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Abstract: In recent years, two-dimensional (2D) halide perovskites have been widely used in solar
cells and photoelectric devices due to their excellent photoelectric properties and high environmental
stability. However, the terahertz (THz) and ultrafast responses of the 2D halide perovskites are
seldom studied, limiting the developments and applications of tunable terahertz devices based on
2D perovskites. Here, 2D R-P type (PEA)2(MA)2Pb3I10 perovskite films are fabricated on quartz
substrates by a one-step spin-coating process to study their THz and ultrafast characteristics. Based
on our homemade ultrafast optical pump–THz probe (OPTP) system, the 2D perovskite film shows
an intensity modulation depth of about 10% and an ultrafast relaxation time of about 3 ps at a pump
power of 100 mW due to the quantum confinement effect. To further analyze the recombination
mechanisms of the photogenerated carriers, a three-exponential function is used to fit the carrier
decay processes, obtaining three different decay channels, originating from free carrier recombination,
exciton recombination, and trap-assisted recombination, respectively. In addition, the photoconductor
changes (∆σ) at different pump–probe delay times are also investigated using the Drude-Smith model,
and a maximum difference of 600 S/m is obtained at τp = 0 ps for a pump power of 100 mW. Therefore,
these results show that the 2D (PEA)2(MA)2Pb3I10 film has potential applications in high-performance
tunable and ultrafast THz devices.

Keywords: 2D R-P type perovskite; OPTP; terahertz modulation; ultrafast characteristics;
Drude-Smith model

1. Introduction

In recent years, terahertz (THz) waves have received great attention from various
researchers because of their special properties and promising applications in many fields.
Currently, THz generators and detectors have been reported and consistently demonstrated,
while THz functional devices have faced great challenges due to a lack of the appropriate
nature materials [1–3]. THz modulators, as key components of THz communication fields,
can modulate the amplitude, phase, and polarization of THz waves by exciting active
materials to implement different functions [4–6]. Traditional semiconductors can achieve
a high modulation speed among these active materials with ultrafast optical pumping.
To achieve a high modulation depth, however, a high power is required to produce pho-
togenerated carriers, thus significantly restricting their application fields [7]. Recently,
three-dimensional (3D) organic–inorganic hybrid halide perovskites have achieved un-
precedented and rapid developments in the field of photoelectric devices due to their
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high absorption efficiency, adjustable energy band, high defect tolerance, and good carrier
transport performance [8,9]. However, these conventional 3D halide perovskites are sensi-
tive and unstable to water, light, and heat, meaning that there are high requirements for
their preparation and preservation environments, thereby limiting their wide commercial
applications [10,11]. For the previously studied CH3NH3PbI3 perovskite, for example,
the methylamino cation CH3NH3

+ (MA) is extremely soluble in water, and thus readily
produces PbI2 in the perovskite, causing irreversible chemical damages [11].

To solve the above issues, a commonly used method is to replace the organic cation in
3D perovskites with a hydrophobic long-chain organic cation to construct the 2D perovskites,
thus enhancing the resistance to water molecules and environmental factors (such as ultravi-
olet rays and heat), and as a result, greatly improving the stability of the organic–inorganic
hybrid perovskites [12–17]. Currently, 2D organic–inorganic halide perovskites have been
rapidly developed in the field of optoelectronics due to their high stability, tunable pho-
toelectric property, and high quantum efficiency [18–21]. For example, Karunadasa et al.
first prepared a 2D organic–inorganic hybrid perovskite solar cell with an active layer of
(PEA)2(MA)2Pb3I10, which can still maintain a high efficiency when placed in an environ-
ment with a relative humidity of 52% for 46 days [18]. After that, Sargent et al. designed
(PEA)2(MA)n−1PbnIn+1 (n > 40) perovskite systems, which can realize a short-circuit current
of up to 19.12 mA/cm−2 and conversion efficiency of 15.3% [19]. In 2016, Jinwoo et al. used
the (PEA)2(MA)n−1PbnBrn+1 (n = 1~4) perovskite as a light-emitting layer to prepare high-
efficiency quasi-2D light-emitting diodes (LEDs) with a current efficiency of 4.90 cd/A [20].
In 2021, Xu et al. fabricated highly efficient quasi-2D perovskite light-emitting diodes with
a maximum brightness of 35,000 cd/m2 and maximum external quantum efficiency (EQE)
of 12.4% [21]. Although 2D perovskites have been extensively studied in photoelectric
devices, the THz and ultrafast characteristics of the 2D perovskites are seldom reported,
limiting the developments and applications of the tunable and ultrafast THz devices based
on 2D perovskites [22].

