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Abstract: Owing to their high theoretical capacity, transition-metal oxides have received a consider-
able amount of attention as potential anode materials in sodium-ion (Na-ion) batteries. Among them,
Mn3O4 has gained interest due to the low cost of raw materials and the environmental compatibility.
However, during the insertion/de-insertion process, Mn3O4 suffers from particle aggregation, poor
conductivity, and low-rate capability, which, in turn, limits its practical application. To overcome
these obstacles, we have successfully prepared Mn3O4 nanoparticles distributed on the nitrogen
(N)-doped and nitrogen, sulphur (N,S)-doped reduced graphene oxide (rGO) aerogels, respectively.
The highly crystalline Mn3O4 nanoparticles, with an average size of 15–20 nm, are homogeneously
dispersed on both sides of the N-rGO and N,S-rGO aerogels. The results indicate that the N-rGO
and N,S-rGO aerogels could provide an efficient ion transport channel for electrolyte ion stability
in the Mn3O4 electrode. The Mn3O4/N- and Mn3O4/N,S-doped rGO aerogels exhibit outstanding
electrochemical performances, with a reversible specific capacity of 374 and 281 mAh g−1, respec-
tively, after 100 cycles, with Coulombic efficiency of almost 99%. The interconnected structure of
heteroatom-doped rGO with Mn3O4 nanoparticles is believed to facilitate fast ion diffusion and
electron transfer by lowering the energy barrier, which favours the complete utilisation of the active
material and improvement of the structure’s stability.

Keywords: sodium-ion batteries; Mn3O4 nanoparticles; N-rGO aerogel; N,S-rGO aerogel;
electrochemical performances

1. Introduction

Because of the rising demand for lithium-ion (Li-ion) batteries, the scarcity of lithium
sources, and the expected steep rise in lithium prices, there is an urgent need for innovative
and low-cost battery systems [1]. The most researched new battery technologies use the
same insertion and extraction chemistry as Li-ion batteries, such as potassium-ion (K-ion)
and sodium-ion (Na-ion) batteries, despite the fact that the electrode materials needed to be
reconfigured [2]. In large-scale energy storage, Na-ion batteries have gained considerable
interest owing to the availability and natural resources of sodium [3–8]; moreover, they
appear to be a better alternative to Li-ion batteries. Unfortunately, because of the large
radius (1.02 Å), high atomic mass (23 g mol−1), and low redox potentials (2.71 V vs. SHE)
for Na-ion, most examined electrodes, especially the anode, are not ideal hosts for Na-
ion insertion [9–12]. In addition, because Na has a higher chemical activity than Li, the
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production, transportation, and application of Na-ion batteries may be more difficult [13,14].
Furthermore, severe volume changes caused by repeated cycling of the anode materials
contribute to the failure of the battery by causing cracks and loss of electrical contact. To
improve battery performances, nanoscale materials are frequently used owing to their ease
of stress release and high resistance to structural defect formation [15,16].

