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Abstract: While graphene shows great potential for diverse device applications, to broaden the scope
of graphene-based device applications further, it would be necessary to tune the electronic state of
graphene and its resultant electrical properties properly. Surface decoration with metal nanoparticles
is one of the efficient doping methods to control the properties of two-dimensional materials. Here,
we report the p-type doping effects in single-layer graphene decorated with silver nanoparticles
(AgNPs) that were formed area-selectively by the facile one-step photoreduction (PR) process based
on focused-laser irradiation. During the PR process, AgNPs were reduced on graphene in AgNO3

solution by laser-driven photoexcitation followed by chemical reactions. Based on scanning electron
microscopy analyses, the morphology characteristics of AgNPs were shown to be modulated by the
laser dwell time and power controllably. Further, p-type doping effects were demonstrated using
graphene-field-effect transistor structures whose graphene channels were selectively decorated with
AgNPs by the PR process, as validated by the decrease in channel resistance and the shift of the Dirac
point voltage. Moreover, the growth of AgNPs was observed to be more active on the graphene
channel that was laser-annealed ahead of the PR process, leading to enhancing the efficiency of this
approach for altering device characteristics.

Keywords: graphene; two-dimensional material; silver nanoparticle; photoreduction; field-effect
transistor; doping effects

1. Introduction

Graphene, a monatomic sheet of a honeycomb crystal structure composed of
sp2-hybridized carbon atoms, has been studied extensively for a couple of decades since
it does not only show fundamentally unique phenomena including unordinary valley
structures and quantum Hall effects [1] but it also has many beneficial physical properties
such as ultrahigh charge carrier mobility [2], superb mechanical strength and elastic mod-
ulus [3,4], high transparency [5], etc., leading to a variety of potential applications such
as electronic and optoelectronic devices [6–9], electrical energy storage [10], flexible elec-
tronics [11], metastructures [12], and so forth. Particularly for electronic and optoelectronic
graphene-based devices, to broaden the scope of their applications further, it is highly
required to tune the carrier concentration and majority carrier type of graphene, as the
doping level of conventional semiconductors should be tailored in a wide range to meet
the differing needs of contemporary electronics and optoelectronics [13].

From this perspective, although it is quite challenging to control the electronic prop-
erties in two-dimensional (2D) structures, various approaches have been developed for
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doping 2D materials such as substitutional doping [14,15], electrostatic gating [8], surface
functionalization [16,17], gas adsorption [13], ion irradiation [18], intercalation [19,20], and
so on. The growth of metal nanoparticles on the graphene surface is also one of the effective
doping methods to modulate the electronic state of graphene properly via charge carrier
transfer across metal/graphene interfaces [21]. Among various metal nanoparticles, due
to the extraordinary physical and chemical properties of silver nanoparticles (AgNPs),
the 0D/2D heterostructures of AgNPs/graphene have been employed for demonstrating
diverse synergetic applications such as electrocatalysts [22–24], electrochemical energy
storages and sensors [25], photodetectors [26], transparent conductive coatings [27,28], etc.,
as well as for exploring fundamental phenomena such as localized surface plasmon res-
onance [21,26,29]. Moreover, integrating AgNPs with graphene structures may be struc-
turally suitable for flexible device applications [30–32]. Meanwhile, a few studies have
reported that AgNP decoration induces n-type doping in graphene [21,26,29,33].

While AgNPs have been produced on graphene in various ways such as chem-
ical reduction, gas phase synthesis, thin film deposition followed by heat treatment,
etc. [21,22,25,26,29,34], to our knowledge, no previous study has been reported regard-
ing AgNP decoration on graphene by the photoreduction (PR) process driven by laser
irradiation. This method enables the formation of AgNPs on 2D materials controllably
via modulating the laser processing conditions [35]. Recently, Y. Lee, et al. have demon-
strated controllable p-type doping in 2D molybdenum disulfide (MoS2), one of the highly
attractive 2D semiconductor species, by AgNP decoration based on the laser-assisted PR
method [35]. Since graphene is a gapless semi-metal, AgNP growth can be activated by
direct photoexcitation more easily on graphene than on a 2D semiconductor. Further,
by adopting a focused-laser beam as an irradiation source for the PR process, AgNPs
can be selectively formed on a desired area of graphene [13,36]. This one-step process
may even allow microscale complicated patterns of AgNPs to be written on graphene
without any additional lithography and subsequent high-temperature annealing pro-
cesses required for the conventional area-selective fabrication of AgNPs based on physical
deposition techniques [13,26,35–38].

