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Abstract: This study was on the optoelectronic properties of multilayered two-dimensional MoS2 and
WS2 materials on a silicon substrate using sputtering physical vapor deposition (PVD) and chemical
vapor deposition (CVD) techniques. For the first time, we report ultraviolet (UV) photoresponses
under air, CO2, and O2 environments at different flow rates. The electrical Hall effect measurement
showed the existence of MoS2 (n-type)/Si (p-type) and WS2 (P-type)/Si (p-type) heterojunctions with
a higher sheet carrier concentration of 5.50 × 105 cm−2 for WS2 thin film. The IV electrical results
revealed that WS2 is more reactive than MoS2 film under different gas stimuli. WS2 film showed
high stability under different bias voltages, even at zero bias voltage, due to the noticeably good
carrier mobility of 29.8 × 102 cm2/V. WS2 film indicated a fast rise/decay time of 0.23/0.21 s under
air while a faster response of 0.190/0.10 s under a CO2 environment was observed. Additionally, the
external quantum efficiency of WS2 revealed a remarkable enhancement in the CO2 environment of
1.62 × 108 compared to MoS2 film with 6.74 × 106. According to our findings, the presence of CO2 on
the surface of WS2 improves such optoelectronic properties as photocurrent gain, photoresponsivity,
external quantum efficiency, and detectivity. These results indicate potential applications of WS2 as a
photodetector under gas stimuli for future optoelectronic applications.

Keywords: two-dimensional material; MoS2; WS2; thin film; optoelectronics

1. Introduction

Photodetectors have a wide range of applications in the fields of biomedical sensing,
environmental monitoring, optical communications, and space exploration. It is well known
that photodetector responsivity is mainly dependent on the device material, structure, and
operating conditions in terms of bias voltage, temperature, and wavelength of the incident
radiation. It thus becomes crucial to have a thorough understanding of the effects of these
parameters for designing and fabricating an optimal photodetector [1]. Nowadays, space
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has become a new and rich field, as well as a preferential development sector, which is
rapidly contributing to countries’ financial welfare and progress. Space technologies play a
key role in accelerating countries’ development processes and increasing societies’ quality
of life and security. Aerospace and space applications require the development of sensors
that are operated in several different environments. Future aeronautical systems will need
to be more capable, perform better, and be safer, all of which will require less maintenance.
Space sensors and detector application areas include optical, photodetector, leak detection,
high temperature, emissions monitoring, fire detection, environmental monitoring, and
radiation detection. Each of these detectors is the subject of effort throughout NASA to
improve safety and decrease the cost of space travel, significantly reduce the number of
emissions produced by aeronautic engines, and improve the safety of commercial airline
travel. Testing the performance of the photodetectors under different gas environments is
essential to understand their performances under various gas stimuli. For instance, CO2 is
considered one of the primary gases in the space environment and the greenhouse gases in
the Earth’s atmosphere [2–4]. The Martian atmosphere is primarily composed of 96% CO2
with a balance of nitrogen, argon, and trace species [5]. There is a highly significant need
for testing the performance of optoelectronic devices under different gas environments,
such as CO2, for space and commercial applications.

The exotic physical characteristics of 2D transition metal dichalcogenides (TMDC),
such as their non-zero bandgap and layer-dependent second-order optical nonlinearity,
are garnering a lot of interest. The chemical formula MX2 refers to a class of inorganic 2D
layered materials where M is a transition metal (typically M = Mo, W, Ti, V, Ta, Hf, and
Pt) and X is a group of VI chalcogen atom (typically X = S, Se, and Te). The advantages
of both materials are that they can be combined by forming heterojunctions with silicon
using 2D layered materials. By being completely compatible with conventional integrated
circuit fabrication techniques, it streamlines the manufacturing process; because they have
a bandgap of 2 eV in monolayer form. MoS2 and WS2 are the most studied materials
in the TMDC family [6]. WS2 is more desirable for optical, electrical, and optoelectronic
applications due to its novel properties, including high thermal stability and a wide range
of operating temperatures [7], layer-dependent tunable bandgap (1.4–2.1 eV) [8], broad
UV-visible absorption spectrum [9], and tunable photoluminescence (PL) effect [10–12].

Graphene, WS2, MoS2, and other materials can be produced into 2D sheets using
“top-down” techniques like exfoliation methods. Among these, micromechanical exfo-
liation [13], sonication-assisted liquid exfoliation [14–16], shear exfoliation [17,18], and
chemical exfoliation [19,20] have been studied and suggested in the literature. However,
they have several disadvantages, such as low quality and small-scale production, many
flaws, and a short-range during micromechanical exfoliation [21]. Additionally, transferring
the exfoliated layer to a new substrate is required, which makes scaling up and large-scale
production more difficult [22]. For this reason, chemical vapor deposition (CVD) with
a bottom-up process is preferred during the synthesis of MoS2 [23,24]. MoO3 substrate
is maintained in the downstream gas flow during growth [25–27]. Thin-film properties
like homogeneity and grain size are strongly dependent on MoO3 substrate properties.
Nowadays, the creation of wafer-scale and homogeneous 2D materials has attracted great
attention due to the advancement of the following generation of optoelectronic applications
and quantum computers. Atomic layer deposition (ALD) [22,28], pulsed laser deposition
(PLD) [29,30], thermal evaporation [31–33], and magnetron sputtering systems [34–36] are
commonly used for the preparation of MoO3 substrates. However, magnetron sputtering
is the most preferred, since its low cost and ease of control are suitable for large-scale
commercial manufacturing. MoO3 is sulfurized within a two or three-zone quartz tube
under an Ar inert atmosphere via sublimation of sulfur powders. Similar processes are
used with WO3 to grow WS2 TMDC.