To date, various materials have been explored, and transition-metal oxides, such
as MnOx [17,18], FeOx [19,20], and Co3O4 [21], have drawn increasing attention owing
to their high theoretical capacities. Notably, previous studies have demonstrated that
Mn and Mn-based compounds can alloy with Na and perform well as Na-ion battery
anodes [15,22,23]. Mn3O4 is one of the promising anode materials and has a high theoretical
capacity (937 mAh g−1) because of its conversion reaction mechanism, natural availability,
low cost, and environmental friendliness [24]. So far, the Na-ion storage behaviour in
Mn3O4 nanostructures has been investigated [25] and possesses similar problems to other
transition-metal oxides. The volume changes during the repeated insertion/de-insertion
process of Na-ions lead to the substantial aggregation of particles and may affect the
mechanical stability of the electrode materials [26,27]. Jiang et al. [28] were the first to
report the Na-ion storage performances of Mn3O4 thin film synthesised via electrostatic-
spray deposition, which exhibits poor cycling performances. The capacity deterioration
during cycling is explained by the formation of a porous reticular structure in the grids. To
ensure the large capacity of Mn3O4 electrode accompanied by high reversibility [29], the
internal structure of Mn3O4 needs to be modified to compensate for the volume changes
by adopting various strategies, such as synthesise multifunctional nanostructures [25] and
nanocomposites [30], and by hybridising with carbon-based materials, such as mesoporous
carbon [31], graphene [32], reduced graphene oxide (rGO) [33], and carbon nanofibres [34].
Because of the unique layered structure, high specific area, superior conductivity, and
excellent electrical properties, graphene-based matrices or their derivatives (e.g., rGO)
have been used to improve the charge transfer and reduce the agglomeration of transition-
metal oxide electrodes [35]. Such a combination could be an effective way to improve the
electrochemical performances of the batteries by shortening the Na-ion diffusion pathway,
improving electroactivity, and relieving volume variation [29,36]. Wang et al. [25] reported
that encapsulating Mn3O4 nanotubes in porous graphene sheets can improve the structural
integrity and electrical conductivity of the electrodes, with a satisfactory discharge capacity
and cyclability of up to 55 cycles.

Nonetheless, aggregation or restacking between rGO layers will drastically reduce
the active sites and influence the Na-ion transfer rate, which results in low reversible
capacity [37]. Doping rGO with heteroatoms, such as nitrogen (N) [38,39] and sulphur
(S) [40], could enhance the electronic conductivity and ameliorate the physicochemical
functions of the rGO. It has been demonstrated that N-doping can significantly increase
the electronic conductivity and Na-ion storage capacity of the electrode because of the
introduction of N-doped defects and functionalised groups [41–44]. On the other hand,
S-doping could increase the interlayer distance to promote the insertion/de-insertion
of Na-ions owing to their larger covalent radius (102 pm) than carbon (77 pm) [43,45].
In addition, codoping with multiple heteroatoms can enhance the performance of rGO
through synergistic interactions between heteroatoms [46]. However, the content of S in
the doping materials could also be hindered by the incorporation of the graphene network
because of the oversized atomic radius of S (180 pm) [47].

In this work, the Mn3O4/nitrogen (N)- and Mn3O4/nitrogen, sulphur (N,S)-rGO
aerogels were prepared via the hydrothermal method using NH3 and L-cysteine as a source
of nitrogen and nitrogen, sulphur elements, respectively. Upon treatment of graphene
oxide (GO) with NH3 and L-cysteine, GO was not only reduced to graphene but also
simultaneously doped with N and N,S-atoms. The Mn3O4/N- and Mn3O4/N,S-rGO
aerogels have a promising reversible discharge capacity of 370 and 281 mAh g−1, re-
spectively, up to 100 cycles at a current density of 0.1 A g−1. These nanocomposites also
possess excellent cycling stability and better rate capability. In fact, when compared with
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other methods, the current method has the advantages of simplicity, friendliness, relia-
bility, and cost-effectiveness. The promising capacity and cyclability demonstrated by
the Mn3O4/heteroatom-doped rGO aerogel in our work add to the body of knowledge
available to other researchers attempting to forecast the prospects of these composites for
the development of Na-ion batteries.

2. Materials and Methods
2.1. Synthesis of the Mn3O4/N- and Mn3O4/N,S-rGO Aerogels

GO was obtained using a typical Hummers method [48]. Mn3O4 was synthesised
according to the previous work [49]. For the synthesis of the Mn3O4/N-rGO aerogel, 90 mg
GO and 63 mg Mn3O4 were ultrasonically dispersed in 18 mL deionised (DI) water for 1 h,
and then 4 mL ammonia (NH3, Sigma-Aldrich, St. Louis, MO, USA) was slowly added
into the mixture. The mixture was transferred into a Teflon-lined (125 mL) stainless-steel
autoclave and heated at 180 ◦C for 12 h. Finally, the black hydrogel suspensions were freeze-
dried to collect the Mn3O4/N-rGO aerogel. The same procedure was performed to prepare
the N,S-rGO aerogel; however, NH3 was replaced with L-cysteine (Sigma-Aldrich, St. Louis,
MO, USA) as a nitrogen/sulphur source and denoted as Mn3O4/N,S-rGO aerogel.