In this work, utilizing the facile one-step focused-laser-assisted PR process, p-type
doping effects were achieved in graphene where AgNPs were synthesized area-selectively
on its surface. It was shown that the morphology characteristics of AgNPs on graphene
were adjustable by tuning the laser processing parameters. Adopting graphene-based field-
effect-transistor (GFET) devices, we demonstrated that the electronic state and electrical
characteristics of graphene could be modified properly by AgNP-decoration-driven p-type
doping. In addition, it was also observed that focused-laser-assisted annealing on graphene
in water, prior to the PR process, made the AgNP growth kinetics more active, resulting in
a more significant alteration of the device characteristics.

2. Materials and Methods
2.1. Nanoparticle Synthesis and Characterization

As described schematically in Figure 1a, AgNPs were synthesized via the PR
process on single-layer graphene films (GFs; purity: 97%, Graphene Supermarket,
Ronkonkoma, NY, USA) grown by chemical vapor deposition on a Cu surface and trans-
ferred onto 285 nm-thick SiO2/B-doped Si substrates (resistivity: 0.001–0.005 ohm·cm)
with PMMA (polymethyl methacrylate). Laser illumination was applied to single-layer
GFs submerged in 0.1 M AgNO3 solution (AgNO3 powder purity: >99%, Alfa Aesar,
Haverhill, MA, USA). Under the laser illumination, free-electron-hole pairs were gener-
ated by laser-assisted photoexcitation, and then Ag ions were reduced to Ag in the form
of particles on the graphene surface by accepting the free electrons, releasing oxygen gas
molecules [39]. Then, to remove solution residue, the samples were soaked in ultrapure
water and then baked at 120 ◦C for 10 min in air. Figure 1b schematically shows the
PR process composed of the charge carrier transport, graphene/solution interfacial
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charge transfer, and chemical reactions in view of the energy band diagram [40–43]. The
chemical equations for the reactions involved in the PR process are as follows [39]:

(1) Graphene (G) + hν↔ e− (G) + h+(G) ,
(2) e− (G) + AgNO3 ↔ Ag@G + NO−3 ,
(3) h+(G) + 1/2H2O↔ h+(G) + 1/2OH− + 1/2H+ ↔ 1/4O2 + H+ , and
(4) Graphene (G) + hν + AgNO3 + 1/2H2O↔ Ag@G + 1/4O2 + HNO3 .
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Figure 1. (a) Schematic drawing and (b) energy band diagram of the photoreduction (PR) process
of silver nanoparticles (AgNPs) on graphene in the AgNO3 solution. The electron energy levels are
indicated with respect to the vacuum (Vac) level (i.e., in the absolute energy scale) [39–43].

Figure 2a shows a representative optical microscopy (OM) image taken from a GF dec-
orated selectively with AgNPs by scanning a focused-laser beam in an area of 50 × 50 µm2

on the GF in AgNO3 solution at a laser power (PL) of 5 mW for a laser dwell time (τL) of
2000 ms. As shown in Figure 2b, scanning electron microscopy (SEM) imaging showed that
the nanoscale particles were distributed only over the laser-processed area. The elemental
analysis based on energy-dispersive X-ray spectroscopy (EDS) combined with SEM imag-
ing suggests that the nanoparticles were made of Ag. The details of the EDS analysis are
summarized elsewhere (Figure S1).
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Figure 2. Representative images of AgNPs grown selectively on a graphene film (GF) taken by
(a) optical microscopy (OM) and (b) scanning electron microscop (SEM), respectively. The area
marked in the OM image (a) was scanned for the SEM image (b). (c) Raman spectra taken from the
same spot of a GF with and without AgNPs [21,33].

