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Abstract: Since long-range magnetic ordering was observed in pristine Cr2Ge2Te6 and monolayer
CrCl3, two-dimensional (2D) magnetic materials have gradually become an emerging field of interest.
However, it is challenging to induce and modulate magnetism in non-magnetic (NM) materials such
as rhenium disulfide (ReS2). Theoretical research shows that defects, doping, strain, particular phase,
and domain engineering may facilitate the creation of magnetic ordering in the ReS2 system. These
predictions have, to a large extent, stimulated experimental efforts in the field. Herein, we summarize
the recent progress on ferromagnetism (FM) in ReS2. We compare the proposed methods to introduce
and modulate magnetism in ReS2, some of which have made great experimental breakthroughs.
Experimentally, only a few ReS2 materials exhibit room-temperature long-range ferromagnetic
order. In addition, the superexchange interaction may cause weak ferromagnetic coupling between
neighboring trimers. We also present a few potential research directions for the future, and we finally
conclude that a deep and thorough understanding of the origin of FM with and without strain is very
important for the development of basic research and practical applications.
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1. Introduction

In 2017, Zhang et al. [1] and Xu et al. [2] discovered long-range ferromagnetic order-
ing in both pristine Cr2Ge2Te6 and monolayer CrCl3. Two-dimensional ferromagnetism
(FM) [3–5] has since then gradually reached an unprecedented level. However, most of
the 2D crystals with FM [1–10] have been obtained using mechanical exfoliation, and
long-range ferromagnetic order can only be maintained at low temperatures. Instead,
the possibility of growing samples of wafer-scale size, and with room temperature fer-
romagnetism (RTFM), is a prerequisite for the development of spintronic devices. New
experimental methods, such as molecular beam epitaxy (MBE) [7,11–13], therefore, have
been developed to grow large-scale materials. However, this specific method needs high-
vacuum conditions, which limits its wide use. Furthermore, phase engineering [14–17],
doping engineering [18–25], strain engineering [4,26–31], as well as light-driven [32,33],
gate-tunable [3,34], patterning-induced [35], and sodium- [36,37] or self-intercalated [13,25]
and domain engineering [37] have been used to elevate the Curie temperature (Tc). In-
terestingly, transition metal phosphorus trichalcogenides (MPX3, where M stands for a
transition metal atom and X = S and Se) have also attracted much attention [38,39]. In
particular, the pristine MPS3 exhibited antiferromagnetic (AFM) properties. When the “M”
atom is replaced by other transition metal atoms, it may drive the transition from AFM
to FM. Despite some progress that has been made, only a few experimental results have
reported 2D materials with RTFM [12,27,32,35,36,40].

Inspired by these efforts, many groups have tried to endow intrinsic nonmagnetic
materials with magnetism. Unlike other hexagonal (H or 2H) transition metal chalcogeni-
des (TMDs) with high symmetry, the unique distorted (Td) structure of rhenium disulfide
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(ReS2) has a low in-plane symmetry [41], which endows it with strong in-plane anisotropic
properties [42–44]. It is worth noting that a series of innovations have also been made in the
RTFM of ReS2. For example, Fu et al. [18] discovered in 2018 a ferromagnetic order in an N-
doped ReS2 system, which was obtained using a hydrothermal method. More specifically, a
phase transition from FM to AFM could be realized by controlling the doping concentration
and the doping sites. Furthermore, the mechanically exfoliated and distorted monolayer
showed a long-range ferromagnetic order at RT [17,45]. In addition, a biaxial tensile strain
was found to enhance the RTFM in the ReS2 web buckles. It is worth mentioning here that
the Re-related vacancies play a crucial role for the RTFM of ReS2. Moreover, Loh et al. [37]
analyzed parallel mirror twin boundaries (MTBs) in an electrochemical exfoliated ReS2
monolayer by using linearly polarized optical microscopy (OM), angle-resolved polarized
Raman spectroscopy (ARPRS), and scanning transmission electron microscopy (STEM).
The in-plane biaxial strain in the MTBs was found to enhance the magnetic moment from
0.09 to 1.94 µB/supercell. In addition, vacancy defects were created in the ReS2 films using
Ar plasma treatments, and the cations were driven into anionic sites by using thermal
annealing (to form antisite defects). Interestingly, spin polarization caused by defects can
also enhance the occurrence of RTFM.