2.2. Physical Characterisation

The structural phases of the obtained samples were determined via X-ray diffraction
(XRD; Rigaku Miniflex II, Tokyo, Japan). The amount of Mn3O4 in the heteroatom-doped
rGO aerogel was confirmed using a thermogravimetric analyser (TGA, Perkin Elmer,
Waltham, MA, USA) within the temperature range of 30 ◦C–800 ◦C at a heating rate of
10 ◦C min−1 in air. The morphology of these samples was observed via scanning electron
microscopy (SEM; JOEL, Akishima, Tokyo, Japan) (JSM-6360L) and transmission electron
microscopy (TEM; TECNAI G2 20 S-TWIN FEI, FEI Company, Lincoln, NE, USA). Fourier
transform infrared spectroscopy (FTIR) was recorded on IR Tracer-100, Shimadzu, Kyoto,
Japan. Raman spectra were collected via Raman spectroscopy (Renishaw, Gloucestershire,
UK (532 nm radiation)) extended with 0.1% power laser measurement. Surface composition
analysis was further conducted via X-ray photoelectron spectroscopy (XPS, Axis Ultra DLD
XPS, Kratos, Manchester, UK).

2.3. Electrochemical Measurements

The active materials, carbon black (Sigma-Aldrich, >99.5%, St. Louis, MO, United
States) and polyvinylidene fluoride (PVDF, Sigma-Aldrich, St. Louis, MO, United States)
(weight ratio, 75:20:5), were dissolved in N-methyl-2-pyrrolidone (NMP). The slurry was
then coated onto a copper (Cu) foil and dried at 100 ◦C overnight. CR2032 coin-type cells
were fabricated in an argon-filled glovebox (Unilab, MBRAUN, Garching, Germany, H2O,
O2 < 0.1 ppm) using sodium metal (Sigma-Aldrich, 99.9% trace metal base, St. Louis, MO,
United States), glass fibre (GF/D Whatman) separator, and electrolyte (1 M NaClO4 (98%,
Sigma-Aldrich) in propylene carbonate (99.7%, Sigma-Aldrich, St. Louis, MO, United
States) with the addition of 5 wt.% fluoroethylene carbonate (99%, Sigma-Aldrich, St.
Louis, MO, United States). The electrochemical performances of the nanocomposites were
studied using a Neware battery analyser. Cyclic voltammetry (CV) was conducted using
an electrochemical workstation (CHI 700E).

3. Results and Discussion

Scheme 1 presents the synthesis of the Mn3O4/heteroatom-doped rGO aerogel using
GO through hydrothermal, followed by freeze-drying. Upon heating, GO was converted to
rGO, and simultaneously, through the π–π interactions, hydrogen bonding, coordination,
and electrostatic interactions, the GO layers could self-assemble into three-dimensional
(3D) networks. Concurrently, the presence of NH3 and L-cysteine introduced the doping of
N-atom and N,S-atoms on the rGO layer, respectively. Strong cross-links, which are the
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building blocks of the 3D rGO network, were produced as a result of this process and acted
as an effective conductive network for ion and electron transportation [30].
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Scheme 1. Schematic representation of the synthesis procedure of the Mn3O4/heteroatom-doped
rGO aerogel.

