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Abstract: Recently, Pt-loaded graphic carbon nitride (g-C3N4) materials have attracted great attention
as a photocatalyst for hydrogen evolution from water. The simple surface modification of g-C3N4

by hydrothermal methods improves photocatalytic performance. In this study, ethanol is used as
a solvothermal solvent to modify the surface properties of g-C3N4 for the first time. The g-C3N4 is
thermally treated in ethanol at different temperatures (T = 140 ◦C, 160 ◦C, 180 ◦C, and 220 ◦C), and
the Pt co-catalyst is subsequently deposited on the g-C3N4 via a photodeposition method. Elemental
analysis and XPS O 1s data confirm that the ethanol solvothermal treatment increased the contents
of the oxygen-containing functional groups on the g-C3N4 and were proportional to the treatment
temperatures. However, the XPS Pt 4f data show that the Pt2+/Pt0 value for the Pt/g-C3N4 treated at
ethanol solvothermal temperature of 160 ◦C (Pt/CN-160) is the highest at 7.03, implying the highest
hydrogen production rate of Pt/CN-160 is at 492.3 µmol g−1 h−1 because the PtO phase is favorable
for the water adsorption and hydrogen desorption in the hydrogen evolution process. In addition,
the electrochemical impedance spectroscopy data and the photoluminescence spectra emission peak
intensify reflect that the Pt/CN-160 had a more efficient charge separation process that also enhanced
the photocatalytic activity.

Keywords: graphitic carbon nitride; ethanol solvothermal; Pt oxidation state; charge separation

1. Introduction

Owing to the abundance and renewability of sunlight and water, a solar-driven water-
splitting process using photocatalysts is considered a long-term sustainable technology
for producing hydrogen—a clean and renewable energy source. Even though various
photocatalysts, such as TiO2, SrTiO3, CdS, TaON, ZrO2, and their assemblies, have been
extensively studied, the development of novel photocatalysts that significantly enhance
hydrogen production performance is still a challenging research area [1–5].

Graphitic carbon nitride (g-C3N4), a metal-free polymeric semiconductor, has attracted
much interest because of its low cost, non-toxicity, ease of preparation, high physicochem-
ical stability, and suitable band gap energy (2.7 eV) for visible light utilization [6], since
the first introduction of its photocatalytic activity toward hydrogen evolution in 2009.
Nonetheless, the photocatalytic application of bulk g-C3N4 (BCN) is restricted by some dis-
advantages, such as a low specific surface area and the rapid recombination rate of charge
carriers. To tackle these challenges, a great deal of effort has been made by researchers over
the past few years, including metal or non-metal doping [7–9], liquid-phase exfoliation [10],
chemical oxidation [11–14], and heterojunction fabrication [15–18]. Despite the positive
outcomes of these methods, limitations remain; they are time- and cost-consuming methods
that require a toxic chemical involvement, they are multi-step, and they require complicated
synthetic procedures. According to the literature, the hydrothermal method is an effective
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modification strategy to introduce O-containing functional groups into the g-C3N4, which
has been known to exert a desirable effect on photocatalytic hydrogen evolution [12,19–21].
Unfortunately, the hydrothermal modification struggles to optimize the morphological and
chemical structure of the g-C3N4, in which water can act as a strong solvent and destroy the
crystalline structure. Thus, the morphological instability in the hydrothermally modified,
g-C3N4-suppressed, photoinduced electron–hole pair separation and widened the band
gap, resulting in a decrease in the photocatalytic activity for hydrogen production [20,21].

Herein, ethanol is used as a novel solvent for a simple and environmentally friendly
solvothermal treatment to modify g-C3N4. The solvothermal temperatures varied from
140 ◦C to 220 ◦C to adjust the solvothermal modification extent. The effects of the ethanol
solvent on the physicochemical and optical properties of the photocatalysts and the pho-
tocatalytic performance are investigated to find the essential properties to determine the
photocatalytic activity. Compared with water in the hydrothermal method, ethanol proves
to be a weaker but more effective agent to introduce the O-containing functional groups
onto the g-C3N4 photocatalysts. Interestingly, the highest Pt2+ species are found for Pt/g-
C3N4 treated at 160 ◦C, inhibiting the unfavorable H2 backward oxidation reaction and
resulting in the superior photocatalytic performance toward hydrogen evolution under
visible light irradiation. In addition, the Pt/CN-160 photocatalyst facilitates the photoin-
duced charge carrier separation, which is illustrated by the electrochemical impedance
spectroscopy (EIS) and photoluminescence (PL) spectra.