Figure 2c includes typical Raman spectra acquired from the same spot of a GF before
and after the AgNP decoration. The significant enhancement of the overall spectral intensity
including 2D and G peaks may be due to the surface-enhanced Raman scattering (SERS)
effects, which are well-known to be induced by localized surface plasmon resonances in
metal nanoparticles [21,26,29,33,34]. The shift of the peak positions and the changes in
the ratios of the peak intensities in Raman spectra represent the variations in microscopic
aspects and internal stress states of the graphene as well as the doping effects of the
AgNPs into the graphene [13,21,33,44–46]. Herein, the peak intensities of the D, G, and
2D bands were set as ID, IG, and I2D respectively. The increase in the ID/IG intensity ratio
by ~81.2% through the PR process indicated the creation of defects in the GF during the
AgNP growth [13,21,33,44,45]. In addition, while the 2D and G peaks were blue-shifted
by 17.6 cm−1 and 1.7 cm−1, respectively, the I2D/IG intensity ratio dropped by ~40.6%
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representing simultaneous doping effects and structural disorder evolution [13,21,33,44,45].
In addition, the blue-shift of the 2D peak may also imply that tensile stress was applied in
graphene upon the AgNP decoration [46]. However, no significant change in the Raman
characteristics of the graphene was observed after only the focused-laser irradiation in
water without AgNP-formation under the laser processing conditions used in this work.
This implies that the focused-laser-irradiation itself may have not significantly resulted in
microscopic structure change and defect creation in the graphene [13,21,33,44–46].

Both the focused-laser irradiation for the PR process and Raman spectroscopy ex-
periments were carried out in the ambient conditions on a confocal Raman spectrometer
system (XperRamCompact, NANOBASE, Seoul, Korea) equipped with objective lenses and
a continuous-wave laser source of wavelength 532 nm. During the focused-laser irradiation,
the laser beam diameter and raster step size were ~5 µm and ~3 µm, respectively, and
the PL was set in the range from 2 mW to 30 mW (in the power density ~0.14 MW/cm2

to ~2.04 MW/cm2). The AgNP growth could be roughly localized down to the spot area
of the laser beam (Figure S2). Raman spectra were measured using a laser beam focused
to a laser beam diameter of ~1 µm at PL of 1 mW (in the power density ~1.70 MW/cm2).
The morphology of the AgNPs was observed in detail using SEM equipped with a field-
emission gun as an electron source. (JSM-7600F, JEOL, Tokyo, Japan) and analyzed by the
ImageJ software. EDS (X-Max, Oxford Instruments, Abingdon, UK) was also conducted for
elemental analyses on the surface of AgNPs-decorated graphene using the field-emission
electron source of the SEM operated at an accelerating voltage of 15 keV.

2.2. Field-Effect-Transistor Device Fabrication and Characterization

GFET devices were built through a series of conventional fabrication processes in-
cluding photolithography, reactive ion etching with O2 plasma, metallization, etc. Top
metal electrodes of Cr/Au (thickness: ~5 nm/~50 nm) were deposited onto the patterned
graphene films by e-beam evaporation. Then, all the devices were annealed at 350 ◦C for
15 min while the processing pressure was kept at ~100 mTorr using Ar gas whose flow
rate was ~0.5 sccm (standard cubic centimeters per minute) in a rapid thermal annealing
system. The GFET devices were back-gated across the 285 nm-thick SiO2 layers using
the heavily p-doped Si substrates as the bottom electrodes during device characterization
with a semiconductor device parameter analyzer (B1500A, Keysight, Santa Rosa, CA, USA)
at room temperature and vacuum pressure of ~3 × 10−6 Torr in a vacuum probe station
equipped with a turbo pump system. To explore the interactive effects of AgNPs on the
electronic and electrical properties of graphene as well as the device characteristics of the
GFETs, the device measurements were carried out before and after the selective synthesis
of AgNPs via the PR process on the microscale graphene channels (GCs).