The thermal stability (in air) of all samples was determined via TGA. The TGA curve
(Figure 1) shows two weight loss stages for all samples, except for pristine Mn3O4, and
the evaporation of physically and chemically adsorbed water was adequately attributed
to the weight loss at temperatures above 100 ◦C. Between 150 ◦C and 600 ◦C, the N-rGO
and N,S-rGO aerogels demonstrated the decomposition and disintegration of nitrogen
and sulphur-containing functional groups, followed by decarboxylation and elimination
of hydroxyl functionalities, respectively [50]. For a temperature less than 500 ◦C in air,
rGO is often entirely burnt to CO2 [51]. For the Mn3O4 nanoparticles, no weight loss was
observed in the temperature range of 100 ◦C to 500 ◦C. As the temperature approached
540 ◦C, the weight began to increase, which could be attributed to the transformation of
Mn3O4 to Mn2O3 [30,33]. Therefore, the amounts of Mn3O4 in the Mn3O4/N-rGO and
Mn3O4/N,S-rGO aerogels were estimated to be 63 and 60 wt.%, respectively.
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Figure 1. TGA curves of Mn3O4, N-rGO aerogel, N,S-rGO aerogel, Mn3O4/N-rGO aerogel, and
Mn3O4/N,S-rGO aerogel at a heating rate of 10 ◦C min−1 in air.

The phase purity and structure of the synthesised N-rGO aerogel, N,S-rGO aerogel,
pure Mn3O4, Mn3O4/N-rGO aerogel, and Mn3O4/N,S-rGO aerogel were analysed via
XRD. The disordered configuration of loosely packed graphene sheets of the N-rGO and
N,S-rGO aerogels was disclosed by the enormous broad peak at approximately 24◦–25◦,
corresponding to the graphite (002) plane (Figure 2) [52,53]. Because of the relatively low
diffraction intensity of the N-rGO and N,S-rGO aerogels compared with Mn3O4 prominent
peaks, the diffraction peaks of these aerogels were less evident in the XRD patterns of the
Mn3O4/N-rGO and Mn3O4/N,S-rGO aerogels [54]. Both Mn3O4/N-rGO and Mn3O4/N,S-
rGO aerogels corresponded to the planes of tetragonal crystallinity in Mn3O4 (JCPDS
card no 240734), hence indicating the presence of pure Mn3O4 without any noticeable
impurities. The crystallite size of Mn3O4/N-rGO and Mn3O4/N,S-rGO aerogels were 12.7
and 17.4 nm, respectively, calculated using Scherrer’s Equation. These results supported
the formation and dispersion of Mn3O4 nanoparticles on the network surface of the N-rGO
and N,S-rGO aerogels.

Figure 3 presents the SEM images for all samples. The N-rGO (Figure 3a) and N,S-
rGO (Figure 3b) aerogel samples exhibited a typical well-defined and interconnected
3D network structure of rGO aerogel with a pore structure smaller than 1 µm. Such
structures could provide an open channel for the access of electrolytes and minimise
volume changes during the charge and discharge processes [55]. It is clearly demonstrated
that Mn3O4 agglomerated in a size of 0.5–1.1 µm, which is an aggregate of individual
Mn3O4 nanoparticles, anchored uniformly on the porous N-rGO (Figure 3c) and N,S-
rGO (Figure 3d) aerogel layers. This suggests an effective assembly between the Mn3O4
nanoparticles and rGO aerogel sheets during the hydrothermal treatment. Moreover,
pristine Mn3O4 nanoparticles with a particle size of 0.5–1.0 µm are beneficial in that they
provide more active sites for the electrochemical reaction [56,57]. Therefore, the synergistic
effect between the small-sized Mn3O4 and heteroatom-doped rGO aerogel could have a
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tremendous effect on the electrochemical properties, especially the cyclability and rate
capability of the batteries.
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Further characterisation of the morphology and structure of the Mn3O4/N-rGO and
Mn3O4/N,S-rGO aerogels was carried out using high-resolution transmission electron
microscopy (HRTEM). A typical crumpled structure of rGO and interconnected and cross-
linked random rGO layers construct a 3D framework with open-pore structures (Fig-
ure 4a,b). The heteroatom-doped rGO aerogels exhibited a thin lamellar structure with
distinct edges, overlaps, and curve profiles. Furthermore, the N-rGO and N,S-rGO aerogels
had more wrinkled surfaces because of structural defects caused by heteroatom doping.
Figure 4g shows the TEM image of Mn3O4. From Figure 4c,d, it can be seen that the Mn3O4
nanoparticles are uniformly dispersed over the surface of the rGO layers, with 15–20 nm
average diameters of Mn3O4 nanoparticles (measured from the distribution histogram
(inset)). The HRTEM images (Figure 4e,f) show that each Mn3O4 nanoparticle has a distinct
lattice fringe, confirming the crystalline nature of Mn3O4 in the heteroatom-doped rGO
aerogel. The HRTEM images indicate that the distinct interlayer d-spacing is 0.25 nm, which
corresponds to the (211) plane of the tetragonal phase of the Mn3O4 nanoparticles. These
results suggested that the Mn3O4 nanoparticles have a strong connection and network with
the heteroatom-doped rGO aerogels, which is in accordance with the SEM images.

