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Abstract: A simulation of quantum dot (QD) energy levels was designed to reproduce a quantum
mechanical analytic method based on perturbation theory. A Schrödinger equation describing
an electron–hole pair in a QD was solved, in consideration of the heterogeneity of the material
parameters of the core and shell. The equation was solved numerically using single-particle basis
sets to obtain the eigenstates and energies. This approach reproduced an analytic solution based
on perturbation theory, while the calculation was performed using a numerical method. Owing to
the effectiveness of the method, QD behavior according to the core diameter and external electric
field intensity could be investigated reliably and easily. A 9.2 nm diameter CdSe/ZnS QD with a
4.2 nm diameter core and 2.5 nm thick shell emitted a 530 nm green light, according to an analysis
of the effects of core diameter on energy levels. A 4 nm redshift at 5.4× 105 V/cm electric field
intensity was found while investigating the effects of external electric field on energy levels. These
values agree well with previously reported experimental results. In addition to the energy levels and
light emission wavelengths, the spatial distributions of wavefunctions were obtained. This analysis
method is widely applicable for studying QD characteristics with varying structure and material
compositions and should aid the development of high-performance QD technologies.

Keywords: quantum dots; CdSe/ZnS; core diameter; electric field intensity; energy levels; perturba-
tion; quantum mechanics; numerical analysis

1. Introduction

A quantum dot (QD) is an excellent optoelectronic material among various nanopar-
ticles [1–4]. Its light emission spectra are sharp and easily controllable by varying its
diameter [5]. In addition, stable QD light-emitting layers (EMLs) can be fabricated because
of the inorganic nature of QDs. Given these advantages, there have been continuous efforts
to develop high-performance QDs and light-emitting diodes using QD EMLs, with the
aim of replacing organic light-emitting diodes (OLEDs) with quantum-dot light-emitting
diodes (QLEDs) [6–10]. However, research on QDs and QLEDs is in the early stage; thus,
their lifetime [11,12] and efficiency [13,14] should be improved further before commercial
application of QLEDs. A detailed analysis of the energy levels of QDs is required, as these
determine the optoelectronic characteristics. Quantum confinement effects modulate QD
energy levels and luminescence properties [15,16]. In addition, the quantum-confined
Stark effect (QCSE) [17,18] arising from the voltage bias influences the electroluminescence
properties of QDs. Despite their importance, it is difficult to analyze quantum effects
experimentally. Hence, theoretical and/or numerical analyses are required [19,20]. Quan-
tum phenomena involving QDs can be described by the Schrödinger equation, which is
solved in consideration of the potential profile, material properties (such as effective masses
and dielectric constants), and the Coulomb interactions in QDs. The entire Hamiltonian
can be solved using the finite difference method (FDM) or finite element method (FEM);
these methods are firmly established in terms of their ability to provide sophisticated
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numerical results [21,22]. However, analytic solutions are more suitable for interpret-
ing quantum mechanical behavior. A perturbation method is used as a practical way to
obtain analytic solutions. The unperturbed Hamiltonian is composed of single-particle
Hamiltonian terms representing an electron and hole. Profiles of the electric potential,
effective mass, and dielectric constant, and the electron–hole Coulomb interaction, are
considered in the perturbation terms. Despite the usefulness of analytic solutions based on
this perturbation method, extensive effort is required to attain analytical solutions under
varying conditions, such as QD diameter, electric field intensity, and material properties.
A semi-analytic method may overcome this, as it imitates the analytic method using a nu-
merical method [23]. In the previous work, the Schrödinger equation for a QD was solved
based on single-particle Schrödinger equations, using perturbation terms corresponding
the electron–hole Coulomb energy and potential energy related with energy-band profiles.
However, profiles of the effective mass and dielectric constant were ignored to simplify
the analysis, which may have caused unnecessary errors. In this work, the semi-analytic
method is improved significantly for more accurate analysis. The profiles of effective
mass and dielectric constant are included in the perturbation terms, and image charges are
considered when calculating the Coulomb energy. Using this approach, an efficient method
for understanding quantum phenomena in QDs is derived. The dependency of the light
wavelength emitted from QDs and wavefunction shapes in QDs on the QD diameter and
external electric field intensity was examined using the proposed approach. To verify the
effectiveness of the proposed method, the properties of CdSe/ZnS core/shell QDs were
analyzed using this method. The CdSe/ZnS has become a major QD structure because of its
easy synthesis and high performance [24–26]. Therefore, reliable comparative experimental
data of CdSe/ZnS QDs can be obtained relatively easily. This makes CdSe/ZnS QDs a
suitable test vehicle for this work.