3. Results and Discussion

To investigate how the laser processing parameters affected the growth of the AgNPs,
a series of PR experiments were carried out varying the PL and τL. Then, the AgNPs/GF
regions were observed by OM to roughly investigate how the growth of the AgNPs de-
pended on the laser parameters. Selective OM images of the AgNPs/GFs prepared under
different laser parameters can be found elsewhere (Figure S3). Then, the morphology and
distribution of the AgNPs were probed more precisely through the use of SEM. Figure 3a–f
displays a representative set of SEM images of the AgNPs/GF regions given by the PR
process operated in the range of PL from 2 mW to 30 mW for a τL of 500 ms. In addition,
Figure 3b,g–i includes a series of typical SEM images taken from the AgNPs/GF regions
prepared at a PL of 5 mW in the range of τL from 500 ms to 2000 ms. For statistically reliable
analyses of the morphology of the AgNPs, the surface coverage (θ) and average particle
size (α) for each laser condition were determined by considering at least five SEM images
taken from different AgNPs/GF regions of 3.5 × 5 µm2. Herein, α indicates the average
diameter of the AgNPs calculated on the assumption that all particles were spherical.
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Figure 3. Representative SEM images taken from the regions of AgNPs/GF prepared by the PR
process under various focused-laser irradiation conditions: for constant laser dwell time (τL) of
500 ms, at various laser powers (PLs) of (a) 2 mW, (b) 5 mW, (c) 10 mW, (d) 15 mW, (e) 20 mW, and
(f) 30 mW, and at a fixed PL of 5 mW for varying τLs of (b) 500 ms, (g) 1000 ms, (h) 1500 ms, and
(i) 2000 ms. All images are presented at the same scale.

Figure 4a–d exhibits that both of the θ and α of the AgNPs are affected by the PL and
τL in a complicated way. At the relatively low PL of 5 mW or less, as expected, the AgNPs
grew more as the PL or τL increased controllably. However, it appeared that excessive laser
illumination resulted in the degradation in AgNP growth probably since the reactions were
hindered by the convection and evaporation of the solution more heavily with increasing PL
or τL. When the PL was set as 20 mW, the AgNP growth was observed to be the most active
at a τL of 1000 ms, while at 30 mW, the growth was quite suppressed in the overall range
of τL. Although the laser conditions should have been optimized for growing the AgNPs
efficiently, these results imply that, via controlling the laser parameters for the PR process,
the growth kinetics of the AgNPs on graphene were delicately adjustable, leading to the
detailed tunability of the electronic and electric properties of the AgNP-decorated graphene
as well as the device characteristics of the GFETs. Due to the excellent electronic [2] and
mechanical properties [3,4] of graphene, the GEET can be embedded into high-performance
electronics [47], opto-electronics [26], sensors [48], as well as wearable devices [49].

To investigate how the properties of graphene were affected by the Ag decoration,
GFET characterization was carried out at room temperature in conjunction with the PR ex-
periments. Considering that the surface morphology deformation and coalescence of
AgNPs are known to occur via surface diffusion actively above 200 ◦C, the structure of
the AgNPs/GC and the GFET performance were expected to be stable under ordinary
operational conditions [38,50,51]. The interactions between the GC and AgNPs were inves-
tigated by monitoring the device characteristics of the back-gated GFET structure based
on a GC illustrated schematically in the side-view in Figure 5a. Figure 5b includes an OM
plan-view image showing one of the typical GFET devices exploited in this study where
both their channel widths and lengths were ~60 µm. The PR process was applied to the
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two different GFET devices for selectively decorating the GCs with AgNPs in the area of
~60 × 30 µm2 at a PL of 5 mW for a τL of 500 ms and 2000 ms, as shown in Figure 5c,d,
respectively. Henceforth, the former was called dev1, while the latter was called dev2. The
metal electrodes and channel regions near them were not laser-irradiated directly to avoid
any damage to the devices. Consistently with the trend observed in Figure 4a–d, it is likely
that, at this PL of 5 mW, the longer τL led to controllably producing a larger amount of
AgNPs in terms of the contrast of the OM images.
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Figure 4. Morphology characteristics of AgNPs grown on a GF at varying laser parameters. (a) The
surface coverage (θ) and (b) average particle size (α) of AgNPs are plotted as a function of PL at
various τLs. (c) The θ vs. τL and (d) α vs. τL plots are also given at several different PLs. The error
bars indicate the standard deviation.

Further, SEM was also performed on the AgNPs/GCs of dev1 and dev2 to evaluate
the morphology of AgNP in more detail and understand their influence on the device
characteristics. Figure 6 includes the two representative SEM images scanned from the
AgNPs/GC regions of dev1 in Figure 5c and dev2 in Figure 5d. The AgNPs seemed to grow
more actively on the patterned GCs than those on the GFs and the reasons are discussed
later. Based on the SEM analyses, the θ & α values of the AgNPs on the GCs of dev1 and
dev2 were estimated to be ∼ 6.34 ± 0.25% & ∼ 24.72 ± 0.47 nm and ∼ 6.77 ± 0.32% &
∼ 29.60 ± 1.25 nm, respectively. The α values of the AgNPs on the GCs were observed to
be generally smaller than those on the GFs under the same laser conditions, whereas the
θ values showed the opposite trend (Figure S4). From these results, it can be inferred that
initial seeds for AgNP growth may exist more in fabricated GCs than in pristine GFs, as
also confirmed by the comparison of the number of AgNPs.