WS2 and MoS2 are two TMDC thin films that have tunable optical bandgaps, making
them promising for photodetection applications. A suitable structure may be sensitive to an
incident light involving a photocurrent whose intensity is compared to the current under
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darkness (dark current) [37]. Photoconduction and photogate are two major effects that
contribute to photocurrent [38]. The process of photoconduction happens when free charge
carriers are absorbed by light with photon energy greater than the MoS2 (or WS2) bandgap.
The highest photo responsiveness occurs when all photons are absorbed and each input
photon produces one electron and one hole. This indicates that the primary photoresponse
mechanism in MoS2 (or WS2) phototransistors is a photogate, in which light absorption
introduced a change in the trapped charges density. When photogate occurs in the MoS2
(or WS2) thin film, the threshold voltage VTH, the gate voltage separating the high-current
(ON) and low-current (OFF) regimes, shifts as a result of trapped charges causing a change
in the effective gate voltage, which introduces a great increase in current [39].

Gas adsorption can affect the Fermi-level energy of MoS2 [40]; therefore, several inves-
tigations on 2D TMDC-based photodetectors and gas sensors have been conducted [41].
The effect of O2, N2, and Ar on the optoelectronic rGO performance was studied [42].
As with n-type rGO, oxidizing gases such as O2, CO2, and N2 pull electron clouds from
the n-type semiconductor sheets, resulting in a drop in charge carriers and an increase in
resistance [42,43]. Different compounds have also been tested, such as the effect of the
atmosphere on the device performance of perovskite solar cells during operation. Indeed,
Guo et al. [44] investigated the degradation mechanisms of perovskite solar cells operated
under a vacuum and a nitrogen atmosphere.

According to our investigations, there is no complete work related to the study of the
effect of CO2 gas adsorptions on MoS2 and WS2 by examining and comparing photodetec-
tion parameters. To fabricate MoS2 and WS2-based optoelectronic photodetector sensors,
PVD layers of molybdenum and tungsten oxide were deposited on silicon substrates, then
sulfurization occurred in a CVD chamber. The effect of different gas adsorptions, such as
air, O2, and CO2, on MoS2 and WS2 thin films, were investigated in this work. In addition,
their optoelectronic performance under UV illumination is discussed in detail.

2. Materials and Fabrication Methods
2.1. Fabrication of Thin Films

The fabrication process of MoS2 and WS2 thin films is similar to the previously reported
studies [45,46]. The advantage of this process is to increase film homogeneity and scalability.
This method also demands that there are no small discounted triangular-like shapes of
MoS2 or WS2, as known for the CVD deposition process of 2D materials. MoS2 and WS2
thin films were prepared on a p-type silicon substrate first by using a PVD system, which
included an RF magnetron sputtering system followed by a CVD process. Substrates of Si
were cleaned in a series of steps, firstly a 5 min dip in an NH4OH-H2O2 solution watered
down with pure water at 75 ◦C. Then, they were put in a 5% HF solution for 5 s, after
which they were washed in pure water and dried with N2. The Si substrates were put
into the RF magnetron sputtering system right away. To activate the Si surface, a 100 W
Ar-plasma source was opened for 10 min at room temperature. Targets made of tungsten
and molybdenum were used as the primary sources, with Ar plasma serving as the carrier
gas and O2 as the reactive gas. The substrate temperature was kept under control at 400 ◦C
for more than 30 min, increasing by 100 ◦C/30 min. We maintained constant O2 and Ar
flow rates. The films were deposited at 5E-3 Torr and 137 W using 30 s sputtering times.
Before being moved to the two-zone CVD quartz chamber for the sulfurization process, the
system was naturally cooled to room temperature. In the center of the CVD furnace, the
temperature of the Mo-O and W-O thin films as they were being deposited was elevated to
650–750 ◦C. A 100 sccm Ar source was used with a ceramic boot that contained 0.5 g sulfur
powder. An external heating belt was used to evaporate the sulfur for 25 min at a distance
of 50 cm from the substrate. The system then cooled until it reached RT while receiving an
Ar flow rate of 100 sccm.