2. Materials and Methods
2.1. Chemicals

All chemicals in the experiments were used without further purification. All catalyst
syntheses and hydrogen evolution reactions were performed with deionized (DI) water.
Thiourea (CH4N2S, ≥99%), triethanolamine (TEOA, C6H15NO3, 99%), and chloroplatinic
acid hexahydrate (H2PtCl6.6H2O) were purchased from Sigma-Aldrich (Gyeonggi, Korea).
Ethyl alcohol (C2H5OH, 99.9%) was obtained from Daejung Chemicals and Metals Co., Ltd.
(Gyeonggi, Korea).

2.2. Preparation of Ethanol Solvothermal-Treated g-C3N4

It has been reported that the presence of foreign atoms in precursors (e.g., sulfur)
positively affect the optical and electronic properties of bulk g-C3N4 in photocatalytic
performance [13,22]. Therefore, thiourea was chosen to produce bulk g-C3N4 in this work.
Briefly, thiourea was directly heated at 550 ◦C with a ramping rate of 5 ◦C/min for 4 h in
air. The resulting product was ground up to obtain bulk g-C3N4.

The ethanol-treated g-C3N4 catalysts were synthesized via a solvothermal process.
In detail, a certain amount of the obtained bulk g-C3N4 (1.0 g) was dissolved into an
ultrasonic beaker containing 100 mL of C2H5OH solution before sonicating for 2 h with a
bath temperature of 30 ◦C. After that, the mixture was poured into a Teflon-lined autoclave
(150 mL internal volume) that was then sealed and heated in an oven for 6 h at a heating
rate of 2 ◦C/min to a specific temperature (140 ◦C, 160 ◦C, 180 ◦C, and 220 ◦C). After
cooling down to room temperature, the resultant products were sequentially centrifugated
and washed thoroughly with DI water several times. The samples were designated as
BCN, CN-140, CN-160, CN-180, and CN-220 corresponding to the bulk g-C3N4, and the
solvothermal temperatures of 140 ◦C, 160 ◦C, 180 ◦C, and 220 ◦C, respectively.

2.3. Preparation of Pt/CN Photocatalysts

A photodeposition method was utilized to prepare the Pt-loaded g-C3N4 samples.
Fifty milligrams of CN was suspended in 100 mL of DI water using a magnetic stirrer for
20 min under the inert atmosphere of argon (Ar). Pt (3 wt%) was decorated onto the CN
samples using hexachloroplatinic acid (H2PtCl6.6H2O) as a Pt precursor that was dispersed
into the prepared CN solution for 20 min. Then, the final solution was photoirradiated by
solar-simulated irradiation with continuous magnetic stirring for 60 min. Eventually, the
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final solid product was obtained by centrifugation, washed with DI water, and dried under
a vacuum at −80 ◦C. The Pt/CN samples were ground into a powder and collected for
further characterization.