As shown in Figure 7a, the drain current (Idrain) was measured as a function of the
gate voltage (VG) in the range of −50 V to +50 V at a drain-to-source voltage (VDS) of 10 mV
on dev1 before and after the AgNPs were decorated at a PL of 5 mW for a τL of 500 ms. For
comparison, Figure 7a also includes the Idrain vs. VG plot for dev2 where the AgNPs/GC
structure was prepared at the same PL but for a longer τL of 2000 ms. Dev1 showed, with
the as-fabricated GCs before AgNP decoration, typical ambipolar transport behavior with
a small negative Dirac point voltage (VDirac) indicating that the GC of dev1 was lightly
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n-doped in the initial stage. It should be noted that dev2 showed very similar Idrain −VG
characteristics in the as-fabricated state to those of dev1 (data not shown here).
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In addition, the Idrain vs. VDS curves were acquired in the range of VDS from
−50 mV to +50 mV at various VGs for monitoring the VG-dependent channel resistance (R)
as well as evaluating the performance of the metal-graphene contacts. Figure 7b shows the
selective three sets of the Idrain − VDS data at VG of 0 and ±50 V for each sample. It was
clearly observed that the R varied with VG and was influenced by the AgNP decoration,
which was consistent with the Idrain − VG behavior shown in Figure 7a. Moreover, the
linearity of the Idrain vs. VDS plots validated the fact that the Ohmic contacts were created
with negligible Schottky barrier heights across the metal–graphene interfaces of the GFETs
throughout the operation. Considering the correlation between the AgNP morphology
characteristics and device behavior, AgNPs formation seemed to enhance the channel
current level, particularly in the regime below the VDirac where the holes were the dominant
charge carriers along with the shift of VDirac in the positive direction of VG.
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Figure 7. Variations in GFET device characteristics by AgNP decoration. (a) Drain current Idrain vs. gate
voltage (VG) curves measured at VDS 10 mV on the GFETs based on GCs decorated without and with
AgNPs prepared at PL of 5 mW for varying τLs. (b) Three sets of Idrain vs. VDS plots of the GFETs
with and without AgNP decoration at VG 0 and ±50 V for each. (c) The R and p at VG −50 V as a
function of the τL.

These p-type doping effects could be due to the possible transfer of charge carriers
such as free electrons from the graphene to the AgNPs (or free holes in the opposite direc-
tion) and the resultant lowering of the Fermi energy level in the graphene. Previously, the
n-type doping effects in graphene have been reported based on several AgNPs/graphene
heterostructures created in different ways from that used in this work [21,26,29,33]. How-
ever, considering that the work function of Ag varies in the wide range from 4.14 eV to
4.81 eV due to many factors such as surface crystallographic orientation, crystal structures,
synthesis methods, environmental conditions, etc., it is not surprising that p-type doping
was achieved here [41,52–57]. In addition, the work functions of graphene and SiOx are
~4.60 eV and ~4.90 eV, respectively, and hence, the transfer of electrons from graphene to
the SiOx/Si substrate possibly contribute to the p-type doping effects [41,56,57]. Rather, the
possibility of bidirectional doping with the same nanoparticle material would make this
material system attractive for developing more advanced device structures on graphene
such as photoactive p-n junctions [13].