In this paper, we investigated the THz and ultrafast responses of a 2D (PEA)2(MA)2Pb3I10
perovskite film to reveal the decay mechanisms of the photogenerated carriers. Firstly,
(PEA)2(MA)2Pb3I10 perovskite films with n = 3 (PEA content of 50%) were prepared on
the quartz substrates by a one-step spin-coating process. Then, the structural and pho-
toelectric properties of the prepared films were characterized by the scanning electron
microscope (SEM), X-ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, and
photoluminescence (PL) technologies, respectively. Next, the THz and ultrafast responses
were measured using our homemade ultrafast optical pump–THz probe (OPTP) system,
obtaining an intensity modulation depth of about 10% and an ultrafast relaxation time of
about 3 ps for the pump power of 100 mW. To further discover the recombination mecha-
nisms of the photogenerated carriers, finally, the decay process of the carriers was fitted using
a three-exponential formula. Therefore, the prepared 2D (PEA)2(MA)2Pb3I10 perovskite
has broad application prospects in the design of high-performance tunable and ultrafast
THz devices.

2. Structure of 2D Perovskites

Generally, 2D organic–inorganic hybrid perovskites are expressed as (RNH3)2An−1MnX3n+1
(n = 1, 2, 3, 4 . . . . . . ), where R is the organic group, and n is the number of the stacked di-
agonal octahedral layers, namely the number of organic layers. When n is equal to 1 or a
finite integer, the (RNH3)2An−1MnX3n+1 can be considered as a pure-2D or quasi-2D structure,
while becoming a 3D structure as n = ∞, as shown in Figure 1. Thus, 2D organic–inorganic
perovskites can be constructed by replacing the A in 3D structures with the hydrophobic organic
macromolecules [20]. Figure 1a shows the structural schematics of the (PEA)2(MA)n−1PbnI3n+1
perovskites with different PEA percentages, in which the organic and inorganic layers are in-
terbedded with each other, resulting in the formation of a natural multi-quantum well structure,
as shown in Figure 1b. Therefore, the 2D organic–inorganic perovskites not only have excel-
lent environmental stability due to the existence of hydrophobic molecules resisting moisture,
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light, and heat, but they also have a large exciton binding energy and excellent photoelectric
properties due to the presence of the quantum well structure [18,23].
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Figure 1. Structural schematic of the perovskites: (a) evolution process of perovskites from 3D to 2D
and (b) multi-quantum well structure.

3. Fabrications and Characterization of 2D Perovskite Films

To obtain high-quality 2D perovskite films, it is very important to follow the fabrication
procedures to ensure the growth of high-quality grains. Here, a one-step spin-coating
process is applied to fabricate 2D perovskite films. Figure 2 shows the fabrication process
of the 2D (PEA)2(MA)2Pb3I10 perovskite film. The detailed fabrication steps are as follows:
firstly, the MAI and PEAI powders are dissolved in a DMF solution at a ratio of 1:1 to
form a precursor solution. Then, the precursor solution is deposited on the surface of a
1 cm × 1 cm quartz substrate by the one-step spin-coating process with two consecutive
stages (the first stage at 1000 r/min for 10 s, and the second with 3000 r/m for 50 s).
Moreover, in the 30 s of the second spin-coating stage, the antisolvent (chlorobenzene) is
continuously dripped onto the substrate to quickly form a uniform film. After spin-coating,
the fabricated samples are transferred to a hot plate and annealed at 100 ◦C for 10 min to
remove the residual solvents and transit the intermediate solvate phase into the perovskite,
finally forming homogeneous 2D (PEA)2(MA)2Pb3I10 perovskite films. All of the fabrication
steps are implemented inside a nitrogen-filled glove box at room temperature.
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Figure 2. Fabrication process for (PEA)2(MA)2Pb3I10 perovskite film.