2.4. Characterization

All sample images were obtained via field emission (FE) scanning electron microscopy
(SEM; JSM-6500 JEOL, Tokyo, Japan). In addition, the SEM images and the corresponding
elemental mappings were collected via a second instrument, energy-dispersive X-ray spec-
troscopy (EDS; TESCAN MIRA3, Kohoutovice, Czech Republic). The inductively coupled
plasma-optical emission spectrometry (ICP-OES) was conducted on a 700-ES spectrometer
(Varian, Mulgrave, Australia) to analyze the Pt element contents. The high-resolution
transmission microscopy (HR-TEM) images were obtained by a JEL-2100F JEOL instrument
(Tokyo, Japan). X-ray diffraction (XRD) was performed on a Rigaku D/MAZX 2500 V/PC
high-power diffractometer (Tokyo, Japan) at a scan rate of 2◦ min−1 with a Cu Kα radiation
to analyze the crystallinity of the as-prepared samples. The distances d(100) and d(002) were
calculated based on the Bragg’s law d = nλ/2sin θ, where n is the order of reflection (n = 1),
λ is the wavelength of the incident X-ray (λ = 0.15415 Å), and θ is the reflection angle.
Fourier transform infrared spectra (FTIR) were conducted to examine the presence of func-
tional groups on all samples, using a Nicolet 380, Thermo Scientific Nicolet iS5 instrument
(Waltham, MA, USA). To characterize the obtained samples’ chemical composition and
electronic structure, X-ray photoelectron spectroscopy (XPS) analysis was performed with
a Thermo Scientific Kα X-ray source (Waltham, MA, USA). Elemental analysis (EA) was
conducted on a Flash 2000 instrument (Thermal Fisher Scientific, Waltham, MA, USA).
The optical properties were collected via ultraviolet–visible (UV–Vis) diffuse reflectance
using an SPE-CORD 210 Plus spectroscope (Analytik Jena, Jena, Germany) and PL spectra
(Agilent Cary Eclipse fluorescence spectrophotometer, Santa Clara, CA, USA). The charge
carrier separation and transfer efficiency were determined with EIS via a VSP BioLogic
Science instrument (Seyssinet-Pariset, France) within 0.01–100 kHz frequency range at
a +0.7 VSCE direct current potential and a 10 mV AC amplitude. Ten microliters of the
sample was loaded onto a 6 mm glassy carbon electrode, known as a working electrode.
The electrolyte for the three-electrode system (Ag/AgCl electrode as a reference electrode
and Pt wire as a counter electrode) was 1 M NaOH solution.

2.5. Photocatalytic H2 Evolution

Photocatalytic H2 evolution experiments were operated using a class ABA LED solar
simulator with a 1.0 SUN output power, corresponding to 100 mW/cm2. Initially, 50 mg
of CN was dissolved in 90 mL of DI water in a 300 mL internal volume quartz flask via
magnetic stirring for 20 min. Then, the H2PtCl6.6H2O solution (3 wt% Pt) was added.
After magnetic stirring for 20 min, the Pt co-catalyst was photodeposited in situ under
solar irradiation for 60 min. Finally, the hydrogen evolution reaction was performed after
20 min of adding 10 mL of TEOA as a sacrificial agent. The H2 product was analyzed by a
gas chromatograph (Acme 6100) with a thermal conductivity detector. All reactions were
accomplished under an inert atmosphere of Ar at room temperature.

3. Results and Discussion
3.1. Structural and Chemical Properties

The CN samples modified by the O-containing functional groups were synthesized
via a solvothermal process using ethanol as a solvent. The scheme illustrated in Figure 1
shows two main steps, as follows: (1) the thermal polymerization of thiourea at 550 ◦C in
air for 4 h to obtain bulk the g-C3N4; (2) the post-solvothermal treatment using ethanol
solvent at different temperatures.



Nanomaterials 2022, 12, 179 4 of 13

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

air for 4 h to obtain bulk the g-C3N4; (2) the post-solvothermal treatment using ethanol 
solvent at different temperatures. 

 
Figure 1. Schematic illustration of the synthetic procedure of ethanol solvothermal-treated CN. 

The TEM and SEM analyses characterized the morphological and textural properties 
of all samples. The FE-SEM images of the samples display the characteristic sheet-like 
morphological structure (Figure S1). The EDS elemental mappings in Figures 2 and S2 
depict the distributions of C, N, and Pt in the four samples. Although similar amounts of 
Pt were loaded onto the four samples (Table 1), the purple spots assigned to Pt were more 
homogeneously dispersed in the Pt/CN-160 sample than were those in the Pt/CN-140, 
Pt/CN-180, and Pt/CN-220 (Figure 2) samples. The TEM images in Figure 3 also demon-
strate that the Pt species observed in all four samples was reduced from Pt4+ during the 
photodeposition process. The areas marked by red circles correspond to Pt and PtO par-
ticles or clusters anchoring on the g-C3N4 surface. These particles are nearly spherical with 
an order of less than 2 nm in average size. Furthermore, it is evident that, although the 
average diameter of a Pt particle in Pt/CN-140 is the smallest at 1.38 ± 0.33 nm, some large 
Pt clusters are still found, implying an agglomeration of Pt species during the photodep-
osition process. Pt/CN-160, by contrast, possesses a more uniform Pt dispersion at an av-
erage particle size of 1.43 ± 0.39 nm. In the inset of Figure 3b, the high-resolution TEM 
image of the Pt/CN-160 reveals the lattice fringes of 0.23 and 0.27 nm that can be attributed 
to the (111) plane of Pt and the (002) face of PtO, respectively [23,24]. This can be connected 
with further support from the Pt 4f XPS results in which PtO is one of the main Pt species 
after the photodeposition process. 