As plotted in Figure 7c, the R values in the hole conduction regime at VG = −50 V
decreased by ~20.1% and ~27.3% via the AgNP decoration grown at a PL of 5 mW for
τLs of 500 ms and 2000 ms, respectively. Figure 7a shows that dev1 experienced a shift of
VDirac of ~40 V in the positive direction of VG and that of dev2 was even shifted over the
upper limit of the VG measurement range (VG = +50 V), confirming that the p-type doping
effects became stronger in the graphene as more AgNPs were formed. The field-effect hole
mobility (µp) of the GCs was also calculated as µp = Lgm/WCoxVDS, where W and L are
both the width and length of the GCs, respectively, and were ~60 µm, Cox is the oxide
capacitance per area, and gm is the slope of an Idrain vs. VG plot in the linear region. The
µp was observed to decrease with the amount of AgNPs on the GC surface represented by
the α value; for dev1, from ~1202.5 cm2/V·s to ~832.9 cm2/V·s (~30.7% decrease), while
for dev2, ~1236.1 cm2/V·s to ~777.9 cm2/V·s (~37.1%). The hole carrier concentration (p),
defined as the number of holes per unit area, was calculated in the hole conduction regime
at VG = −50 V, where the holes were the majority of the carriers. Figure 7c shows that the
p value was enhanced up to ~104.3% as the τL value increased to 2000 ms. Accordingly, it
was inferred that the µp decreased as the carrier scattering limiting the carrier transport in
the GCs became stronger upon the charge transfer from the AgNPs [13].

Moreover, we also tried a two-step process to prepare a AgNPs/GC where the first
step was to apply focused-laser irradiation selectively onto a GC in water, excluding any
PR-related chemical reaction, while the second step was, as previously performed, to grow
AgNPs on the GC in AgNO3 solution by the PR process in the same selective area. The
GFET visualized in Figure 8a, called dev3 from now on, underwent the two-step process
where both steps were selectively processed at a PL of 5 mW for τL of 500 ms in an area
of ~60 × 30 µm2.
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As summarized in Figure 8b, a set of Raman spectra was acquired from the three 
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characteristics by the first step in Figure 8b may only rule out the possibility of additional 
severe damage in the graphene by focused-laser irradiation in water and, more im-
portantly, imply that the p-type doping in graphene was mainly due to the interaction 
with the AgNPs. After the second step, the 𝐼ୈ/𝐼ୋ  intensity ratio increased by ~71.7% 
while a decrease of ~ 8.59% in the 𝐼ଶୈ/𝐼ୋ intensity ratio was observed, indicating addi-
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the two-step process rendered the AgNP growth on the GC more active than the previous 
one-step process and, accordingly, more substantially enabled the tuning of the device 
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Figure 8c shows a representative SEM image scanned from the AgNPs/GC region of 
dev3 in Figure 8a. By the SEM image analyses, the 𝜃 & 𝛼 values of the AgNPs/GC of 
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Figure 8. The two-step process composed of laser-irradiation treatment in water and PR-induced
AgNP growth. (a) OM plan-view image of the GFET device based on a AgNPs/GC prepared by the
two-step process (dev3). Both steps were carried out under the same laser conditions of PL = 5 mW
and τL = 500 ms. (b) A set of representative Raman spectra taken from the GC of dev3 in the three
states: (i) as-fabricated, (ii) as-treated just after the first step, and (iii) after the second step of AgNP
decoration [21,33]. (c) A typical SEM image obtained from a AgNPs/GC region of dev3 in (a).

As summarized in Figure 8b, a set of Raman spectra was acquired from the three
different GC regions of dev3: (i) as-fabricated, (ii) as-treated just after the first step, and
(iii) AgNPs/GC given by the full process. In the comparison of the Raman spectrum taken
from the pristine GF in Figure 2c, that of the as-fabricated GC in Figure 8b showed a clear
signal of the D peak representing that the graphene seemed to become somehow defective
through the device fabrication process [21,33]. The defect sites could act as the seeds for
AgNP nucleation, probably leading to more active AgNP growth on the GCs than on the
pristine GFs as can be seen above [58]. In addition, no significant change in the Raman
characteristics by the first step in Figure 8b may only rule out the possibility of additional
severe damage in the graphene by focused-laser irradiation in water and, more importantly,
imply that the p-type doping in graphene was mainly due to the interaction with the
AgNPs. After the second step, the ID/IG intensity ratio increased by ~71.7% while a
decrease of ~ 8.59% in the I2D/IG intensity ratio was observed, indicating additional defect
creation and p-type doping effects, respectively [13,21,33,44,45]. Further, an enhancement
of the overall Raman spectral intensity was observed from the AgNPs/GC, similarly to
the AgNPs/GF in Figure 2c [21,26,29,33,34]. More interestingly, it seems that the two-step
process rendered the AgNP growth on the GC more active than the previous one-step
process and, accordingly, more substantially enabled the tuning of the device characteristics
of the GFETs by AgNP decoration.