To examine the structural morphologies and optical properties of the as-fabricated
perovskite films, next, we caried out different measurements and characterizations using
SEM, XRD, UV–vis, and PL technologies, as shown in Figure 3. Figure 3a shows an
optical microscope image of the 2D (PEA)2(MA)2Pb3I10 perovskite film, which indicates
that the perovskite film is very flat and dense owing to the uniform distributions of the
precursor solution on the substrate. Figure 3b displays a top-view SEM micrograph of the
2D (PEA)2(MA)2Pb3I10 perovskite film, in which the perovskite appears to have nanorod-
like crystalline features at the length scale of hundreds of nanometers and a few pinholes
due to tight contact between the grain boundaries. Figure 3c shows an XRD pattern of
the perovskite film. In the XRD pattern, there are two diffraction peaks at 14.2◦ and
28.72◦, corresponding to the (111) and (222) crystal planes, respectively, which is consistent
with the previously reported crystal plane positions [24]. Moreover, no characteristic
peaks associated with PbI2 or other redundant phases are observed, suggesting that the
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fabricated films were fully generated with a high crystallinity. Figure 3d presents the
UV–vis absorption and PL emission spectra of the as−grown perovskite film. The PL
emission spectrum shows only a PL peak with a full width at half maximum (FWHM) of
47 nm centered near 710 nm, while the absorption spectrum shows that the perovskite film
has a broad absorption spectrum with three absorption peaks between 600 and 750 nm,
indicating a bandgap of ~1.96 eV, as shown in Figure 3e. Moreover, these exciton absorption
peaks mainly arise from the low n−member perovskite compounds, demonstrating the
presence of 2D perovskites as well as multiphase [25]. In addition, non-zero values of
absorbance below the absorption onset are also observed, which is consistent with the fact
that the rougher film morphology of perovskites results in a large amount of scattering.
Therefore, the above measurement results demonstrate that the as-grown perovskite is a
2D layer structure.
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4. Terahertz and Ultrafast Responses of 2D Perovskite Films

As is well-known, THz waves are very sensitive to changes in external circumstances.
When the semiconductor films are pumped by external light, for example, the THz waves
passing through them would be modulated due to the existence of photogenerated carriers.
Moreover, the more photogenerated carriers, the greater the modulation depth of the
device [26]. Thus, the application prospects of the materials can be further developed
according to their modulation depths and speeds. A 2D (PEA)2(MA)2Pb3I10 perovskite
is a direct bandgap semiconductor and can absorb the photons with energy larger than
its bandgap width when pumped by the external light, producing great photogenerated
carriers due to the transition of the electrons as a result. To evaluate the THz modulation
depth and ultrafast characteristics of the fabricated 2D perovskite films, we set up an OPTP
system mainly consisting of the ZnTe crystal-based THz generation and detection beams
and an optical pump beam photoexciting the samples, as shown in Figure 4.
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In this homemade system, an amplified Ti–sapphire laser with a pulse duration of
90 ps, wavelength of 800 nm, spectral width of 28 nm, and repetition rate of 75 MHz
is used as the optical source for the generation and detection of the THz signal and the
photoexcitation of the samples [27]. The laser output beam is split into three beams, where
one beam is employed to excite the ZnTe crystal to generate a THz pulse, the second beam
is used to detect the THz pulse via free-space electro–optic sampling in a ZnTe crystal,
and the third part is used to generate a frequency-doubled 400 nm pump pulse using
a barium borate (BBO) crystal to excite the 2D perovskite sample. Moreover, the 400 nm
pump beam has an energy of 3.1 eV higher than the bandgap of 2D perovskites (1.96 eV),
which can photoinduced free carriers and excitons. In addition, the diameter of the pump
beam is 5 mm, which is larger than the diameter (2 mm) of the focused THz beam to
ensure uniform photoexcitation. Thus, the ultrafast response measurements in the OPTP
system are carried out by varying the delay time (τp) between pump and detection beams
using a translational delay stage, while terahertz time-domain spectrum measurements are
performed by fixing the pump pulse at the desired position and sampling the THz pulse
using another translational delay stage. As a result, the frequency-dependent terahertz
spectroscopy can be obtained after the Fourier transform [28].

To examine the THz modulation ability of the fabricated perovskite films, next, the
THz time–domain spectra across the sample, fabricated onto a quartz substrate with a
thickness of 2 mm, are measured using our OPTP system at different pump powers. The
measurement results are shown in Figure 5a, where the gray dotted line is the reference
value of the quartz substrate without the perovskite film. There is a significant time
delay between the reference and the sample, demonstrating that the perovskite film were
fabricated on the substrate. Figure 5b shows the normalized THz transmission spectra of
the fabricated sample for different laser excitations, clearly observing a gradual reduction
in the THz transmission with the increase in pump power. The change in the transmission
spectra can be attributed to the generation of free carriers in the perovskites. For example,
in the absence of a pump beam, the carriers in the perovskite are in the thermal balance
state, and there is no observed split in the energy level of the perovskite. In this case, the
perovskite has a few carriers that can freely move, and thus obtains a transmission intensity
of about 90% at 1 THz. Once the perovskite film is pumped with different pump powers.
However, the carriers are generated in the perovskite, breaking the thermal equilibrium
state of the perovskite. By further increasing the pump power, the numbers of electrons and
holes in the conductivity and valence bands of the perovskite can be gradually increased,
leading to a reduction in terahertz transmission intensity, achieving a THz intensity change
of nearly 5% at 1THz for a pump power of 100 mW.
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Figure 5. Terahertz performances of the fabricated (PEA)2(MA)2Pb3I10 perovskite films at differ-
ent irradiation powers of 25 mW, 50 mW, and 100 mW: (a) terahertz time−domain transmission
spectra, in which the inset shows the magnification values at the peak, and the dashed line repre-
sents the time-domain transmission spectrum of the reference substrate without perovskite film;
(b) terahertz frequency-domain transmission spectra; (c) modulation depth over the broadband range
of 0.5–1.75 THz; and (d) modulation depth of different pump powers at 1.5 THz.