The disordered degree of the heteroatom-doped rGO aerogels was characterised via
Raman spectroscopy and is presented in Figure 5. Typical broad peaks corresponding to
the D and G bands at 1359 and 1600 cm−1, respectively, were observed in the heteroatom-
doped rGO aerogels. The G band reflected the radial C-C stretching of ordered sp2 -linked
carbon atoms, whereas the D band indicated the defects or irregularities on the graphene
edges [58,59]. Furthermore, the intensity ratio of the D and G bands (ID/IG) for the N-rGO
aerogel was 0.95, whereas it was 0.98 for the N,S-rGO aerogel. After the nitrogen and
sulphur doping, defects were introduced to the rGO aerogel layers [60,61], where the ID/IG
ratios of the Mn3O4/N-rGO and Mn3O4/N,S-rGO aerogels increased to 0.98 and 1.00,
respectively. Two peaks at 658 and 369 cm−1 were observed in the Mn3O4/N-rGO and
Mn3O4/N,S rGO aerogels, respectively [62,63]. These strong peaks corresponded to the
Mn-O breathing vibration of Mn2+ ions and thus demonstrated that Mn3O4 is successfully
attached to the rGO layer [64,65]. Additionally, the peaks at 2450 cm−1 were associated
with the second-order two-phonon mode 2D band. It is worth noting that the Raman
spectrum associated with Mn3O4 in the Mn3O4/N-rGO and Mn3O4/N,S-rGO aerogels
was shifted to a low wavenumber in comparison with the pristine Mn3O4, indicating the
electronic coupling between Mn3O4 and heteroatom rGO aerogel.

Figure 6 presents the FTIR spectra of the Mn3O4/N-rGO and Mn3O4/N,S-rGO aero-
gels to further support the presence of heteroatom in the rGO aerogel, as well as the Mn3O4
nanoparticles in the nanocomposites. The peak positioned at 1730, 1363, and 1215 cm−1