Nanomaterials 2022, 12, 3585 4 of 19

2.2. Characterization Techniques

Field-emission scanning electron microscopy (FE-SEM; Zeiss Gemini 500, Cambridge,
UK) was used to record the surface morphology. The topography and line profile spectrum
were examined using atomic force microscopy (AFM, Park, Santa Clara, CA, USA) Park
XE7 system via noncontact mode through a 1 × 1 µm scanning area and a tip scan speed of
1 Hz. XEI 4.3.4 2016 data processing and analysis software (Park, Santa Clara, CA, USA)
were used to measure the roughness values. In addition, confocal Raman microscopy was
utilized to introduce thin film optical images. X-ray photoelectron spectroscopy (XPS)
measurements were investigated based on the Thermo Scientific K-alpha XPS system
(Thermo Scientific™, Waltham, MA, USA) using an Al Kα source and a spot size of
400 µm. Photoluminescence (PL) and Raman vibrational modes were performed using
Renishaw inVia confocal Raman microscope (Renishaw, New Mills, UK) with a laser beam
of a wavelength value of 532 nm. SWIN Hall8800 Hall Effect measurement system is
employed to measure the carrier’s concentration and mobility. The electrical I-V and
optoelectronics measurements were carried out using Tektronix Keithley 2400 Sourcemeter
(20 mV and 10 nA sensitive, Tektronix, Beaverton, OR, USA) through a four-probe system
and KickStart Keithley software (Tektronix, Beaverton, OR, USA) for data acquisitions. A
365 nm ultraviolet (UV, Konya, Turkey) light lamp was used for illumination. The same
calculations and measurements can be reported under different gas (such as CO2) and
temperature environments by using a stain steel vacuum chamber with a quartz window,
as shown in Scheme 1. The system has a quartz window that can be used to transmit light
into the sample easily under temperature or gas environments. The temperature can be
controlled with a Lake Shore Model 335 Cryogenic Temperature Controller (Woburn, MA,
USA). These measurements were repeated under high-purity gases of O2, CO2, and N2 to
study the stimuli effects. Here, the role of N2 was just to clean/stabilize the environment
around the photodetector sample. Since we were using different gases (CO2 and O2),
cleaning the environment around the sample with a vacuum and inert gas (N2) was
necessary. The gases are controlled with the Alicat Scientific Mass flow meter MC model.
All the measurements were recorded and captured from the computer, and after that, the
analyses were carried out.
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3. Results and Discussion
3.1. Raman and PL Spectra

The Raman spectra of 2D materials show characteristics of two main peaks with
E1

2g and A1g modes. According to the literature, Mo–S atoms vibrate in the plane at
E1

2g = 382.01 cm−1 while S atoms oscillate perpendicular to the plane at A1g = 407 cm−1,
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as shown in Figure 1a [23,24,47]. Concerning WS2, E1
2g and A1g modes, the peaks are

located at 354.08 and 420.09 cm−1, respectively. The differences between E1
2g and A1g for

MoS2 and WS2 are 23.76 and 66.01 cm−1, respectively. These results show the existence of
multilayered MoS2 and WS2 structures of a few nanometers in size, as has been reported
before [24,45,48].
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Figure 1. (a,b) Raman spectra of MoS2 and WS2 on Si substrates, respectively.

From the measurements of photoluminescence (PL), it can be seen that the thin films
introduced a direct and indirect electronic band transition. MoS2

′s optical properties are
greatly influenced by the number of layers. The energies of direct excitonic transitions
have a substantial PL effect in monolayer MoS2, but this effect is reduced due to the layer’s
number increasing and completely disappearing in bulk MoS2. The PL spectra of MoS2
are observed at 610 and 624 nm (Figure 2a). These peaks are related to direct excitonic
transitions at the Brillouin zone of the K point and represent the A and B excitation of
MoS2 [49]. Furthermore, photogenerated electron-hole pair recombination is attributed
to the prominent peak at 682 nm, while the valence band separated as the MoS2

’s high
spin-orbit coupling is attributed to the lesser peak at 624 nm [50]. Nevertheless, the trion
exhibits localized quasiparticles with negative (two electrons with one hole) and positive
(two holes with one electron) charges as PL peaks at 682 nm. According to the report, the
monolayer introduced a strong peak at 615 nm (2.02 eV) that was associated with the A
exciton resonance. It is believed that at the K point, the direct exciton transition between
the maximum of the valence band and the minimum of the conduction band (CBM) is what
causes the PL in the monolayer [51]. However, the bilayer and trilayer PL spectra show
wider and lower energy emissions than those of the indirect exciton, in which the VBM is
still at the K point but the CBM is located between the K point and the peaks [52]. For WS2,
two peaks at 612 and 700 nm are observed (Figure 2b).

3.2. Surface Morphology and Topography

Large-scale MoS2 thin films have been previously worked on by combining CVD and
sputtering techniques [53]. Optical microscopy was used to capture the MoS2 and WS2
surfaces, as seen in Figure 3a,b, respectively. At a macroscopic scale, the texture of WS2 is
more homogeneous than that of MoS2. The structural domains of WS2 are smaller than
those of MoS2 (see Figure 3b).
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Figure 3. (a) MoS2 and (b) WS2 thin-film optical microscopy images.