2. Methods

The Schrödinger equation describing the electron–hole system in a QD was solved
and the light-emission properties were examined. The Schrödinger equation is composed
of kinetic energy and potential energy terms. The potential energy term has two elements:
one is associated with the energy band profile, and the other with the Coulomb interaction.
As a QD has a core and shell made of different materials, different values for the effective
mass and dielectric constant of each layer are considered.

The system was approximated by one-dimensional equations for efficient calculation
and analysis. Equations (1)–(4) define Hamiltonian terms.

Ĥ = T̂e + T̂h + V̂e + V̂h + Ĥint, (1)

T̂e(xe) = −
}2

2m∗e

∂2

∂x2
e

, (2)

T̂h(xh) = −
}2

2m∗h

∂2

∂x2
h

, (3)

Ĥint = −
1
3

1
4πε

e2
√

3|xe − xh|
, (4)

where Ĥ, T̂e, T̂h, V̂e, V̂h, and Ĥint represent the total Hamiltonian, electron kinetic energy,
hole kinetic energy, electron potential energy, hole potential energy, and Coulomb interac-
tion energy, respectively. m∗e , m∗h, ε, xe, and xh represent the electron effective mass, hole
effective mass, dielectric constant, electron position, and hole position, respectively.

The values of m∗e , m∗h, and ε change according to the regions of QD core and shell. For

the symmetric case, the three-dimensional electron–hole distance
∣∣∣→re −

→
rh

∣∣∣ is
√

3|xe − xh|,

where |xe − xh| is the one-dimensional electron–hole distance.
→
re and

→
rh are the position

vectors of electron and hole in three dimensions. Hence, the three-dimensional Coulomb
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energy can be approximated as − 1
4πε

e2
√

3|xe−xh |
. The one-dimensional Coulomb energy is

one-third of the three-dimensional Coulomb energy for the symmetric case. As a result,
Equation (4) is obtained.

Two single-particle basis sets were combined to produce the QD electron–hole system
basis set; one single-particle basis set was the electron basis set and the other was the
hole basis set. The number of single-particle bases was restricted to a finite number of
nmax. The single particle kinetic energy operator for an infinite well was used to define the
momentum basis set; the well width was the same as the total width of the QD. The QD
core effective mass values were used for this momentum basis set. The QD shell effective
mass values were reflected in the perturbation term. The tensor product of the electron and
hole basis sets defines the system basis as:

|ne, nh〉 = |ne〉
⊗
|nh〉 f or ne, nh ∈ {1, 2, 3, · · · , nmax}, (5)

where |ne〉 and |nh〉 are the electron and hole bases, respectively. A position basis set was
also defined for describing the potential energy terms. When defining the position basis,
the potential well was equally divided by nmax points. The position basis |j 〉 is expressed
as
√

∆ ∑nmax
n=1

〈
n
∣∣xj
〉
|n, 〉 , where |n 〉,

∣∣ xj
〉

, and ∆ are the single-particle momentum basis,
Dirac position basis at position xj, and spacing between nmax points, respectively [27]. The
system basis set is defined as:

| je, jh〉 = | je〉
⊗
| jh〉 for je, jh ∈ {1, 2, 3, · · · , nmax}, (6)

where | je〉 and | jh〉 are the position bases of electron and hole, respectively.

The unperturbed kinetic energy of an electron, T̂e0 = − }2

2m∗ec

∂2

∂x2
e

, and of a hole, T̂h0 =

− }2

2m∗hc

∂2

∂x2
h

, are represented by the momentum basis set as ∑nmax
ne=1 〈ne |T̂e0|ne〉 |ne〉 〈ne | and

∑nmax
nh=1 〈nh |T̂h0|nh〉 |nh〉 〈nh |, respectively. m∗ec and m∗hc are the electron and hole effective

masses in the QD core, respectively. The effective mass has different values between the QD
core and shell. The effect of this difference on the kinetic energy is reflected in the perturba-
tion terms T̂ep and T̂hp for the electron and hole, respectively. The perturbed electron kinetic

energy operator T̂ep is formulated as − }2

2me∆

∂2

∂x2
e

in the shell region and zero in the core re-

gion, where me∆ =
m∗ecm∗es

m∗ec + m∗es
and m∗es is electron effective mass in the shell. The perturbed

hole kinetic energy operator T̂hp is formulated as − }2

2mh∆

∂2

∂x2
e

in the shell region and zero

in the core region, where me∆ =
m∗hcm∗hs

m∗hc + m∗hs
and m∗hs is the hole effective mass in the shell.