corresponded to the stretching vibration C=O of carboxylic groups, O-H deformation,
and C-O stretching vibration from epoxy groups, respectively, indicating that GO was
successfully converted into rGO [66,67]. The peak located at 1099 and 2451 cm−1 associated
with the absorption band of C=S and S-H stretching vibration, respectively, was observed
in the N,S-rGO and Mn3O4/N,S-rGO aerogels and, thus, confirmed the presence of S atom
on the surface of N,S-rGO aerogel samples [68]. In addition, the C-N stretching vibration
band located at 1416 cm−1 could be assigned to the characteristic band of nitrogen doping.
For the Mn3O4 nanoparticles, the strong peaks at 528 and 621 cm−1 were attributed to
the Mn-O stretching of the tetrahedral and octahedral sites in Mn3O4 [30]. As a result,
Mn-O, C-N, C=S, and N-H linkages confirmed that Mn3O4 nanoparticles were successfully
integrated into the heteroatom rGO layers.
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The XPS technique was used to obtain further insight into the chemical states of
elements on the surface of the samples. Figure 7 presents the XPS spectra of the Mn3O4/N,S-
rGO and Mn3O4/N-rGO aerogels, respectively. From the survey scan XPS spectra, the
presence of nitrogen (Figure 7a) and nitrogen–sulphur (Figure 7b) is noticeable, which
agrees well with the FTIR results. For the Mn3O4/N-rGO aerogel, the atomic percentage of
the N was 11.54%, whereas, for the Mn3O4/N,S-rGO aerogel, the atomic percentages of the
N and S were 4.12% and 2.76%, respectively. Both nanocomposites exhibited an Mn 2p3/2 at
642 eV, Mn 2p1/2 at 653 eV, Mn 3s at 771 eV, an O 1s peak at 531.6 eV, a C 1s peak at 284.5 eV,
and N 1s peak at 399.3 eV. For O 1s (Figure 7c,d), the XPS spectra could be deconvoluted
into four peaks located at 527, 531, 533, and 534 eV, which correspond to Mn-O, C-O-Mn,
C=O, and surface adsorbed oxygen, respectively. The C 1s (Figure 7e,f) could be fitted into
three different peaks, which corresponded to the signal of C-C (283.5 eV) and C=O (287 eV)
for both nanocomposites, C-O, C-S, and C-N (285.4 eV) for the Mn3O4/N,S-rGO aerogel,
and C-O and C-N (284.6 eV) for the Mn3O4/N-rGO aerogel. Thus, it further confirmed the
presence of N and S-atoms in the nanocomposites [24]. Figure 7g,h present the N 1s region,
where the binding energies located at 397, 399, and 403 eV were assigned to pyridinic N,
pyrrolic N, and graphitic N, respectively. The presence of pyridinic N, graphitic N, and
pyrrolic N at the defect or edge sites was favourable to improving the Na-ion transport and
sodium storage capacity [69]. As can be seen from Figure 7i, the S 2p spectra positioned at
163.8, 164.9, and 168.9 eV are assigned to S 2p3/2, S p1/2, and SOx, respectively, indicating
the existence of Mn-S [70,71]. The curve fitting of the high-resolution Mn 2p spectrum
for the Mn3O4/N-rGO and Mn3O4/N,S-rGO aerogels is presented in Figure 7j. The peak
located at 640–652 eV and 651–655 eV could be assigned to Mn 2p3/2 and Mn 2p1/2,
respectively, indicating the existence of the Mn species, implying the possible presence of
Mn3O4 in the nanocomposites [72]. The splitting widths of Mn 2p3/2 and Mn 2p1/2 were
12.2 and 11.4 eV for the Mn3O4/N,S-rGO and Mn3O4/N-rGO aerogels, respectively, and
were in accordance with other earlier reports [73], which further demonstrated that the
Mn3O4 nanoparticles have formed in the Mn3O4/N-rGO and Mn3O4/N,S-rGO aerogels.
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Figure 7. XPS spectra for the survey spectrum of (a) Mn3O4/N,S-rGO aerogel and (b) Mn3O4/N-rGO
aerogel, O 1s spectra of (c) Mn3O4/N,S-rGO aerogel and (d) Mn3O4/N-rGO aerogel, C 1s spectra of
(e) Mn3O4/N,S-rGO aerogel and (f) Mn3O4/N-rGO aerogel, N 1s spectra of (g) Mn3O4/N,S-rGO
aerogel and (h) Mn3O4/N-rGO aerogel, (i) S 2p spectra of Mn3O4/N-rGO aerogel and Mn3O4/N,S-
rGO aerogel and (j) deconvoluted spectra of Mn 2p of Mn3O4/N-rGO aerogel.

To evaluate the sodium storage performances of the samples, the CV and galvanostatic
charge/discharge testing have been conducted in a half-cell within the potential range
of 0.01–3.00 V. As can be seen from Figure 8a, all samples exhibit a strong cathodic peak
at 0.85 V in the first cycle and could be ascribed to the reductions of Mn3O4 to MnO as
well as the formation of Na2O, which is attributed to the decomposition of the electrolyte
according to Equation (1)

Mn3O4 + 2Na+ + 2e− → 3MnO + Na2O (1)
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The peaks at 0.45 to 0.01 V could be attributed to the reduction of MnO to metallic
Mn (Equation (2)) and solid electrolyte interphase (SEI) layer formation on the electrode
surface of the electroactive material.