Figure 4a depicts the XRD patterns of the Pt/g-C3N4 after the different solvothermal 
temperatures. Two characteristic diffraction peaks at 27.6° and 12.7°, which can be as-
cribed to the interlayer (002) and intralayer (100) planes of the g-C3N4, respectively, clearly 
reflect the existence of graphitic-like layer structures in all the samples [25,26]. Bragg’s law 
showed no significant change in the d-spacing values among the four samples, implying 
the robust solvothermal stability of the g-C3N4 photocatalysts (even those prepared with 
the ethanol solvent) (Table 1) [25,27,28]. As is shown in Figure 4a, the interlayer stacking 
(002) peak intensity of Pt/CN-160 is lower than that of the other samples, likely indicating 
that there would be a loss in the stacking ordered structure of the g-C3N4 nanosheet, re-
sulting in a little-layered structure of g-C3N4 [7,29–32]. However, when the solvothermal 
temperature is above 180 °C, the (002) peaks become stronger; this is likely associated with 
the enhanced crystallinity since defects can be recovered by re-polymerization during the 
solvothermal process [32]. 

To investigate the formation of oxygen-containing functional groups on g-C3N4, 
FTIR, XPS, and EA were performed. Figure 4b shows the FTIR spectra of the Pt/g-C3N4 
samples at different treatment temperatures. All FTIR spectra represent the typical peaks 
at 810 and 1200–1700 cm−1 that are attributed to the breathing mode of tri-s-triazine units 
and the stretching vibration modes of aromatic C–N and C = N heterocyclics, respectively 

Figure 1. Schematic illustration of the synthetic procedure of ethanol solvothermal-treated CN.

The TEM and SEM analyses characterized the morphological and textural properties
of all samples. The FE-SEM images of the samples display the characteristic sheet-like
morphological structure (Figure S1). The EDS elemental mappings in Figures 2 and S2
depict the distributions of C, N, and Pt in the four samples. Although similar amounts
of Pt were loaded onto the four samples (Table 1), the purple spots assigned to Pt were
more homogeneously dispersed in the Pt/CN-160 sample than were those in the Pt/CN-
140, Pt/CN-180, and Pt/CN-220 (Figure 2) samples. The TEM images in Figure 3 also
demonstrate that the Pt species observed in all four samples was reduced from Pt4+ during
the photodeposition process. The areas marked by red circles correspond to Pt and PtO
particles or clusters anchoring on the g-C3N4 surface. These particles are nearly spherical
with an order of less than 2 nm in average size. Furthermore, it is evident that, although
the average diameter of a Pt particle in Pt/CN-140 is the smallest at 1.38 ± 0.33 nm,
some large Pt clusters are still found, implying an agglomeration of Pt species during the
photodeposition process. Pt/CN-160, by contrast, possesses a more uniform Pt dispersion
at an average particle size of 1.43 ± 0.39 nm. In the inset of Figure 3b, the high-resolution
TEM image of the Pt/CN-160 reveals the lattice fringes of 0.23 and 0.27 nm that can be
attributed to the (111) plane of Pt and the (002) face of PtO, respectively [23,24]. This can be
connected with further support from the Pt 4f XPS results in which PtO is one of the main
Pt species after the photodeposition process.

Table 1. Physicochemical and band gap values of the Pt/CN photocatalysts.

Sample Pt Content
(wt%) a d(100) (nm) b d(002) (nm) b Band Gap (eV) c

Pt/CN-140 2.66 0.70 0.3224 2.76
Pt/CN-160 2.62 0.69 0.3220 2.93
Pt/CN-180 2.74 0.70 0.3222 2.95
Pt/CN-220 2.10 0.69 0.3221 2.78

a Obtained from ICP measurement. b Calculated according to Bragg’s law in XRD analysis. c Estimated from Tauc
plots in UV–Vis analysis.