The high-resolution FE-SEM images show quite a homogeneous distribution of a few
nanometers that contain nanocrystals for both materials (Figure 4). However, the particles
of MoS2 are relatively smaller than those of WS2. In both materials, particles are well
interconnected to each other. Nevertheless, the WS2 surface contains more cracks than
MoS2, which is important for surface gas adsorption and light-trapping applications [54].
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The topography of the prepared samples was measured by AFM using a noncontact
mode of a 1 × 1 µm area. Figure 5a,b show the 3D AFM topography and the horizontal
line profile of MoS2 and WS2 samples, respectively. The roughness values of MoS2 and
WS2 are 10.689 and 2.761 nm, respectively, as depicted in Table 1. The optical microscopy
analysis also shows that MoS2 has higher surface roughness than WS2 film.
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Figure 5. AFM topography and the horizontal line profile: (a,b) 3D topography images and corre-
sponding line profile of MoS2 and WS2 samples, respectively.

Table 1. AFM roughness parameters of MoS2 and WS2 samples.

Sample Region Min (nm) Max (nm) Mid (nm) Rq (nm) Ra (nm) Rz (nm) Rsk Rku

MoS2 Line −24.584 22.080 −1.252 46.664 10.689 9.200 45.329 0.439

WS2 Line −4.964 6.682 0.859 11.646 2.761 2.099 11.374 −0.645

3.3. XPS and Oxidation States

The WS2 and MoS2 chemical states were examined through XPS survey analyses. The
binding energies of S 2p, Mo 3d, C 1s, and O 1s are introduced by the characteristic peaks
at 161 eV, 230 eV, 285 eV, and 532 eV, respectively [55], as shown in Figure 6a. The XPS
survey analyses of WS2 showed distinct signals of C, O, S, and W elements, as seen in
Figure 6b. The W 4d3/2 spin-orbital splitting photoelectrons in the WS2 nanostructures are
reconsidering the W peak at 283.0 eV [56]. In addition, the W 4d3/2 peak binding energy is
higher than the W atom, which confirms the presence of W with a valence of +4 [57].



Nanomaterials 2022, 12, 3585 8 of 19

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 20 
 

 

survey analyses of WS2 showed distinct signals of C, O, S, and W elements, as seen in 
Figure 6b. The W 4d3/2 spin-orbital splitting photoelectrons in the WS2 nanostructures are 
reconsidering the W peak at 283.0 eV [56]. In addition, the W 4d3/2 peak binding energy is 
higher than the W atom, which confirms the presence of W with a valence of +4 [57]. 

 
Figure 6. (a,b) General XPS survey spectrum distributions of both MoS2 and WS2 thin films. 

3.4. Sheet Resistance and Hall Coefficient 
Electrical characterization of the prepared MoS2 and WS2 thin films was carried out 

using a Hall-effect measurement system (Table 1). Table 2 displays the Rs (sheet re-
sistance), Rho (resistivity), VH (Hall voltage), RH (Hall coefficient), Ns/Ps (sheet carrier con-
centration), N/P (carrier concentration), and Mob (mobility). When VH has a positive (neg-
ative) value, the majority of the sample’s carriers are of the p (n) type. All measurements 
were performed with a 7210 G magnetic field and a temperature of 300 K. We observed 
an enhancement in the electrical mobility properties of the WS2 compared to the MoS2 thin 
film. The MoS2 film shows an n-type and WS2 is p-type semiconductor behavior [58]. 
Based on these investigations of Hall-effect measurements, it was observed that our de-
vices are MoS2 (n-type)/Si (p-type) and WS2 (P-type)/Si (p-type) heterojunctions. The high-
est carrier concentration, as well as carrier mobility for p-p heterostructure, was higher 
than that of the p-n device, suggesting better performance for the WS2/Si device. 

Table 2. Room-temperature surface resistance and Hall-effect measurements for MoS2 and WS2 on 
a silicon substrate. 

Sample Rs 
(Ω/sq) 

Rho 
(/Ω-cm) 

VH 
(V) 

RH 
(m3/C) 

Type Ns/Ps 
(/cm2) 

N/P 
(/cm3) 

Mobility 
(cm2/V) 

MoS2 1890 0.00284 −0.0129 −0.00000268 N −3,500,000,000,000 −2,330,000,000,000,000,000 946 
WS2 38,200 0.0573 0.00819 0.00000171 P 5,500,000,000,000 3,670,000,000,000,000,000 2980 

3.5. Electric and Optoelectronic Characteristics 
The current-voltage (I-V) electrical characteristics of MoS2 and WS2 were examined 

under air conditions in absence of light and 365 nm ultraviolet illuminations. The device 
size was 1 × 1 cm2, and we used silver paste for making the contacts with a width of 3 mm 
and a length of 1 cm. The vertical electron transfer (electrical and optoelectronic) multi-
layered MoS2/Si and WS2/Si heterostructures were investigated and active edge sites with 
high density [59] are shown in Figure 7. As mentioned above, a high resistance layer like 
SiO2 [60], which increased the ideal structure vertical conductivity, is not presented in the 
currently optimized photodetector. 