MnO + 2Na+ + 2e− →Mn + Na2O (2)

During subsequent cycles, the CV curves nearly overlapped, indicating that the
Mn3O4/heteroatom rGO aerogel was reversible during the insertion/de-insertion pro-
cess of Na+ ions [74]. The tiny peaks at 0.1 V and the broad peak at 0.8 V in the anodic
process corresponded to Na+ extraction into the graphitic carbon layers, which was the
inverse process of Na+ intercalation. When compared with Li-ion batteries, the CV peaks in
Na-ion batteries were broader and weaker. This may be due to the larger radius of Na+ than
Li+ and the slower Na+ intercalation between graphitic carbon layers [75,76]. Contrary to
the Mn3O4/N-rGO aerogel (Figure 8b), the Mn3O4/N,S-rGO aerogel (Figure 8c) exhibited
a pair of small redox peaks at 1.6 and 1.8 V, which could be attributed to the sulphur embed-
ded in the porous N,S-rGO aerogel during the Na-ion insertion/de-insertion process [77].
The CV curves exhibited good reversibility, leading to good cycling stability for longer
cycles, and the overall sodium storage mechanism between Mn3O4 and Na+ is expressed
in Equation (3).

Mn3O4 + 8Na+ + 8e− ↔ 3Mn + 4Na2O (3)

Figure 9 presents the typical discharge/charge profiles of Mn3O4 and the Mn3O4/N-
rGO and Mn3O4/N,S-rGO aerogels electrodes for selected cycles at a current density
of 0.1 A g−1. The subsequent CV curves are different from the first sodiation, and the
discharge plateau for the Mn3O4/N-rGO and Mn3O4/N,S-rGO aerogels is much longer
than the pristine one, indicating that more Na-ions can be inserted into these nanocom-
posites [78]. Furthermore, no distinct plateau is observed, which is consistent with the
CV results.
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Figure 9. Charge/discharge profiles at selected cycles for (a) Mn3O4 nanoparticles, (b) Mn3O4/N-
rGO aerogel, and (c) Mn3O4/N, S-rGO aerogel.

The cycling stability of all electrodes is presented in Figure 10a. The initial discharge
capacities of Mn3O4, Mn3O4/N-rGO aerogel and Mn3O4/N,S-rGO aerogel were measured
to be 522, 1950, and 884 mAh g−1, respectively. In the second cycle, the discharge capacities
were 336, 470, and 425 mAh g−1 for Mn3O4, Mn3O4/N-rGO aerogel and Mn3O4/N,S-rGO
aerogel, respectively. The irreversible capacity loss was mainly due to the irreversible
formation of the SEI layer. Interestingly, the Mn3O4/N-rGO aerogel maintained its dis-
charge capacity at 374 mAh g−1 after 100 cycles with an 80% retention rate. Contrarily, the
Mn3O4/N,S-rGO aerogel and Mn3O4 exhibited much lower discharge capacities of 281
mAh g−1 (68% retention rate) and 185 mAh g−1 (55% retention rate) after 100 cycles. For
the few initial cycles, the porous structure of rGO aerogel promoted the formation of exces-
sive SEI layers, resulting in a lower initial Coulombic efficiency [79]. Overall, the average
Coulombic efficiency of all electrodes was almost 99%. Nevertheless, the Mn3O4/N,S-rGO
aerogel electrodes demonstrated much lower discharge capacity, presumably because of
the large atomic radius of S, as well as the large crystallite size than that of Mn3O4/N-rGO
aerogel electrodes.
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Figure 10. (a) Cycling performances and Coulombic efficiencies of up to 100 cycles at a current
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aerogel, and Mn3O4/N,S-rGO aerogel.