To further assess the modulation performance of the (PEA)2(MA)2Pb3I10 perovskite
film, a modulation depth (MD) was introduced to quantify the modulation ability of the
perovskite film at different irradiation powers, which can be expressed as

MD =

∫
Plaser−o f f (ω)dω −

∫
Plaser−on(ω)dω

Plaser−o f f (ω)
(1)

where Plaser-on(ω) and Plaser-off (ω) represent the THz amplitudes as the laser pump beam
is turned on and off, respectively [29]. As shown in Figure 5c,d, the intensity modulation
depth of the fabricated 2D (PEA)2(MA)2Pb3I10 perovskite films is gradually enhanced
with the increase in pump power, showing a linear increase for different pump powers.
The maximum intensity MD is found to be about 10% at 1.5 THz for the pump power of
100 mW. Moreover, the lower MD can be further improved by increasing the pump power.
Therefore, the (PEA)2(MA)2Pb3I10 perovskite is demonstrated as a promising material that
can implement a highly efficient THz modulation.

Next, to explore the ultrafast relaxation response of the photogenerated carriers, the
homemade OPTP system is used to monitor the dynamic decay process of the photogen-
erated carriers by varying the relative delay time (τp) between the pump and detection
beams. In this experiment, the sample is excited by a femtosecond laser beam with a 400 nm
wavelength at the normal incidence, and the probing THz electric field vector is parallel
to the plane of the surface of the sample [30]. Following photoexcitation, generally, the
relative change in the THz electric field is proportional to the photoinduced conductivity of
the pumped material due to the presence of free charges. Thus, the dynamics of charge
carriers are manifested as the photoinduced THz transmission changes (−∆T/T0) in the
samples at the peak of the THz pulse as a function of pump–probe delay. Figure 6 shows
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the transient THz transmission dynamics following the photoexcitation of the prepared
2D (PEA)2(MA)2Pb3I10 perovskite film for a range of pump powers. In these experimental
results, it is noted that the nonequilibrium carriers relax at ultrafast speeds, fully recov-
ering the equilibrium state within a dozen picosecond time scale for the pump power of
25 mW. Moreover, the fast relaxation becomes increasingly significant with the increase
in the pump power, indicating that the 2D (PEA)2(MA)2Pb3I10 perovskite has potential
application prospects in ultrafast THz devices. This ultrafast phenomenon can be attributed
to the inherent multi-quantum well structure in the 2D perovskites.
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To further understand the ultrafast relaxation dynamics of the 2D (PEA)2(MA)2Pb3I10
perovskite, a triexponential decay function is used to fit the measured THz transient
dynamics at different pump powers, extracting the carry lifetimes of the ultrafast processes
to discover the recombination channels of the photoexcited free carriers and excitons. Thus,
the triexponential decay function is given by the following express [31]

f (t) = A1e−
t

τ1 + A2e−
t

τ2 + A3e−
t

τ3 (2)

where τ1, τ2, and τ3 are the lifetimes of different relaxation processes, respectively. A1, A2,
and A3 are the corresponding coefficients of each lifetime component, which determine the
weights of the decaying and nondecaying components separately. By fitting the measured
THz transient changes obtained using our OPTP system, the lifetimes are extracted for
different pump powers, as summarized in Table 1. As observed in Table 1, the lifetimes
of the three components are τ1 ~ 10 ps, τ2 ~ 33 ps, and τ3 ~ 2 ns for a pump power of
25 mW, respectively. With the increase in the pump power, the initial fast relaxation process
becomes faster, while the slow process becomes slower, obtaining τ1 ~ 3 ps, τ2 ~ 18 ps,
and τ3 ~ 6 ns for the pump power of 100 mW as a result. These results indicate that
such a decay process usually involves three recombination pathways: monomolecular
recombination, bimolecular recombination, and Auger recombination [32]. At a lower
pump power, the photogenerated carrier relaxations are dominated by the monomolecular
decay (τ3), corresponding to the slow process, whereas at a higher pump power, the
recombination channels are dominated by the bimolecular decay (τ2) and Auger decay (τ1),
corresponding to the fast process. Thus, the monomolecular decay component observed at
a lower pump power arises most likely from trap-assisted recombinations, depending on
the trap cross-section, energetic depth, density, and distribution. For higher pump power,
the bimolecular decay originates from the overlaps of electron and hole wavefunctions,
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while the Auger process results from the exciton–exciton scatterings, where the excitons are
localized inside the QW structures, providing an additional channel for the fast relaxation
of free carriers [30].