Figure 4a depicts the XRD patterns of the Pt/g-C3N4 after the different solvothermal
temperatures. Two characteristic diffraction peaks at 27.6◦ and 12.7◦, which can be ascribed
to the interlayer (002) and intralayer (100) planes of the g-C3N4, respectively, clearly reflect
the existence of graphitic-like layer structures in all the samples [25,26]. Bragg’s law showed
no significant change in the d-spacing values among the four samples, implying the robust
solvothermal stability of the g-C3N4 photocatalysts (even those prepared with the ethanol
solvent) (Table 1) [25,27,28]. As is shown in Figure 4a, the interlayer stacking (002) peak
intensity of Pt/CN-160 is lower than that of the other samples, likely indicating that there
would be a loss in the stacking ordered structure of the g-C3N4 nanosheet, resulting in a
little-layered structure of g-C3N4 [7,29–32]. However, when the solvothermal temperature
is above 180 ◦C, the (002) peaks become stronger; this is likely associated with the enhanced
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crystallinity since defects can be recovered by re-polymerization during the solvothermal
process [32].
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Figure 2. SEM images and the corresponding EDS Pt elemental mappings of the (a) Pt/CN-140,
(b) Pt/CN-160, (c) Pt/CN-180, and (d) Pt/CN-220 photocatalysts.

To investigate the formation of oxygen-containing functional groups on g-C3N4, FTIR,
XPS, and EA were performed. Figure 4b shows the FTIR spectra of the Pt/g-C3N4 sam-
ples at different treatment temperatures. All FTIR spectra represent the typical peaks
at 810 and 1200–1700 cm−1 that are attributed to the breathing mode of tri-s-triazine
units and the stretching vibration modes of aromatic C–N and C = N heterocyclics,
respectively [20,33–35]. Another peak appearing at 888 cm−1 originates from the defor-
mation mode of N–H bonding [33,36]. Notably, in the broad band between 3000 and
3600 cm−1, owing to the combination of the N–H and O–H stretching vibrations, the O–H
bands become relatively stronger with the increase in solvothermal treatment temperature,
indicating the introduction of –OH functional groups [12,33,37]. This is consistent with the
XPS data shown below.
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The XPS analysis was conducted to identify the elements’ specific bonding and chemi-
cal states. The survey spectra of all the samples are shown in Figure S3, containing sharp
peaks at about 74, 287, 398, and 532 eV, corresponding to Pt 4f, C 1s, N 1s, and O 1s,
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respectively [19,24]. Figure 5 shows the typical C 1s spectra of the four samples. These
could be deconvoluted into three different peaks appearing at the binding energies of
284.5, 286.3, and 287.8, which correspond to adventitious aliphatic carbon atoms (C–C), the
sp3 C atoms (C–NHx), and the sp2 C species (N = C–N), respectively [7,12,15,19,29,36,38].
Moreover, an additional peak at 289.2 eV arises from the –COOH species generated during
the solvothermal process [20]. Notably, the four samples’ C–NHx peaks detected at 286.3 eV
are gradually weakened because of the missing –NH2 groups after the solvothermal treat-
ment [29]. This result is also supported by the high-resolution XPS spectra of N 1s. As
depicted in Figure 5, the spectra of the four samples could be fitted into the three peaks
detected at approximately 398.2, 400.1, and 400.7 eV. The peak at 400.1 eV assigned to a
tertiary N atom (N3C) and the dominant peak at around 398.2 eV could be attributed to
the sp2-hybridized N bonded to two C atoms (C = N–C, N2C) [7,12,15,20,25,29,34,36,37,39].
As the solvothermal temperature increases, these N2C and N3C peaks shift from 398.2
and 400.1 eV in Pt/CN-140 to the higher binding energies of 398.4 and 400.3 eV in the
Pt/CN-220 sample, respectively. This is likely due to the replacement of the amino groups
by hydroxyl groups [26,40]. In addition, the weak peak located at 400.7 eV is related to
amino functional groups (C–NHx) derived from the incomplete condensation of heptazine
structures [12,15,29,34]. Particularly, in Table 2, at the mild solvothermal treatment condi-
tion (140 ◦C), the percentage of C–N–Hx is the highest at 6.79 atomic percentage (at%). On
the contrary, those of Pt/CN-160 and Pt/CN-180 gradually decrease to 4.29 and 3.48 wt%,
respectively, and the Pt/CN-220 sample finally reaches the lowest value at 1.86 wt%. More-
over, the proportions of N atoms (wt%), calculated from the EA, as well as the relative peak
area ratio of N2C/N3C, also decreased gradually, suggesting the loss of lattice N2C atoms
through the solvothermal process and further confirming the formation of nitrogen defects
and O-containing functional groups [12,26,41].
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Table 2. Elemental analysis and C, N, and Pt phases of the Pt/CN photocatalysts.