In addition to their high discharge capacity and good cycling stability, the Mn3O4/N-
rGO and Mn3O4/N,S-rGO aerogel electrodes exhibited remarkable rate performance,
as presented in Figure 10b. The Mn3O4/N-rGO aerogel electrode exhibited discharge
capacities of 203, 166, 145, 135, 128, and 156 mAh g−1 at various current densities of 0.2,
0.4, 0.6, 0.8, 1.0, and returning to 0.2 A g−1. The minimal drop in capacities with increased
current densities indicated a higher degree of reversible Na-ion insertion/de-insertion
owing to their expanded interlayer spacing [80]. The improved cycle and rate performance
of Mn3O4/heteroatom-doped rGO aerogels may be due, in part, to the 3D porous structure,
which may minimise the electron and ion transport path.

The specific capacity and cyclability of the Mn3O4/N-rGO aerogel and Mn3O4/N,S-
rGO aerogel were improved, which benefitted from the synergistic effect of the het-
eroatom doping and porous structure of the rGO, as well as the small particle sizes of
Mn3O4. The rGO sheets as well as the porous structure in the conductive network of
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the Mn3O4/heteroatom rGO aerogels provided an efficient electron and ion transport
path, thereby decreasing the internal resistance to enhance the reaction kinetics and re-
sulting in a high specific capacity and rate capability [81–83]. Poor electrical conductiv-
ity and large volume expansion in transition-metal oxide electrodes during the Na-ion
insertion/de-insertion processes are among the constraints in the development of these
materials for Na-ion battery applications. Here, the rGO sheets are more likely to provide
sufficient elastic buffer space for the transition-metal oxide to accommodate the volume
expansion/contraction and prevent the electrode from cracking or crumbling during the
charge/discharge processes. In addition, the presence of the rGO aerogel could effec-
tively enhance the electrical conductivity of the nanocomposites [84]. Meanwhile, Mn3O4
nanoparticles anchored on rGO can prevent the restacking of the rGO layers, preserve
their high active surface area and maintain the channels for Na-ion diffusion, which is
advantageous for increasing the Na storage within the nanocomposites [85]. Doping the
rGO aerogels with nitrogen and codoping nitrogen/sulphur improves the physicochemical
properties of the rGO component [43]. The incorporation of these heteroatoms into the
rGO aerogels could facilitate the charge transfer between adjacent carbon atoms [86–88],
thus improving the electrical conductivity and electrochemical activity of the rGO itself.
The defects created by N-doping and functionalised groups may increase the electrical
conductivity, and the larger covalent radius of S compared with Na may increase the
interlayer spacing to facilitate Na-ion insertion/de-insertion within the electrode. All the
aforementioned characteristics contributed to the improvements in the specific capacity
and cycling ability of the Mn3O4/heteroatom-doped rGO aerogels. This strategy can be
used as one of the approaches for mitigating the large volume change and poor electrical
conductivity, which is associated with bare transition-metal oxide anodes.

4. Conclusions

In summary, the Mn3O4/heteroatom-doped rGO aerogels have been successfully
synthesised via a hydrothermal route, followed by a freeze-drying process using NH3 and
L-cysteine as nitrogen and nitrogen–sulphur sources, respectively. The aerogel structure
built well-interconnected heteroatom-doped rGO layers, and the Mn3O4 nanoparticles
distributed on the rGO layers prevented the graphene layers from restacking again. The
3D structure provides a large active surface area and eases electron diffusion and Na-ion
transportation. Both the N- and N,S-doped rGO aerogels with Mn3O4 exhibited high
specific capacity, excellent cycling stability, and rate capability than the pristine Mn3O4.
The heteroatom-doped rGO aerogel acts as a robust structure to accommodate the volume
expansion of Mn3O4 nanoparticles and enables reversible Na-ion insertion/de-insertion.
Our work demonstrates that N- and N,S-doped rGO aerogels can efficiently improve the
Na storage capacity of Mn3O4 and offer a useful strategy for synthesising high-yield anode
materials. Considering the simple step of the preparation process and the excellent cycling
stability of the samples, the Mn3O4/heteroatom-doped rGO aerogel can be considered
a potential candidate and provide an opportunity to explore these materials for the next
generation of Na-ion batteries.
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