Table 1. Extracted lifetimes of different pump powers by the triexponential fitting.

Lifetime
Power 25 mW 50 mW 100 mW

τ1 (ps) 10 ± 0.2 6 ± 0.2 3 ± 0.1
τ2 (ps) 32 ± 0.8 30 ± 0.9 18 ± 1.2
τ3 (ps) 1830 ± 30 3341 ± 50 5854 ± 50

To gain further insights into the ultrafast relaxation behaviors with three exponential
decay components (τ1, τ2, and τ3), the spectral dispersions of the THz photoinduced con-
ductivity (∆σ) at different pump–probe delay times (τp) were derived from the measured
THz transmission transient dynamics using the following expression [33]:

∆σ
(
ω, τp

)
≈ −n + 1

Z0

∆T
(
ω, τp

)
T
(
ω, τp

) /d [S/m] (3)

where n is the refractive index of the quartz substrate, whose value is 1.95 at the terahertz
range; Z0 = 377 Ω is the impedance of free space; and d is the thickness of the perovskite film.

Figure 7a shows a typical trace of THz transmission for the pump power of 100 mW,
which reveals the transient dynamics of free carriers and excitons in the 2D perovskite
film, as discussed above. Figure 7b displays the THz electric field changes at different
pump–probe delay times, as shown in Figure 7a (blue, red, and black solid curves corre-
spond to τp of 0, 5, and 113 ps, respectively, in which the ∆E is enlarged by over ten times
for clarity), while Figure 7c displays the changes in the THz photoconductivity extracted
using the corresponding THz electric field changes, which is shown by scattered points. It
is noted that the variations of the THz intensity and photoconductivity are increasingly
weakened with the increase in the pump–probe delay time. For example, at τp = 0 ps, the
photogenerated carriers start to decay and relax quickly, and THz intensity and conduc-
tivity exhibit maximal changes due to the existence of abundant photogenerated carriers.
As τp is increased from 0 to 5.0 ps, the change in THz intensity and conductivity is grad-
ually decreased due to the recombination of the photogenerated carriers. At τp = 113 ps,
however, the system is almost restored to the initial balanced state, and the photogenerated
carriers have been fully recombined, leading to the minimal change of the THz intensity
and conductivity. Such a change trend can be attributed to the change in the photoinduced
free carry density [34]. In addition, the Drude−Smith model is used to further fit the ex-
tracted photoinduced THz conductivities (solid curves of Figure 7c), and the corresponding
deviations are shown in Figure 7d. It is noticed that in the early process, the extracted
photoinduced THz conductivities show a considerable disparity from the Drude−Smith
model due to the complicated THz responses, as shown in the top row of Figure 7d. Such a
remarked deviation can result from the contributions of both the charge carrier transport
and exciton–phonon scattering [35]. For the slow decay process (τp = 113 ps), however,
the extracted values agree well with the fitting values (see the bottom row of Figure 7d),
indicating a primary contribution from the defect trapping process [36].
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5. Conclusions

In summary, we prepared the (PEA)2(MA)2Pb3I10 perovskite films by a one-step
spin-coating process and characterized them by different measuring methods. The SEM,
XRD, UV–vis, and PL measurements demonstrate that the as-grown (PEA)2(MA)2Pb3I10
perovskite films are a 2D layer structure. The OPTP measurements show that the 2D
(PEA)2(MA)2Pb3I10 perovskite film can achieve an MD of up to 10% at 1.5 THz and an
ultrafast relaxation time of about 3ps at an illumination power of 100 mW. Moreover, the
fitting results obtained by a three-exponential function reveal that the decay mechanism
involves the monomolecular, bimolecular, and Auger recombination processes, correspond-
ing to the free carrier relaxation, exciton recombination, and trap-assisted recombination,
respectively. In addition, the changes in the photogenerated conductivity at different pump–
probe delay times were extracted and fitted using the measured THz transient dynamics
and the Drude-Smith model, respectively, obtaining a maximum change of 600 S/m at
τp = 0 ps. Therefore, these results show that the 2D (PEA)2(MA)2Pb3I10 film has potential
applications in high-performance tunable and ultrafast THz devices.
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