Sample
Content (wt%) a

C-OH b

(at%)
C–N–Hx

c

(at%) N2C/N3C
c Pt4+ d

(at%) Pt2+/Pt0 d
O H N

Pt/CN-140 4.07 1.31 60.91 25.03 6.79 10.40 72.18 4.93
Pt/CN-160 4.96 1.31 60.61 29.30 4.29 8.68 59.33 7.03
Pt/CN-180 5.03 1.28 60.10 31.54 3.48 4.72 65.71 5.99
Pt/CN-220 5.81 1.31 58.53 36.54 1.86 4.68 71.72 5.82

a Obtained from elemental analysis. b, c, d Determined by C 1s, N 1s, and Pt 4f spectra in XPS analysis, respectively.
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The existence of carbonyl (C=O), carboxyl (–COOH), and hydroxyl groups (–OH)
was confirmed by the O 1s XPS spectra. In Figure 5, the high-resolution O 1s spectra of
the four samples exhibit similar peaks centered at 530.0, 531.3, and 532.7 eV that can be
assigned to –COOH, C=O, and –OH functional groups, respectively [21,37,42,43]. The
atomic percentage of –OH groups is illustrated in Table 2. The C–OH group percentage
increases considerably from 25.03 wt% in Pt/CN-140 to 36.54 wt% in the Pt/CN-220 sam-
ple. To support the presence of the O-containing functional groups, EA was conducted
(Table 2). The Pt/CN-140 sample contains 4.07 wt% of the proportion of O atoms, while
that of the Pt/CN-220 is relatively higher at 5.81 wt%. These results indicate the introduc-
tion of the O-containing functional groups from nitrogen-defective sites under the more
severe solvothermal treatment condition, in accordance with the C 1s and N 1s results
discussed above.

Figure 5 presents the high-resolution XPS data for the four samples in the Pt 4f binding
energy peaks, including Pt 4f5/2 and Pt 4f7/2, in agreement with the spin–orbit splitting
of 3.3 eV. Three pairs of doublets were obtained by deconvolution. The sub-peaks at 71.2
and 74.5 eV were assigned to Pt 4f7/2 and Pt 4f5/2 of metallic Pt0, respectively [24,44–46].
Meanwhile, Pt2+ is represented by the doublet at binding energies of 72.5 and 75.8 eV,
indicating that the Pt0 and Pt2+ species co-exist [12,24,44,45,47,48]. In addition, Pt4+ species
corresponding to peaks at 74.9 and 78.2 eV are also noted [12]. This large portion of
Pt4+ results from the partly unreduced H2PtCl6.6H2O precursor in the photodeposition
process. From the data list in Table 2, the Pt4+ percentage of Pt/CN-160 sample is 59.33 wt%,
lower than those of other samples (over 65 wt%), implying that the larger amounts of Pt2+

and Pt0 species are deposited onto the surface of g-C3N4, which has been treated at the
solvothermal temperature of 160 ◦C. This result is in accordance with the EDS Pt mappings
result mentioned above. The estimated Pt2+/Pt0 ratio using the relative peak areas was the
highest in the Pt/CN-160 sample, at 7.03 (Table 2). In other words, most of the reduced Pt
species in Pt/CN-160 were positively charged (Pt2+), which is beneficial to the hydrogen
evolution reaction. It has been reported that Pt2+ improves the hydrogen evolution rate by
facilitating the photoinduced charge separation and inhibiting the undesirable hydrogen
backward oxidation reaction [12,35,44,47].