Here, we will give an overview of the timeline for the occurrence of magnetism in ReS2.
As shown in Figure 1, we compare the various strategies for regulating the RTFM, including
defect engineering, doping engineering, strain engineering, phase engineering, and domain
engineering. Notably, these methods have made large experimental breakthroughs since
2018. However, only a few ReS2 materials have exhibited RTFM. Finally, we will present
a few potential research directions for the future. In short, it is very necessary to obtain a
deep understanding about the origin of RTFM and strain-tunable RTFM, which will further
help the development of spintronics to flourish.
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Figure 1. Timeline showing key developments of RTFM in ReS2. White font represents the theoretical
progress; yellow font represents the experimental progress.

2. Crystal Structure and Band Structure of ReS2

2.1. Crystal Structure

Monoatomic monolayers such as graphene [44,46,47] have a hexagonal crystal struc-
ture (a so-called H phase), as shown in Figure 2A. The graphene structure is planar, which
is due to the sp2 hybridization of the carbon atoms. However, the occurrence of sp3

hybridization causes a buckled structure in, e.g., silicene and germanene.
Like monoatomic crystals, monolayer TMDs consist of three layers of atoms, in which

one layer of transition metal (M) atoms is sandwiched by two layers of chalcogeni-de (X)
atoms. Chalcogen layers can be stacked on top of each other either as an H phase (i.e.,
with the tetrahedral holes above the transition metal atoms), as in Figure 2A, or as a Tc
phase (i.e., with the octahedral holes above the transition metal atoms), as in Figure 2B.
There are strong covalent bonds within each layer and weaker van der Waals (vdW) bonds
in between. In the octahedral phase, Tc, one of the sulfur layers has been shifted with
respect to the other. Notably, ReS2 has a stable distorted octahedral structure, as shown in
Figure 2C.
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Figure 2. Top and side view of single-layer crystal structures of (A) H phase, (B) Tc phase, and
(C) Td phase.

2.2. Band Structure

Bulk ReS2 is a direct band gap semiconductor with a layered structure, showing novel
anisotropic properties [41,48]. As shown in Figure 3A, the crystal structure of ReS2 with
the Td phase [41] is obviously different from that of MoS2 with the H phase [49,50]. Density
functional theory (DFT) calculations show that bulk (1.35 eV) and monolayer (1.43 eV) ReS2
have similar band structures, both of which are direct band gap semiconductors, but their
band gaps are slightly different (only 80 mV difference), as shown in Figure 3B.
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Figure 3. (A) Top and side view of single-layer crystal structures of side (top two panels) and top view
(bottom two panels) of ReS2 with Td crystal structure compared with the 1H structure of conventional
monolayer TMDs. The Re atoms dimerize as a result of the Peierls distortion forming a Re chain
denoted by the red zigzag line. (B) DFT calculated electronic band structure of bulk and monolayer
ReS2. Both are predicted to be a direct bandgap semiconductor with nearly identical bandgap value
at the Γ point. (C) The calculated total energy of the system as a function of interlayer separation. The
significantly shallower depth of the well in ReS2 implies much weaker interlayer coupling energy in
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ReS2 as compared with MoS2. (Reprinted figure (A–C) with permission from [41]. Copyright (2018)
by Springer Nature.) (D) DFT calculated electronic band structure of monolayer, trilayer, and five-
layer ReS2 by ab initio calculations indicating band gaps of 1.44, 1.40, and 1.35 eV, respectively.
(Reproduced with permission from [51]. Copyright (2018) by Springer Nature.) (E) Overview of the
valence-band structure as measured by ARPES, showing strong in-plane anisotropy. The surface
Brillouin zone is shown as red lines, and the momentum space direction corresponding to the
real-space direction along the Re chains is also indicated. The bulk and projected surface Brillouin
zones are shown in the inset. (Reprinted figure with permission from [52]. Copyright (2014) by the
American Physical Society).

