
Emmett–Teller (BET) method, the specific surface area for the SnO2−x-105T sample was
determined to be about 174.3 m2/g. This value was two times higher than that of ZSO
(70.5 m2/g), which was previously reported in our work [40]. Thus, the specific surface area
of the SnO2−x nanocrystals was substantially enlarged. From Figure 5b, it is clear that two
prominent peaks centered at about 1.6 nm and 5.2 nm were the main pore size distribution.
Based on the analysis of microstructural observation and nitrogen sorption measurement,
the formation of these tiny pores above-mentioned could probably be imputed to the
stacking of ultra-fine SnO2−x nanocrystals.
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3.4. Optical Absorption and Band Energy Analysis

As is evident from previous studies [26,29–31,33–35], the construction of oxygen
vacancy engineering could broaden the spectral response and enhance the visible-light
absorption capacity. In order to evaluate the light absorption property of the SnO2−x
samples, the UV–Vis diffraction reflectance spectra (DRS) of different catalysts are presented
in Figure 6. A significant difference can be noticed between the ZSO and SnO2−x samples
in the DRS curves from Figure 6a. Specifically, ZSO only exhibited a strong absorption
capacity in a narrow UV light region due to its wide band-gap (3.91 eV from Figure 6b).
As for the SnO2−x samples, the absorption edge displayed a stepwise redshift toward the
visible-light region with the increase in the hydrothermal temperature compared with that
of ZSO. Moreover, the extended tail located at the visible-light region in the absorbance
curve was ascribed to the electron transfer associated with the oxygen vacancy-induced
energy level near the valence band edge [48–51]. To better discuss the effect of the etching
temperature on the band-gap energy (Eg) of the SnO2−x samples, the plots of photon energy
(hν) with respect to (αhν)2 are presented in Figure 6b. As seen from Tauc plots, the Eg
value was remarkably influenced with the increase in the etching temperature. Based on the
results of the Tauc plots, the Eg values for SnO2−x samples were respectively determined
to be about 3.3, 3.41, 3.79, and 3.84 eV, which were smaller than the reported value (3.95 eV)
of the SnO2 nanoparticles [34]. However, it should be clearly noted that the Eg values for
the SnO2−x samples were a little larger than those reported in previous work [33], mainly
originating from the fine sizes of the nanoparticles. Based on the above analysis, the result
of the UV–Vis DRS, combined with the XPS result, could favor the presence of oxygen
vacancy defects and demonstrate the effect on the band-gap energy and energy level.
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3.5. Evaluation of Photo-Degradation Performance

As one of the most important basic/cationic dyes, RhB is widely applied in the fields of
textile, leather, printing paper, and pharmaceutics, which often result in the contamination
of water sources due to its excess use. Due to its universal application and long-term
stability, RhB was determined as the model pollutant in our work. Before visible-light
illumination, RhB solution was placed in the dark for 1 h to make the reaction system reach
the adsorption–desorption equilibrium. Figure 7a shows the RhB photo-decomposition
plots over different catalysts. ZSO displayed inferior photodecomposition efficiency, and
only 49% of the RhB molecules were decomposed upon 70 min of visible-light irradia-
tion, probably originating from its wide band-gap and undesirable absorption property.
Compared with ZSO, a larger amount of RhB molecules was absorbed on the surface of
the SnO2−x catalysts, suggesting their excellent absorption property. Simultaneously, a
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continuous enhancement in the photodecomposition efficiency of the SnO2−x catalysts can
clearly be seen in Figure 7a. Based on the BET results, combined with XPS and UV–Vis
analysis, a larger BET area endowed SnO2−x catalysts with excellent absorption capacity,
and provided more active sites for the removal reaction of RhB molecules. Thus, the
mesostructure, together with the energy level near valence band induced by the oxygen
vacancy, mainly contributed to the substantial improvement in the removal rate of RhB
molecules. Among the SnO2−x catalysts, SnO2−x-105T displayed the highest removal
efficiency, and about 98.75% of RhB molecules could be completely removed within 60 min.
Given that the photodegradation reaction of RhB could adhere to the pseudo-first order
reaction kinetics, the diagram for kinetic constant (k) values over different catalysts is
depicted in Figure 7b. Correspondingly, the k value of the SnO2−x-105T sample was the
largest among the tested catalysts, reaching 0.073 min−1, which was approximately seven
times larger than that of ZSO. For this purpose, the SnO2−x-105T sample was determined
as the representative catalyst in the subsequent measurements. Taking SnO2−x-105T as the
model catalyst, cycling experiments were carried out to testify the usability and stability.
After five successive cycling runs, no evident loss of the removal rate of RhB was detectable,
revealing the high stability of the SnO2−x-105T sample. In comparison, the crystal phase
of the used catalysts was in good accordance with that of the fresh catalyst, as seen in the
XRD patterns from Figure 7d. This result further demonstrates the excellent usability and
stability of the SnO2−x-105T sample.
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3.6. Possible Enhancement Mechanism

Based on the afore-mentioned analysis, the intensification of adsorption capacity and
the augment of BET area exerted a significantly positive effect on the enhancement of
photodegradation toward the RhB solution. Aside from the above, oxygen vacancy defects
can modulate the electronic structure, and induce the generation of novel energy levels
near the valence band position for the n-type semiconductor catalyst, which would further
influence the recombination rate as well as the separation rate of photo-activated electron-
hole pairs. In order to ascertain this issue, PL measurement was carried out on the ZSO and
SnO2−x samples. Among all of the tested catalysts, ZSO possessed the strongest emission
peak, fitting well with the worst removal rate of RhB. After the oxygen vacancy defects
were introduced, the PL intensity of the SnO2−x samples significantly decreased with an
increase in the hydrothermal temperature. Specifically, the SnO2−x-105T sample had the
weakest PL intensity, whereas the PL intensity, in contrast, increased when the etching
temperature was beyond 105 ◦C. It is reasonably inferred that a further increase in the
etching temperature could induce the generation of more oxygen vacancy defects, which
could act as the recombination center of photoactivated charge carriers. Thus, SnO2−x-125T
had a stronger PL intensity than SnO2−x-105T. This variation trend in the PL spectra for
different catalysts was in good agreement with that of the photodegradation performance.