Figure 8c shows a representative SEM image scanned from the AgNPs/GC region
of dev3 in Figure 8a. By the SEM image analyses, the θ & α values of the AgNPs/GC of
dev3 were given as ∼ 7.43 ± 0.68% & ∼ 32.70 ± 1.46 nm, respectively and they were
much higher than those of dev1, i.e., ∼ 6.34 ± 0.25% & ∼ 24.72 ± 0.47 nm, respectively,
prepared by the one-step method under the same laser conditions (Figure S4). Probably,
the focused-laser treatment in water seemed to enable gentle defect generation as well as
surface cleaning and, hence, facilitate more vigorous AgNP growth.

The tunable characteristics of the GFETs under the two-step process were investigated
by measuring the Idrain − VG curve in the range of VG from −50 V to +50 V at a VDS of
10 mV as well as the Idrain −VDS data at a VG of 0 and ±50 V from dev3 in the three states
of (i) as-fabricated, (ii) as-treated just after the first step, and (iii) AgNPs/GC prepared by
the full process, as summarized in Figure 9a,b, respectively. For the comparison, Figure 9a,b
also includes the characteristics plots of dev1 prepared by the one-step process at the same
PL and τL. Figure 9c shows that, by the first step, the R of dev3 decreased slightly by ~7.41%
at VG = −50 V, probably due to the gentle annealing effects driven by the focused-laser
irradiation in water. These annealing effects probably enabled the removal of the factors
that impair the carrier mobility, such as surface, interface contaminants, adsorbate gas
molecules, etc. [59,60]. Then, the decrease in the R of dev3 at VG = −50 V was estimated to
be ~28.8% throughout the full two-step process, which was much larger than that of the
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counterpart dev1 (~20.1%) and even that of dev2, which was prepared for a much longer
τL of 2000 ms (~27.3%). In Figure 9b, the linearity of all the Idrain vs. VDS plots represents
that the quality of the Ohmic contacts were sustained well throughout the full two-step
process. The VDirac of dev3 was observed to also be shifted in the positive direction of VG,
similar to dev1 and dev2. Figure 9c shows that p of dev3 reached ~1.19 × 1013 cm−2 after
the two-step process, which was higher than ~8.33 × 1012 cm−2 of dev1 after the one-step
process and even ~9.80 × 1012 cm−2 of dev2. These results represent that the more active
AgNP growth upon the two-step process brought about stronger p-type doping effects on
the graphene and, accordingly, more significant modulation of the GFET characteristics.
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Moreover, the 𝜇୮ values of dev3 were ~687.9 cm2/V‧s and ~606.7 cm2/V‧s for the as-
fabricated and AgNP-decorated GCs, respectively. Although the amount of AgNPs 
grown on the GC of dev3 was quite a lot larger than that of dev1 in terms of 𝜃, the 𝜇୮ of 
dev3 decreased much less by ~14.1% through the two-step process than that of dev1 
(~30.7%). Probably, the additional focused-laser irradiation in water during the first step 
may have improved the quality of the AgNPs/GC interface and, hence, alleviated the deg-
radation of 𝜇୮  by mitigating the influence of interface scattering into the carrier 
transport, which is particularly evitable in two-dimensional channel-based devices [55,61–
63]. Based on these results, we expect that it would be possible to further enhance the 
interaction between graphene and AgNPs by optimizing and engineering the laser-as-
sisted PR process. 

Figure 9. Variations in GFET device characteristics throughout the two-step process. (a) Successive
measurements of Idrain vs. VG curves of the GFET at VDS = 10 mV in the three states described
previously. (b) Sets of Idrain vs. VDS plots of the GFETs in the three states at VG = 0 and ±50 V for
each sample. For the comparison, (a,b) also include the data of dev1 prepared at a PL value of 5 mW
for a τL value of 500 ms in Figure 7a,b, respectively, prepared by the one-step process under the same
laser conditions. (c) The R and p at VG = −50 V in the three states.