Actually, the adjacent layers in ReS2 are only weakly coupled (~18 meV) in Figure 3C,
whereas those in MoS2 are coupled with much higher energy (~460 meV). Interestingly,
when the thickness of ReS2 is reduced down to a single layer [51], its electronic band
structure does not exhibit a transition from an indirect to a direct bandgap, which is
different from that of MoS2. The bandgap of bulk, trilayer, and monolayer ReS2 are 1.35 eV,
1.40 eV, and 1.44 eV, respectively, as shown in Figure 3D. In experiment, the electrical band
structure of rhenium disulfide can be accurately described by angle-resolved photoemission
spectroscopy (ARPES) measurements [52]. Although the surface Brillouin zone of ReS2 is
almost hexagonal, its electronic structure shows significant in-plane anisotropy, resulting
in unique anisotropic optical and electrical properties.

3. Progress in Theoretical Calculations and Experimental Studies of ReS2 Magnetism
3.1. Defect Engineering

Generally, the unintentional generation of defects is unavoidable in the growth, peel-
ing, and transferring of single-layer crystals, which often deteriorates the properties of the
materials. Meanwhile, the intentional introduction of defects may induce new properties
to the materials. Therefore, defect engineering [53–56] has become an important strategy
to use for the modification of material properties. Experimentally, defects are often intro-
duced into the parent materials by means of ion irradiation [57–63], plasma treatment [64],
thermal annealing [60,63–67], etc. In 2014, Peter et al. [57] studied the formation energy
and stability of lattice defects in monolayer ReS2 by using a combination of experimental
and theoretical investigations. The mechanism of defect-mediated magnetism was then
revealed. Peeters et al. [49] first introduced point defects in pristine ReS2 by using He ion
irradiation. In order to understand the formation energy and stability of these defects, they
also carried out first-principle calculations. Optimized atomic structures of a distorted
1T-ReS2 monolayer were then created, as shown in Figure 4. However, the introduction of
defects in these optimized structures was not found to change the semiconductor properties
or drive any phase transition.

It is worth mentioning that S-related defects (VS, VS+S, and V2S) cannot cause mag-
netism, whereas Re-related defects (VRe, VReS and VReS2) can. As shown in Figure 5, the
magnetization comes predominantly from p orbitals of two neighboring S atoms within
the vacancy region.

Interestingly, the antisite defects, such as SS→Re [57,64] and S2S→Re [57], bring the
magnetic moment of 3 µB into the supercell, as shown in Figure 6. However, no RTFM could
be detected in the experiments. VReS and VReS2, thereafter, can be created by introducing
biaxial tensile strain in the ReS2 web buckles (which exist in multiple directions in the plane
and cross each other to form some web patterns) [27,68,69].

By performing theoretical calculations, we have also found that VRe, VReS, and VReS2
can produce a magnetic moment of 1–3 µB/supercell, as shown in Figure 6A. The supercell
size had no obvious effect on the magnetic properties of the system with VRe, VS, VS+S, V2S,
and SS-Re. In contrast, the total magnetic moment of the supercell with VReS and VReS2 was
found to be not only related to supercell size, but also related to the phase. Notably, no
matter what type of defects exist, the Tc phase cannot produce a magnetic moment.
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In 2022, antisite defects (e.g., SS-Re) were introduced into 2D ReS2 flakes using Ar
plasma and thermal annealing treatment [64]. Actually, the defects in ReS2 nanosheets
were formed by the Re atoms occupying the positions of the S atoms, and new VRe defects
were simultaneously introduced (Figure 6). With an increase in plasma treatment time, the
magnetic moment increased at RT in the experiment. The magnetism was enhanced up to
~20 times after the subsequent thermal annealing. The significant increase in magnetism
was mainly due to the introduction of antisite defects. Similarly, antisite defects (e.g., MoS2

and S2Mo) have also been observed in CVD-grown MoS2 using STEM [72,73] analysis.
Even if the theory predicts that these antisite defects could induce magnetism, no relevant
magnetism has been observed in the experiment so far.