(a) (b) 

Figure 6. (a,b) General XPS survey spectrum distributions of both MoS2 and WS2 thin films.

3.4. Sheet Resistance and Hall Coefficient

Electrical characterization of the prepared MoS2 and WS2 thin films was carried out
using a Hall-effect measurement system (Table 1). Table 2 displays the Rs (sheet resistance),
Rho (resistivity), VH (Hall voltage), RH (Hall coefficient), Ns/Ps (sheet carrier concentration),
N/P (carrier concentration), and Mob (mobility). When VH has a positive (negative) value,
the majority of the sample’s carriers are of the p (n) type. All measurements were performed
with a 7210 G magnetic field and a temperature of 300 K. We observed an enhancement in
the electrical mobility properties of the WS2 compared to the MoS2 thin film. The MoS2
film shows an n-type and WS2 is p-type semiconductor behavior [58]. Based on these
investigations of Hall-effect measurements, it was observed that our devices are MoS2
(n-type)/Si (p-type) and WS2 (P-type)/Si (p-type) heterojunctions. The highest carrier
concentration, as well as carrier mobility for p-p heterostructure, was higher than that of
the p-n device, suggesting better performance for the WS2/Si device.

Table 2. Room-temperature surface resistance and Hall-effect measurements for MoS2 and WS2 on a
silicon substrate.

Sample Rs
(Ω/sq)

Rho
(/Ω-cm)

VH
(V)

RH
(m3/C) Type Ns/Ps

(/cm2)
N/P

(/cm3)
Mobility
(cm2/V)

MoS2 1890 0.00284 −0.0129 −0.00000268 N −3,500,000,000,000 −2,330,000,000,000,000,000 946

WS2 38,200 0.0573 0.00819 0.00000171 P 5,500,000,000,000 3,670,000,000,000,000,000 2980

3.5. Electric and Optoelectronic Characteristics

The current-voltage (I-V) electrical characteristics of MoS2 and WS2 were examined
under air conditions in absence of light and 365 nm ultraviolet illuminations. The device
size was 1 × 1 cm2, and we used silver paste for making the contacts with a width of
3 mm and a length of 1 cm. The vertical electron transfer (electrical and optoelectronic)
multilayered MoS2/Si and WS2/Si heterostructures were investigated and active edge sites
with high density [59] are shown in Figure 7. As mentioned above, a high resistance layer
like SiO2 [60], which increased the ideal structure vertical conductivity, is not presented in
the currently optimized photodetector.
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type MoS2 surface, which consequently can decrease the current. Since CO2 does not ab-
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Figure 7. The MoS2 and WS2 photodetector under the illumination of UV light and the device’s
actual image as seen through the probe station. The measurements were carried out in the air, O2,
and CO2 environments.

MoS2: The idea of measuring the optoelectronic performance of devices under different
gas stimuli, such as CO2, has received much interest for many environmental and industrial
applications. The behavior of optoelectronic photodetectors under a toxic gas environment
such as CO2 may predict the general performance of devices. Figure 8 shows the I-V curve
of MoS2 in dark and UV conditions of 365 nm under air and CO2 gas stimuli. Under dark
and illumination conditions, nonlinear I-V curves were observed, showing the generation
of an excellent double-Schottky contact between the silver (Ag) electrode and film surfaces,
as predicted before [61]. The observed photocurrent is small compared to the dark current
in the air. Under CO2 gas flow, the photocurrent is lower than the one under air in both
positive and negative parts. This result shows the n-type behavior of MoS2 under CO2.
CO2 gas can capture the electrons from the conduction band of the n-type MoS2 surface,
which consequently can decrease the current. Since CO2 does not absorb light at 365 nm,
the reduction in photocurrent is related to its oxidizing properties that act on the MoS2
surface. Similar behavior has been predicted before for different n-type semiconductor
materials [42,43]. Moreover, by increasing the CO2 gas flow from 50 to 150 sccm, a further
but less pronounced photocurrent decrease is observed, supporting the effect of oxidation.
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and CO2.

To check the behavior of the MoS2 photodetector with time, we measured the change
in the photocurrent in the air under dark and light illumination conditions, as shown in
Figure 9a. The measurements are carried out at different bias voltages from 0 to 5 V. The
MoS2 in air did not show a good response at zero bias, but the response started to appear
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from 0.5 V. With increased applied bias, the sensor performance becomes dominated and
more stable and produces higher photocurrent. Figure 9b shows the on–off time-resolved
photoresponse of MoS2 thin film under a different bias voltage of 0–5 V. The measurements
were recorded every 30 s and started with dark mode followed by the UV-on illumination
mode. The dynamic curve of the MoS2 at zero bias did not show a good signal, confirming
that it is not a self-bias photodetector. However, with a small bias of 0.5 V, a clear signal
gets released. We see that at higher applied biases, the device is working more efficiently,
as expected.
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air, and (b) the on–off time-resolved photoresponse of MoS2 thin film under bias voltages of 0–5 V.