3.2. Optical and Photoelectrochemical Properties

These modified samples’ light absorption and band structure properties were investi-
gated using UV–Vis absorption spectroscopy, as is depicted in Figure 6. The absorption
spectra of all the as-synthesized samples reach the maximum peaks in the ultraviolet
range (wavelengths around 325 nm) with shoulders extending to the visible light region,
indicating that all the samples are able to harvest photons from visible light utilizing
the O-containing functional groups. When elevating the solvothermal temperature, the
absorbance value underwent slight blueshifts, likely because of the well-known quan-
tum confinement effect and the introduction of O-containing functional groups [12,20,32].
Furthermore, Pt/CN-160 and Pt/CN-180 samples reflect higher absorbance intensities
compared with those of Pt/CN-140 and Pt/CN-220, indicating that the formers exhibit the
stronger absorption ability to harvest more photons under the same irradiation condition.
The corresponding band gap values were estimated based on the fitting of Tauc plots (Fig-
ure 6) are listed in Table 1. The calculated band gaps of Pt/CN-140, Pt/CN-160, Pt/CN-180,
and Pt/CN-220 are 2.76, 2.93, 2.95, and 2.78 eV, respectively. Despite the widened band gap
of the Pt/CN-160, this catalyst is still able to exhibit the strongest visible light absorption
ability due to the highest absorbance intensity among all four samples.
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The separation and transfer ability of the photogenerated charge carriers were in-
spected using PL and EIS analysis. The PL spectra of the as-prepared samples, shown in
Figure 7a, represent the strong characteristic peaks around 435 nm that can be assigned
to the band-to-band recombination of photoinduced electrons and holes. Notably, the
Pt/CN-160 sample exhibits a quenched PL, implying the efficient suppression of the pho-
togenerated charge carriers’ recombination compared with the Pt/CN-140, Pt/CN-180,
and Pt/CN-220 photocatalysts. As is shown in Figure 7b, the EIS spectra provide a similar
trend to the above PL results. A comparison of the Pt/CN-160 EIS spectrum with those of
its counterparts demonstrates that the former exhibits a smaller arc radius on the Nyquist
plots, indicating its lower charge transfer resistance and the most effective photoinduced
electron–hole pairs separation. This possibly results from the addition of O-containing
functional groups that can act as electron acceptors and increase the thickness of the deple-
tion region, hence improving the charge separation efficiency [49–51]. Another possible
reason for this enhancement is the high work function of Pt2+, which has been in favor of
the electron-withdrawing process, accelerating the electron transfer ability and enhancing
the hydrogen evolution performance [46,48,52].

3.3. Photocatalytic Activity

The results discussed above agree with those of the hydrogen evolution performance
shown in Figure 8. The photocatalytic hydrogen production experiments of solvothermal-
treated photocatalysts were performed under simulated solar irradiation using 10 vol% of
TEOA as the sacrificial agent and 3 wt% Pt as the co-catalyst. In comparison with Pt/BCN,
all the treated samples exhibit an improvement in the hydrogen evolution rate of over
400 µmol g−1 h−1 (Figure 8a). Among them, Pt/CN-160 shows an optimal performance,
generating up to 2461.7 µmol g−1 H2 in 5 h with linear growth (Figure 8b), corresponding
to 492.3 µmol g−1 h−1 of H2 production rate (Figure 8a). The enhanced photocatalytic
activity resulted from generating the optimized amounts of O-containing functional groups
via the solvothermal treatment and Pt2+ species during the photodeposition process, both
of which play pivotal roles in facilitating the separation of photoinduced charge carriers
and promoting surface hydrogen evolution reaction.
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4. Conclusions

In this study, a facile solvothermal method of modifying the g-C3N4 electronic struc-
ture and the oxidation state of the Pt co-catalyst was developed for application to the
hydrogen evolution reaction. During the solvothermal process, an ethanol solvent intro-
duced the O-containing functional groups onto the surface of CN, resulting in the formation
of photodeposited Pt2+ species. This promoted the electron transfer ability and suppressed
the back-oxidation reaction of H2 during the water-splitting reaction. For these reasons, the
Pt/CN-160 catalyst, with the best performance in charge carrier separation and the highest
portion of Pt2+, exhibited photocatalytic activity of 492.3 µmol g−1 h−1—the best of all the
samples. This study may provide an environmentally friendly and practical approach for
preparing graphitic carbon nitride-based photocatalysts for hydrogen evolution reactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12020179/s1. Figure S1: FE-SEM images of (a) Pt/CN-140,
(b) Pt/CN-160, (c) Pt/CN-180, and (d) Pt/CN-220 photocatalysts, Figure S2: SEM images of (a)
Pt/CN-140, (b) Pt/CN-160, (c) Pt/CN-180, and (d) Pt/CN-220 photocatalysts and the corresponding
EDS elemental mappings of C, and N, Figure S3: XPS survey spectra of Pt/CN photocatalysts.
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