In order to further the investigation of the photo-activated electron transfer process,
electrochemical measurements were executed, and the results are shown in Figure 8b,c.
Generally, a larger photocurrent is tightly associated with a lower recombination rate
of charge carriers, and more effective photoelectron transfer. In comparison, it is clear
from Figure 8b that the photocurrent of the SnO2−x-105T sample was about three times
higher than that of ZSO, demonstrating that the SnO2−x-105T sample had a much higher
separation and transfer rate of photo-activated charge carriers. Additionally, the SnO2−x-
105T sample displayed a substantial enhancement in photocurrents, equally confirming
the influence of oxygen vacancy defects on band gap narrowing. As is well-known, a
smaller arc radius in an EIS Nyquist plot signifies a lower electrochemical charge migration
resistance at the interface. Obviously, the SnO2−x-105T sample had a lower electrochemical
charge resistance, because the semicircle of its EIS Nyquist plot was smaller than that of
ZSO, as observed in Figure 8c. Likewise, the result of the EIS measurement revealed the
better capacity of the photoelectron migration of SnO2−x-105T, which agreed well with the
photodecomposition test results.

To determine which active species were dominant in the photo-degradation of RhB
over the SnO2−x catalyst, radical trapping experiments were considered and performed in
our work. Benzoquinone (BZQ 2 mmol L−1), tert-butyl-alcohol (t-BuOH 2 mmol L−1), am-
monium oxalate (AO 2 mmol L−1), and FeSO4-EDTA (FS-EDTA, 0.2 mmol L−1) were taken
as scavengers to capture·O2

−, OH, h+, and H2O2, respectively, and the results are depicted
in Figure 8d. Summarily, the restriction effect on the removal rate with the addition of four
scavengers adhered to the order of FS-EDTA > AO > t-BuOH > BZQ. Clearly, the removal
rate of RhB was remarkably suppressed upon exposure to FS-EDTA or AO, demonstrating
that the contribution of h+ and H2O2 was primary radicals in the photo-decomposition
process. Most notably, the RhB removal rate dwindled extraordinarily and significantly
from approximately 98% to 20% due to the addition of FS-EDTA, demonstrating that the
H2O2 radicals were the critical species to dominate the oxidation reaction system of the
RhB and SnO2−x catalyst.
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In consultation with previously reported work [52], the conduction band (CB) edge
potential for SnO2 was approximate to 0.05 eV. Thus, the valence band (VB) edge potential
of SnO2 could be determined by the virtue of the equation of EVB = ECB + Eg (ECB and
EVB represent CB and VB edge potential, respectively, while Eg refers to the band-gap).
According to the demonstration above, a possible enhancement mechanism for the photode-
composition behavior is schematically presented in Figure 9. Herein, the novel energy level
induced by oxygen vacancy defects is defined as “Vos”. Upon visible-light illumination,
the electrons from the Vos position are capable of being activated, and transfer to the CB
position. Note that the accumulated photo-activated electrons cannot reduce O2 to generate
active radicals of ·O2

− because the CB potential of SnO2−x was more positive than the po-
tential of E0 ((O2/O2

−) −0.33 eV vs. normal hydrogen electrode (NHE)) [53,54]. However,
the CB potential of SnO2−x was negative enough to make photoelectrons react with oxygen
and generate the active radicals of H2O2 (O2/H2O2, 0.695 eV), which is mainly responsible
for the photo-oxidation reaction of RhB. Simultaneously, the remaining photo-activated
holes in Vos can directly oxidize RhB molecules to form CO2 and H2O. Therefore, the
oxygen vacancy-induced energy level can act as an electron trap, further facilitating the
generation and efficient transfer of photoelectrons, and finally produce more active species
to significantly enhance the photo-activity toward the removal of RhB.
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4. Conclusions

By controlling the ratio of O atoms to Zn atoms stripped from the crystal lattice of ZSO,
we designed a novel two-step hydrothermal route to accomplish oxygen vacancy defect
engineering. SnO2−x ultrafine nanocrystals with oxygen vacancy defects were obtained
after experiencing the dissolution–recrystallization and in situ growth process. Oxygen
vacancy defects can adjust the electronic structure and induce the generation of the novel
energy level near the valence band position. Aside from the augmentation of active sites
and the improvement in the visible-light absorption capacity, the introduction of oxygen
vacancy defects can also facilitate the generation and efficient transfer of photoelectrons
under visible-light irradiation. Therefore, the synergistic effects of increasing active sites,
intensified visible-light harvesting, and the photo-activated charge carrier’ separation rate
could mainly contribute to the significant enhancement in the photodecomposition of RhB
solution. This research will provide some enlightenment for the design and fabrication of
a novel oxide compound semiconductor with oxygen vacancies toward the efficient and
tunable organic pollutant degradation in waste water.
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