To check the photocurrent time and the on–off behavior of the MoS2 photodetector in
air and CO2, we chose a bias of 5 V. Figure 10a,b show the photocurrent behavior with time
and on–off time-resolved photoresponse of MoS2 thin film under the absence of light and
UV illumination conditions in both air and 50 sccm CO2 environments at a bias voltage of
5 V. The behavior of the photocurrent in both cases (air and CO2) is more or less the same.
Therefore, in the case of CO2, we see that the dark current is decaying with time but the
photocurrent is increasing, similar to the case of air. However, the decreasing and increasing
rate of the current for the case of CO2 stimuli is less than in the case of air, confirming the
better stability of the MoS2 photodetector in CO2 than in an air environment. The position
of the CO2 curve is lower than that of the air, due to the capturing mechanism of the CO2
of electrons and subsequently increasing the resistance. On the other hand, for the on–off
curve in Figure 10b, the MoS2 photodetector in CO2 long-term stability with time is better
than in the case of air. In both cases, the response and recovery time are relatively long.



Nanomaterials 2022, 12, 3585 11 of 19

Nanomaterials 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 

time is better than in the case of air. In both cases, the response and recovery time are 
relatively long. 

 
Figure 10. (a,b) Photocurrent behavior with time and on–off time-resolved photoresponse of MoS2 
thin film under dark and UV illumination conditions in both air and 50 sccm CO2 environments at 
a bias voltage of 5 V. 

On the other hand, for WS2, we observed a better response than MoS2 thin film. We 
measured the electrical IV properties of WS2 thin film under dark and UV illuminations 
in air, O2, and CO2 environments, as in Figure 11. The IV curve in air is illustrated in Figure 
11a. We observed a better response under light illumination in both positive and negative 
parts than in the case of MoS2 thin film. However, for the IV of MoS2 above, only a small 
improvement in the positive current was shown, but there were no changes in the nega-
tive section. This indicated that WS2 is more interesting for optoelectronic applications, so 
we tested WS2 film under O2 and CO2 environments. In the case of 100 sccm O2 stimuli, its 
photocurrent is decreasing for both dark and UV cases, as represented in Figure 11b. This 
shows that the Fermi level’s position has a substantial effect on O2 and CO2 molecule ad-
sorption and desorption at the surface. Charge transfer is expected to attract electrons 
from the p-type WS2 layer because CO2 is an electronegative molecule [62]. 

(a) (b) 

Figure 10. (a,b) Photocurrent behavior with time and on–off time-resolved photoresponse of MoS2

thin film under dark and UV illumination conditions in both air and 50 sccm CO2 environments at a
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On the other hand, for WS2, we observed a better response than MoS2 thin film. We
measured the electrical IV properties of WS2 thin film under dark and UV illuminations
in air, O2, and CO2 environments, as in Figure 11. The IV curve in air is illustrated in
Figure 11a. We observed a better response under light illumination in both positive and
negative parts than in the case of MoS2 thin film. However, for the IV of MoS2 above, only
a small improvement in the positive current was shown, but there were no changes in the
negative section. This indicated that WS2 is more interesting for optoelectronic applications,
so we tested WS2 film under O2 and CO2 environments. In the case of 100 sccm O2 stimuli,
its photocurrent is decreasing for both dark and UV cases, as represented in Figure 11b.
This shows that the Fermi level’s position has a substantial effect on O2 and CO2 molecule
adsorption and desorption at the surface. Charge transfer is expected to attract electrons
from the p-type WS2 layer because CO2 is an electronegative molecule [62].

Normally, O2 and CO2 are oxidizing gases due to their high affinity for electrons
and high electronegativity. However, in the case of CO2 molecules, the electronegativity
is stronger than in the O2 case. We observed an increase in the photocurrent under the
CO2 environment in Figure 11c. The photocurrent is increased with increasing the CO2
concentrations from 50 to 200 sccm. The p-type semiconductor behavior of WS2 under CO2
adsorption increases the total current as observed here in Figure 11. To check the WS2 film
stability under air, we measured the photocurrent behavior as a function of time of WS2
thin film under the dark condition in the air at a different bias voltage of 0, 0.5, 1, and 2 V,
as demonstrated in Figure 12a. In the case of WS2, we found that the film became more
stable at low bias voltage, in contrast to the case of MoS2, so we did not test the WS2 films
at higher bias voltage. By increasing the bias voltage, the current was increased. However,
by applying 2 V, the current reached higher values. Consequently, the on–off behavior of
WS2 thin film was tested under the same applied biases of 0, 0.5, 1, and 2 V and is depicted
in Figure 12b. At 0 V bias, for the dark current in the air, almost no current is observed
with some signal noises. But under O2 stimuli, we observed a negative current behavior as
in Figure 12b, indicating that WS2 can work as a negative photoresponse optical detector
under low biases [40]. However, at 0.5, 1, and 2 V bias, the current becomes positive for
under air and O2 environments. At 0.5 and 1 V, there were almost no changes in the current
under air and O2 gas environments. The best current response was observed at 2 V for both
air and O2 environments with the same behavior, as expected (Figure 12b).
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Figure 12. (a) Photocurrent behavior with the time of WS2 thin film under a dark condition in the air
at a different bias voltage of 0, 0.5, 1, and 2 V. (b) The on–off dynamics of the current with a time of
WS2 thin film in air and 50 sccm O2 environments under a different bias voltage of 0–2 V.