3.2. Doping Engineering

Doping engineering has become a common strategy for adjusting the properties of a
material. In 2014, Peter et al. studied the effects of substitutional doping [70] by non-metallic
and metal atoms on electrical and magnetic properties. The modulation of magnetism in
the ReS2 material was, thereafter, studied theoretically by means of non-metallic element
adsorption [19], fluorination [19,21,71], transition-metal doping [74,75], and non-magnetic
metal doping [76].

3.2.1. Nonmetallic Element Doped ReS2

Actually, doping elements, substitutional sites, supercell sizes, and the distances
between the adsorbed atoms and S atoms have all shown a large effect on the magnetism
of ReS2 in Figure 6B. More specifically, F and B were shown to have the strongest effect on
the magnetic properties, whereas H, N, P, As, F, and Cl had the least effect. On the other
hand, S, Se, and Te showed no effect on the magnetic properties.

In 2018, Fu et al. [18] prepared N-doped ReS2 nanospheres with different doping
concentrations by using hydrothermal methods, as shown in Figure 7. Nitrogen doping
can drive the phase transition of ReS2 from nonmagnetic to ferromagnetic.

More specifically, nitrogen doping with different dopant concentrations has been real-
ized by varying the mass ratio of ammonium rhenate (NH4ReO4) and thiourea (CH4N2S).
The magnetic moment did reach a value of 2.1 emu/g at 2K, as shown in Figure 7A. The
inset in Figure 7A shows the non-zero coercivity, indicating the presence of a magnetic
anisotropy in the ReS2 sample. A distinct exchange bias caused by FM-AFM coupling
were also observed, as shown in Figure 7C–D. However, nitrogen doping failed to induce
long-range ferromagnetic ordering in the ReS2 system at RT.

In order to explain the correlation between the doping concentration and the mag-
netism for the ReS2 supercell with the Td phase, the magnetic moment and charge distri-
bution were calculated using VASP, as shown in Figure 8. The supercells with different
doping concentrations had the following magnetic moments: 0.703 µB for 1N per supercell,
1.522 µB for 2N per supercell, and 0.714 µB for 3N per supercell. Surprisingly, only 40%
of the magnetic moment came from the Re atoms, and N atoms contributed the other
60% (Figure 8A–C). In addition, the AFM moments mainly stemmed from the 5d orbitals
of the Re atoms. Thus, the main contribution of magnetism came from the N atoms, as
shown by the electron spin up channel of the Fermi level in Figure 8D. In addition, with an
increase in nitrogen content, a strong intermediate gap state appeared close to the Fermi
level in Figure 8E–F, which indicated that the electrons could conduct along the Re chain
by hopping [18]. In this way, FM and AFM domains were formed, resulting in a strong
exchange bias (EB) phenomenon.
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Notably, Gao et al. [77] realized an intrinsic RTFM by the adsorption of P onto ReS2
nanosheets. Firstly, ReS2 powder was synthesized using a hydrothermal method with am-
monium rhenate (NH4ReO4), hydroxylammonium chloride (NH2OH·HCl), and thiourea
(CH4N2S) as precursors. Secondly, the obtained powder was placed in a tubular furnace
and phosphated with sodium dihydrogen phosphate (NaH2PO2) in an Ar atmosphere.
Furthermore, the adsorption of different concentrations of phosphorus was realized by
varying the treatment time and the dose of NaH2PO2. An RTFM as high as 0.0174 emu/g
was experimentally obtained, which was caused by the hybridization of Re d and P p or-
bitals in the ReS2 supercell with the Td phase. The control of the phosphating degree could
not only realize the modulation of the magnetic coupling strength, but it could also drive
the transformation from AFM to FM. In short, RTFM has been achieved by the adsorption
of non-metallic atoms.