The perturbed kinetic energies for an electron and hole are represented by the momentum
basis as ∑nmax

ne1=1 ∑nmax
ne2=1 〈ne1 |T̂ep|ne2〉 |ne1〉 〈ne2 | and ∑nmax

nh1=1 ∑nmax
nh2=1 〈nh1 |T̂hp|nh2〉 |nh1〉 〈nh2 |,

respectively.
The momentum-basis matrix elements of total kinetic energy for an electron and hole

are Te,ne1ne2 = 〈ne1 |T̂e0|ne2〉 δne1ne2 + 〈ne1 |T̂ep|ne2
〉

and

Th,nh1nh2
= 〈nh1 |T̂h0|nh2

〉
δnh1nh2 + 〈nh1 |T̂hp|nh2

〉
, respectively, where δne1ne2 and δnh1nh2 are

Kronecker delta functions. These momentum-basis matrix elements Te,ne1ne2 and Th,nh1nh2

can be transformed into position-basis matrix elements T̃e,je1 je2 and T̃h,jh1 jh2
through discrete

Fourier transforms. Then, the position-basis matrix representation of the total kinetic
energy, T̂e + T̂h, is obtained using the tensor products, as follows:(

∑nmax
je1=1 ∑nmax

je2=1 T̃e,je1 je2 | je1〉 〈je2 |
)⊗

Ih + Ie
⊗(

∑nmax
jh1=1 ∑nmax

jh2=1 T̃h,jh1 j̃2
| jh1〉 〈jh2 |

)
, (7)
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where Ie and Ih are the identity matrices. The matrix representation of V̂e + V̂h is given
as follows:(

∑nmax
je=1 〈je |V̂e| je〉 | je〉 〈je |

)⊗
Ih + Ie

⊗(
∑nmax

jh=1 〈jh |V̂h| jh〉 | jh〉 〈jh |
)

. (8)

In the position basis, the Ĥint matrix representation is as follows:

∑nmax
je=1 ∑nmax

jh=1

〈
je, jh|Ĥint| je, jh〉 | je, jh〉 〈je, jh| (9)

Image charges [28] due to the heterogenous dielectric constant profile in a QD were consid-
ered when calculating Equation (9). The Coulomb energy of an electron–hole pair, Hint,
was formulated for six cases, as follows:

Hint =



− e2

4πεc

(
1

|xe−xh |
+ εs−εc

εs+εc
1

|xe+xh−a+l|

)
, (case 1)

− e2

4πεc

(
1

|xe−xh |
+ εs−εc

εs+εc
1

|xe+xh−a−l|

)
, (case 2)

− εce2

2πεs(εc+εs)
1

|xe−xh |
, (case 3)

− εce2

π(εc+εs)
2

1
|xe−xh |

, (case 4)

− e2

4πεs

(
1

|xe−xh |
− εs−εc

εs+εc
1

|xe+xh−a+l|

)
, (case 5)

− e2

4πεs

(
1

|xe−xh |
− εs−εc

εs+εc
1

|xe+xh−a−l|

)
, (case 6)

, (10)

where a and l represent the one-dimensional total length and core length of a QD, as
shown in Figure 1a. εc and εs are QD core and shell dielectric constants, respectively.
The individual cases of Equation (10) are described in the following: (case 1) both the
electron and hole are in the QD core and closer to the left interface, as shown as Figure 1b;
(case 2) both the electron and hole are in the QD core and closer to the right interface, as
shown as Figure 1c; (case 3) the electron and hole are separated in both regions of the
QD core and shell, as shown as Figure 1d; (case 4) the electron and hole are separated
in each left and right shell region, as shown as Figure 1e; (case 5) both the electron and
hole are in the left shell region, as shown as Figure 1f; and (case 6) both the electron and
hole are in the right shell region, as shown as Figure 1g. The reciprocal of the electron–
hole distance in the Coulomb energy equation exhibits a singularity when the distance
is zero. The reciprocal of the distance, 1/|∆x|, was modified to be 1/(|∆x|+ d0) to avoid
the singularity. The correction factor d0 was obtained by considering its relation to a
three-dimensional electron–hole distance. The electron–hole distance in three dimensions
is
√