By these means, we measured the photocurrent of WS2 at 2 V under air and CO2.
Figure 13a show the photocurrent behavior with a time of WS2 thin film under dark and
UV conditions in CO2 at a bias voltage of 2 V. We see that the general behavior is positive
photoresponse. The demonstrated results show that WS2 film presented long-term stability
in CO2 and also in the air with time. Figure 13b shows the on–off photoresponse dynamics
of WS2 thin film in air, 50 sccm O2, and 50 sccm CO2 environments under a bias voltage of
2 V. The photocurrent of WS2 thin film is largely enhanced by introducing CO2 gas under UV
illumination. In contrast, for the air and O2 environment, we do not see a large enhancement
in the photocurrent. The on–off curve shows high stability during many pulses. Under the
same conditions, the WS2 introduced a higher sensitivity to environmental gases including
CO2 and O2 than MoS2 thin film. In addition, we found that the high photocurrent is
shown under the CO2 stimuli for WS2 under various gas conditions.
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Figure 13. (a) Photocurrent behavior with time of WS2 thin film under dark and UV conditions in
CO2 at a bias voltage of 2 V. (b) The on–off dynamics of the photoresponse with a time of WS2 thin
film in air, 50 sccm O2, and 50 sccm CO2 environments under a bias voltage of 2 V.

3.6. Transient Response

The MoS2 and WS2 thin-film response and recovery time under UV illumination of
365 nm are c depicted in Figure 14. The MoS2 and WS2 on–off behavior gives us a sense
of the rise and fall with time under dark and illumination conditions. The response/rise
time was calculated when the source of light opened, and when the light was turned off,
the recovery/decay time was measured. The MoS2 thin film has a longer recovery time
and faster response time in an air environment, as in Figure 14a. However, under CO2
stimuli, a longer response/recovery time is noted. The longer response time may refer
to the CO2 gas adsorption on MoS2, which is faster than the desorption kinetics. The
observed response/recovery time of MoS2 is in seconds, which limits the application of
the MoS2 photodetector. However, for the WS2 thin film, a faster response is observed, as
in Figure 14b. Generally, the WS2 thin film introduced a shorter response time than the
recovery time. In addition, shorter response and recovery times are observed for the CO2
case compared with air and O2 stimuli. The CO2 adsorption/desorption kinetics on WS2
are faster than in the air and O2 gas cases. The adsorption energy and diffusion coefficient
of O2 were the lowest [63].

Nanomaterials 2022, 12, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 14. shows the response and therecovery times for (a) MoS2 and (b) WS2 thin films under gas 
stimuli. 

3.7. Photocurrent Gain (Pg), Photoresponsivity (𝑅 ), External Quantum Efficiency (EQE) and 
Detectivity (𝐷∗) 

Some other parameters may contribute to the general performance of the photode-
tector sensor, such as photocurrent gain (Pg), photoresponsivity (R ), external quantum 
efficiency (EQE), and detectivity (D∗). I I I  gives the induced photocurrent I , where I  increases as the applied voltage and light power increase [64]. Here, the 
light intensity is maintained at a consistent level and excitation wavelength of 365 nm. 
Photocurrent gain (Pg), responsivity (R ), and external quantum efficiency can be calcu-
lated as reported before [23,24,65,66]. The detectable signal is another significant figure of 
merit for a photodetector referred by the specific detectivity [67]. The parameters of I , 
Pg, R , EQE, and D∗ for MoS2 and WS2 thin films are reported in Table 3. It seems that 
the general performance of MoS2 is weaker than WS2 thin film. The I  of MoS2 is de-
creased by introducing CO2 as explained in Figure 8. Consequently, all the other parame-
ters will get affected in a similar way. The EQE of MoS2 thin film under air is higher than 
that in CO2. 

Table 3. The photocurrent (I ), photocurrent gain (Pg), photoresponsivity (R ), external quantum 
efficiency (EQE), and detectivity (D∗) of MoS2 and WS2 samples. 

Sample Gas Photocurrent 
(A) 

Photocurrent 
Gain (a.u.) 