Fluorination has often been used as a strategy to mediate the desired properties of
materials, as shown in Figure 6B. As early as 2009, Zhou et al. [78] found that graphene
can be transformed from metallic to semiconducting, from non-magnetic to magnetic, and
from direct band gap to indirect band gap by changing the fluorination degree. In addition,
fluorination of boron nitride [79] has been found to increase the structural anisotropy
and regulate the spin polarization of the system. Experimentally, graphene samples were
fluorinated using the CF4 radio-frequency plasma technique [80–82] or decomposition of
xenon difluoride [83,84] at RT. The observed fluorination-regulated magnetism also initiated
a theoretical study of fluorine-modulated 2D magnetism. Different from the degree of
fluorination on BN [79], which determines whether the system is FM or AFM, the ground
state of F-terminated ReS2 with Td phase [21] is AFM. Moreover, its spin configuration
depends on the adsorption sites and number of F atoms.

3.2.2. Metal-Doped ReS2

In 2014, Peter et al. [70] found that it was easier to incorporate metal atoms into the Re
sites. After substitutional doping with metal elements such as Li, Na, V, Cu, Nb, Ta, and
Ag, as shown in Figure 9A, the ReS2 supercell with Td phase was still non-magnetic. No
matter whether the dopant was residing on the Re site or the S site, doping with Nb and Ta
elements could not introduce magnetism in the ReS2. However, doping with many other
metals, such as Mg, Al, Ti, Cr, Mn, Fe, Co, Zn, Ru, and OS, could introduce magnetism
in the ReS2, as shown in Figure 9B. Interestingly, when Ti, Mn, and Co elements were
substitutionally positioned in the S sites, the magnetism disappeared. The bond length
between the transition metal atom and the S atom was also found to modulate the magnetic
properties [85]. Doping with two metal atoms has also been studied [74,76,85]. It was
found that an increased distance between the metal atoms inhibited magnetism.

3.3. Strain Engineering

In 2015, Liu et al. [86] found that a local strain can regulate the optical, electrical, and
magnetic properties of single-layer ReSe2 (Td phase) with band gap energy at 1.15 eV. At
first, the mechanically exfoliated ReSe2 nanosheets were deposited on the pre-stretched
elastic substrate. The elastic substrate was then released, and straight-edge wrinkles were
introduced into the sheet sample. A local strain was introduced into the sample by creating
these wrinkles, by which it was possible to modulate the optical band gap and induce mag-
netism. As shown in Figure 10, the magnetism in the wrinkled zones could be confirmed
using magnetic force microscopy (MFM). Liu et al. carried out density functional theory
(DFT) calculations to gain more knowledge about the local strain-regulated magnetism.
The results showed that the magnetic moment in the flat area was zero, and the magnetic
moment in the wrinkled area had increased to a value close to 3.95 µB. More specifically, it
was found that spin polarization occurred in the wrinkled regions. Furthermore, the effects
of uniaxial and biaxial strain on the magnetism were also studied [26]. It was found that
compressive strain can annihilate the magnetism of the system and the material can be
transformed from half-metal to semiconductor.
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Figure 10. Magnetic force microscopy measurements on ReSe2. (A) AFM topography, (B) phase,
(C) MFM phase, and (D) MFM amplitude images of monolayer ReSe2 wrinkled flake on gel−film
subs−trate. (E−H) The corresponding profiles in panels (A−D). Reprinted with permission from [86].
Copyright 2015, American Chemical Society.

However, biaxial strain has never been successfully introduced into Re-based materials,
especially in ReS2. In 2019, we introduced biaxial strain to the film system by spontaneously
forming web buckles [27], as shown in Figure 11. As-grown flat ReS2 films were prepared
by polymer-assisted deposition [27,43,63,65–67,69]. Due to the thermal mismatch between
the film and the substrate, the compressive biaxial strain was introduced at the bottom of
the ReS2 film.
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VReS and VReS2 were created after buckling in Figure 10F. The saturation magnetic
moment (Ms) at RT was then found to increase from 0.219 emu/g to 0.370 emu/g, as shown
in Figure 11A–B. Similarly, the magnetic moments at other temperatures also increased to
various degrees, as shown in Figure 11B. In addition, the residual magnetization (Mr) at 5 K
increased by a factor of 14, as shown in in Figure 11C. However, the change in coercivity
(Hc) was more complex, showing a nonlinear variation with temperature, as depicted in
Figure 11D. Moreover, the Curie temperature (Tc) of the material was greater than 400 K.
Interestingly, the in-plane magnetic response was weaker than the out-of-plane magnetic
response, which was similar to other typical 2D materials.