Moreover, the µp values of dev3 were ~687.9 cm2/V·s and ~606.7 cm2/V·s for the
as-fabricated and AgNP-decorated GCs, respectively. Although the amount of AgNPs
grown on the GC of dev3 was quite a lot larger than that of dev1 in terms of θ, the µp of dev3
decreased much less by ~14.1% through the two-step process than that of dev1 (~30.7%).
Probably, the additional focused-laser irradiation in water during the first step may have
improved the quality of the AgNPs/GC interface and, hence, alleviated the degradation
of µp by mitigating the influence of interface scattering into the carrier transport, which is
particularly evitable in two-dimensional channel-based devices [55,61–63]. Based on these
results, we expect that it would be possible to further enhance the interaction between
graphene and AgNPs by optimizing and engineering the laser-assisted PR process.

4. Conclusions

In summary, we demonstrated that a single-layer graphene surface can be decorated
area-selectively with AgNPs using the facile one-step focused-laser-assisted PR method
and investigated in detail how the formation and growth of AgNPs was affected by the
laser-processing parameters. Then, we validated that, based on the GFET device charac-
terization, the selective AgNP decoration on the microscale GFET channel controllably
led to p-type doping effects in the graphene. Moreover, we showed that the GFET char-
acteristics could be modulated more substantially with no significant degradation in the
carrier mobility in the graphene by carrying out an additional pre-annealing process with a
focused-laser beam in advance of the PR process. Therefore, our approach is of relevance
to widening the applicability of low-dimensional heterostructures into next-generation
electronics and optoelectronics.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12203549/s1, Figure S1: Energy-dispersive X-ray spectroscopy
(EDS) elemental mappings of silver nanoparticles (AgNPs) grown on a graphene film (GF) by the
photoreduction (PR) process. (a) EDS spectrum acquired from the AgNPs/GF with the inset including
the results of elemental composition analysis. (b) Scanning electron microscopy (SEM) image taken
under the EDS mode. The set of elemental maps collected from the area of AgNPs/GF shown in
(b) for (c) Si K series, (d) O K series, (e) Ag L series, and (f) C K series. For each elemental map,
element-rich and element-deficient regions are presented in bright and dark colors, respectively. The
signal of Ag element was detected. Further, only the distribution of Ag element in (e) correlates
to some degree with the morphology of NPs shown in (b). Therefore, these results suggest that
the AgNPs were formed by the PR process; Figure S2: SEM observation of AgNPs grown locally
on a GF by the PR process using focused-laser beam. For the focused-laser irradiation, the laser
beam diameter and raster step size were ~5 µm and ~20 µm, respectively, and the laser powers
(PL) were set at (a,b) 2 mW and (c,d) 5 mW for the two different laser dwell times (τLs) of 500 ms
and 2000 ms. The diameters of AgNP-coated area were determined to be approximately as small
as ~5.22 ± 0.38 µm, ~7.53 ± 0.27 µm, ~9.48 ± 0.44 µm, and ~10.03 ± 0.91 µm from the SEM images
in (a–d), respectively. In these laser process conditions, AgNPs were observed to be formed in a
larger area with a higher PL or a longer τL. More importantly, it was shown that the growth area
of AgNPs could be localized in the level of the laser beam spot size. All SEM images are presented
at the same scale; Figure S3: Representative optical microscopy (OM) images of AgNPs selectively
grown on a GF in an area of 50 × 50 µm2 by the PR process under various laser conditions. The
first row of images show the regions of AgNP/GF prepared at the laser powers (PLs) of (a) 2 mW,
(b) 5 mW, (c) 20 mW, and (d) 30 mW for a laser dwell time (τL) of 500 ms, while the second row of
images display the AgNPs/GF regions given at a fixed PL of 5 mw for varying τLs of (e) 500 ms,
(f) 1000 ms, (g) 1500 ms, and (h) 2000 ms. All images are presented at the same scale; Figure S4: Laser
processing parameter-dependent morphology characteristics of AgNP grown on GFs and graphene
channels (GCs). (a) The surface coverage (θ) and (b) the average particle size (α) of AgNPs on a GF
are plotted as a function of PL at τLs of 500 ms and 2000 ms. (c) The θ vs. τL and (d) α vs. τL plots are
also given at PLs of 2 mW and 5 mW. For the comparison with the θ and α of AgNPs on GCs, the data
estimated from the devices (dev1-3) considered in this work are also indicated together. The error
bars in (a–d) indicate the standard deviation.
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