Responsivity 
(µA/mW) EQE 𝐃∗ 

MoS2 
Air 0.0000131 0.0270 6.5745 13,900,000 372.05 
CO2 0.00000635 0.0265 3.1765 6,740,000 256.34 

WS2 
Air 0.00000207 0.0631 1.035 2,200,000 225.76 
CO2 0.000153 1.51 76.50 162,000,000 9509.10 
O2 0.00000183 0.0568 0.915 1,940,000 201.34 

The photocurrent and photocurrent gain of MoS2 and WS2 under air and CO2 are 
represented in Figure 15. For WS2 film, a clear enhancement in both photocurrent and 
photocurrent gain is observed under CO2 stimuli. In the case of WS2 thin film, we intro-
duced a p-type semiconductor with a large carrier concentration value of 

Response time Recovery time
0

5

10

15

20

25

30

R
es

po
ns

e,
R

ec
ov

er
y 

tim
e 

(s
)

MoS2

 Air
 CO2

MoS2

(a) 

Response time Recovery time
0.00

0.05

0.10

0.15

0.20

0.25

R
es

po
ns

e,
R

ec
ov

er
y 

tim
e 

(s
)

WS2

 Air
 O2
 CO2

WS2

(b) 

Figure 14. Shows the response and therecovery times for (a) MoS2 and (b) WS2 thin films under
gas stimuli.
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3.7. Photocurrent Gain (Pg), Photoresponsivity (Rλ), External Quantum Efficiency (EQE) and
Detectivity (D∗)

Some other parameters may contribute to the general performance of the photode-
tector sensor, such as photocurrent gain (Pg), photoresponsivity (Rλ), external quantum
efficiency (EQE), and detectivity (D∗). Iph = ILight − IDark gives the induced photocurrent
Iph, where Iph increases as the applied voltage and light power increase [64]. Here, the
light intensity is maintained at a consistent level and excitation wavelength of 365 nm.
Photocurrent gain (Pg), responsivity (Rλ), and external quantum efficiency can be calcu-
lated as reported before [23,24,65,66]. The detectable signal is another significant figure of
merit for a photodetector referred by the specific detectivity [67]. The parameters of Iph,
Pg, Rλ, EQE, and D∗ for MoS2 and WS2 thin films are reported in Table 3. It seems that the
general performance of MoS2 is weaker than WS2 thin film. The Iph of MoS2 is decreased
by introducing CO2 as explained in Figure 8. Consequently, all the other parameters will
get affected in a similar way. The EQE of MoS2 thin film under air is higher than that
in CO2.

Table 3. The photocurrent (Iph), photocurrent gain (Pg), photoresponsivity (Rλ), external quantum
efficiency (EQE), and detectivity (D∗) of MoS2 and WS2 samples.

Sample Gas Photocurrent
(A)

Photocurrent
Gain (a.u.)

Responsivity
(µA/mW) EQE D*

MoS2
Air 0.0000131 0.0270 6.5745 13,900,000 372.05

CO2 0.00000635 0.0265 3.1765 6,740,000 256.34

WS2

Air 0.00000207 0.0631 1.035 2,200,000 225.76

CO2 0.000153 1.51 76.50 162,000,000 9509.10

O2 0.00000183 0.0568 0.915 1,940,000 201.34

The photocurrent and photocurrent gain of MoS2 and WS2 under air and CO2 are
represented in Figure 15. For WS2 film, a clear enhancement in both photocurrent and pho-
tocurrent gain is observed under CO2 stimuli. In the case of WS2 thin film, we introduced a
p-type semiconductor with a large carrier concentration value of 5,500,000,000,000 cm−2;
consequently, a high photocurrent is observed in the air. We observed a large enhance-
ment in the EQE in the air of 2,200,000 compared with CO2 of 162,000,000, due to the fact
that CO2 is an oxidizing agent interacting with p-type semiconductor materials, which
can improve the electron concentrations and increase the conductivity of the film, as in
Figure 15b [68]. Under O2 stimuli, we observed a lower responsivity of 0.915 µA/mW. On
the other hand, for the MoS2 thin film, we have an n-type semiconductor that is interacting
with oxidizing CO2 gas, which will increase the film resistance and consequently decrease
the photocurrent, as in Figure 15a.
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Figure 15. (a,b) Photocurrent and photocurrent gain of MoS2 and WS2 thin film under gas stimuli.
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4. Conclusions

A 2D transition metal dichalcogenide heterojunctions of MoS2 and WS2 on silicon sub-
strates for optoelectronic applications have been introduced. Using commercial chemical
and physical vapor deposition techniques, we combined them for large-scale photodetector
applications and beyond. For the first time, we exposed CO2 and O2 gases through a designed
chamber to test their effects on the UV photodetector applications. The semiconducting
behavior of MoS2 and WS2 thin films are n- and p-type with sheet carrier concentrations
of 3,500,000,000,000 and 5,500,000,000,000 cm−2. The WS2 thin film showed higher carrier
mobility of 2980 cm2/V compared to 946 cm2/V of MoS2 film. WS2 showed a fast response
under UV illumination than MoS2 under air, CO2, and O2 environments. The calculated
detectivity of WS2 showed higher values compared to the air and O2 adsorbed gases. We also
observed that the EQE of WS2 under CO2 is 162,000,000 compared with 6,740,000 for the case
of MoS2 thin film. Our findings provide high motivation for using MoS2 and WS2 thin films
for space and industrial applications filled with environmental gases.zzzz
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M.A.B., Ş.A., S.E.Z., M.Y., Y.R.E., N.A., G.F.A. and M.S.; data curation, M.A.B., Ş.A., S.E.Z., N.A.
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