In order to clarify the origin of RTFM without and with strain, we also carried out spin
density calculations using VASP. In fact, the pristine ReS2 crystal with Td phase was found
to be non-magnetic. When Re-related defects were introduced, the system would become
magnetic, as shown in in Figure 12A–F. Further, the magnetism clearly changed when
a strain was applied to the system. Interestingly, the calculated results showed that the
compression strain suppressed the magnetism, and the magnetism became enhanced after a
reduction in the compressive strain, as shown in Figure 12G–I. In fact, when the compressive
strain decreased from −8% to −5% (VRe), and from −5% (VReS) to −2% (VReS2), the system
could maintain the maximum magnetic moment of 1 µB/supercell, 1 µB/ supercell, and
3 µB/supercell, respectively. However, the magnetic moment remained unchanged with an
increase in the tensile strain. Notably, biaxial tensile strain introduced to the system was
found to reduce the formation energy of the defects, create more defects, and increase the
stability of the defects [87] after buckling. In summary, Re-related defects are not only the
origin of RTFM, but they also play a key role in strain-modulated RTFM.
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Figure 12. (A−C) Magnetic density maps of VRe, VReS, and VReS2 of ReS2 crystals with up (down)
spin densities plotted in yellow (blue) for isosurfaces at 0.001 eÅ−3, respectively. (D−F) Orbital
projection density of states (PDOS) of VRe, VReS, and VReS2 of ReS2 crystals, respectively. (G−I) The
variation in magnetic moment of ReS2 crystal with VRe, VReS, and VReS2 under biaxial compressive
and tensile strain. The inset shows the corresponding crystal structure with vacancy defects. Please
note that when the strain value is negative, the strain is compression strain; when the strain is positive,
it is a tensile strain. Reprinted with permission from [27]. Copyright 2019, John Wiley and Sons.

3.4. Phase Engineering

ReS2 is a direct band gap semiconductor. ReS2 is usually in the distorted 1T phase
(Td phase), which is different from the 2H phase of most transition metal chalcogenides.
The low symmetry of the structure leads to its diamagnetism. Yang et al. [16] theoretically
predicted a new distorted phase (Tri phase) with tunable magnetism. More specifically, the
Re atoms formed a uniform-trimer in the second phase. More importantly, the Tri phase
could be achieved using doping [20,88] or intercalating [89] of the Tc phase, and it had
bipolar magnetic semiconducting behavior (~1.63 eV) at RT. Moreover, it was predicted
that carrier doping could not only realize a transformation from a semiconducting phase to
a semi-metallic phase, but also raise the Tc to 357K. Furthermore, the overlap of isolated
d orbitals in the trimer unit forms a direct exchange between a (dz2) and e1 (dxy and dx2) d
orbitals in Re atoms, which leads to ferromagnetic coupling. Meanwhile, the superexchange
interaction between Re a and e1 d orbitals is modulated by the 3p S orbitals, forming weak
ferromagnetic coupling between the neighboring trimers. In short, the direct ferromagnetic
coupling between the Re atoms leads to a huge magnetic anisotropy and a high Tc. However,
the Tri phase has not yet been experimentally obtained.

The migration of out-of-plane electric dipoles was strictly limited by the large potential
barrier energy in the Td phase, which restrained the emergence of ferroelectricity. By
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introducing a centrosymmetric metal Tc phase (Figure 2B) into the Td phase (Figure 2C),
a new phase Tt could be constructed, which realized an out-of-plane ferroelectricity, as
shown in Figure 13A. When the Tt phase was created by the formation of VRe, a magnetic
order in the system was found [17,45,57,90]. Theoretical calculations showed that S atoms
at different positions of VRe will cause obvious changes in the magnetism (Figure 13A).
Similar to the ReS2 web buckles [27], the out-of-plane FM at RT was about 3.4 times larger
than that of the in-plane FM, as shown in Figure 13B. Notably, the mean field approximation
showed that Tc could be estimated as 704 K, as shown in Figure 13C–D. The observed FM
was found to be very close to VRe.
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Figure 13. (A) Calculated magnetic moment (magenta lines) of atoms S1 and S2 and energy difference
between the spin-polarized and spin-unpolarized states (olive line) versus atomic displacement
from the Td to Tc structures (the solid line is a guide for the eye). The inset shows the spin-resolved
charge density of the two immediate neighbor atoms S1 and S2 near the Re vacancy (dashed circle).
(B) Orientation dependence of magnetization at 300 K. (C) Temperature dependence of magnetic-field
cooling (FC) and zero magnetic-field cooling (ZFC). The extrapolated line at higher temperatures
intersects the temperature axis at 704 K, indicating the Curie temperature (inset). (D) Temperature
dependence of the magnetic susceptibility in the out-of-plane and in-plane directions. Reprinted with
permission from [17]. Copyright 2019, American Chemical Society.

3.5. Domain Engineering

A variety of domain structures are often found in MoS2 [91–99], WS2 [100,101] and
ReS2 [102] samples that have been prepared by chemical vapor deposition. However,
domain engineering is rarely used in exfoliated nanosheets. In 2020, Loh et al. [37] found
mirror twin boundaries in pristine ReS2 crystals with the Td phase using linearly polarized
OM, ARPRS, and STEM analysis. Pristine ReS2 crystals were first obtained by electrochemi-
cal exfoliation, but FM at low temperatures was observed in intercalated samples. However,
spin-polarized calculations showed that the system was non-magnetic whether there were
parallel mirror twin boundaries or not. Moreover, the system showed a magnetism after the
introduction of sulfur vacancies. The magnetic moment increased from 0.09 µB/supercell
to 1.94 µB/supercell for an applied strain increase of 9%. Interestingly, most of the spins
were concentrated on the Re atoms that were close to the grain boundaries. Furthermore,
VASP calculations showed that a coexistence lattice strain and Vs at the grain boundaries
mainly contributed to FM.
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4. Conclusions and Outlook

The construction of a relationship between structure, strain, and magnetism has always
been a problem to solve. Although biaxial strain-controlled RTFM has been achieved by
buckling, the in-situ variation of RTFM with the buckling process is still unclear. In addition,
the influence of uniaxial strain on ferromagnetism has not been clarified, although it is
generally believed that a biaxial strain should have a stronger impact on the properties
than a uniaxial strain. Therefore, it is of great interest to also explore the effect of a uniaxial
strain on the RTFM of ReS2.

In addition to its potential applications in spintronic materials and devices, ReS2 has
shown promising potentials in other fields. For instance, ReS2 with a stable Td phase struc-
ture has recently been shown to have potential application possibilities in the fields of pho-
tocatalysis [86,103,104], hydrogen evolution reactions (HER) [44,104–109], and lithium-ion
batteries [94–103]. This is mainly due to the weak interlayer coupling in ReS2. Interestingly,
an external magnetic field has been used for magnetic catalysts, with the purpose of en-
hancing the HER and oxygen evolution reaction (OER) activity. Since ReS2 is a FM material,
it has been assumed that ReS2 can be used as an electrocatalyst. In addition, nanoscale
magnetic imaging techniques [110], such as nanowire magnetic force microscopy [111],
scanning superconducting quantum interference device microscopy (SQUID) [112], and
scanning nitrogen-vacancy center microscopy (SNVM) [113–116], have emerged as impor-
tant tools in the investigation of 2D materials. These techniques have made it possible to
detect magnetism in, e.g., buckled areas. For all the above-mentioned future research direc-
tions, a deep understanding of the origin of RTFM and strain-tunable RTFM is necessary,
which will further help the development of both basic research and practical applications
to flourish.
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