ρ2 + |∆x|2. ρ and |∆x| represent the distance in the y-z plane and along the x-axis,
respectively. Assuming that wavefunctions along the x-axis and in the y-z plane are
independent and are spherically symmetric in the y-z plane, the y-z plane component of

the reciprocal distance can be removed from the relation of 1
dx

= 2π
∫ ∞

0
ρ|ψ(ρ)|2√
ρ2+|∆x|2

dρ. 1/dx

is the reciprocal x-axis distance averaged over the y-z plane and ψ(ρ) is the wavefunction
in the y-z plane. The approximated reciprocal distance, 1/(|∆x|+ d0), should approach
1/dx. For |∆x| → 0 , 1/(|∆x|+ d0) and 1/dx approach 1/d0 and 1/a0, respectively, where
a0 = 1/

(
2π
∫ ∞

0 |ψ(ρ)|
2dρ
)

. Hence, d0 can be approximated as a0. The Bohr model was
used to approximate the a0 value. For an electron–hole system, the energy operator of
relative motion and Coulomb potential, Êrel , is as follows:

Êrel = −
}2

2µ
∇2

rel −
e2

4πεrrel
, (11)

where µ =
m∗e m∗h

m∗e + m∗h
,∇2

rel is the Laplacian in relative coordinates, and rrel is the electron–

hole distance. By applying the Bohr model for this system, the ground-state electron–hole
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distance is obtained as r1 =
4πε}2

µe2 . r1 is the value for three-dimensional motion, whereas

a0 corresponds to the two-dimensionally averaged electron–hole distance. Hence, a0 was

approximated as a0 ≈
s

r1sin(θ)cos(ϕ)dAs
dA

=
4

π2 r1 where integration was conducted for

the half sphere of radius r1. θ and ϕ are polar and azimuthal angles, respectively. Thus, d0

was approximated as d0 ≈ a0 ≈
16ε}2

πµe2 . m∗e , m∗h, and ε of the QD core region were used for

calculating the d0 value.
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Figure 1. Diagrams showing the regions of a quantum dot (QD) (a). Positions of an electron and hole
in a QD for case 1 (b), case 2 (c), case 3 (d), case 4 (e), case 5 (f), and case 6 (g). The filled circles in the
figures represent an electron and hole.

The position basis representation of Ĥ was obtained by summing matrix represen-
tations of energy terms. The eigenvalues and eigenstates were obtained from the Ĥ by
using Mathematica (Wolfram Research, Champaign, IL, USA) as a calculation tool. The
total energies were obtained by summing up the x, y, and z one-dimensional energies.

3. Results and Discussion

Quantum confinement effects were examined using the analysis method described
above. The QDs with CdSe/ZnS core/shell structure were simulated. Figure 2a shows the
QD structure and material parameters. The core diameter, dcore, was estimated using the
relation of dcore/l = 3

√
6/π, where l is the one-dimensional core length; this relation was

found by comparing the volumes of the spherical-shaped real QD and cube-shaped model
QD used in this analysis. The QD core bandgap energy, Eg, is 1.74 eV. At the interface
between the core and shell, there are energy barriers of 1.27 eV for conduction band and
0.6 eV for valence band [29]. m∗ec, m∗hc, m∗es, and m∗es are 0.13-, 0.45-, 0.34-, and 0.23-fold
the electron rest mass, respectively [30]. The relative dielectric constant is 6.36 in the
core and 5.71 in the shell [31,32]. The shell thickness, tshell, was fixed at 2.5 nm [23]. The
bandgap energy and emission light wavelength as a function of QD diameter are shown
in Figure 2b. As the core diameter increased, the bandgap energy decreased, and the
wavelength increased. These behaviors are explained by quantum confinement effects. The
core diameter of a CdSe/ZnS QD emitting a 530 nm green light was 4.2 nm; thus, the total
diameter of the QDs was 9.2 nm, which accords with previous experimental reports [33,34].

The dependency of bandgap energy and wavelength on the external electric field
intensity are shown in Figure 3a. The core diameter and shell thickness were 4.2 and 2.5 nm,
respectively, so that the QD diameter was 9.2 nm. The external electric field was applied
along the negative direction. As the external electric field intensity increased, the bandgap
energy decreased, and the light emission wavelength increased. This behavior accords with
previous experimental results and is explained by the QCSE. A 4.7 × 107 V/cm electric
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field resulted in a 4 nm redshift in the light emission wavelength. The redshift of about
4 nm was easily observed from QLEDs with CdSe/ZnS QD EMLs [34,35]. The electric
field of 4.7 × 107 V/cm corresponds to a 0.43 V voltage drop across the 9.2 nm diameter
QD. Thus, for a well-fabricated QLED, most of the bias voltage is applied to the charge
transport layers and only a small fraction of the bias voltage is applied to the QD. The one-
dimensional probability densities of ground states as a function of electron–hole distance,
with and without external electric field, are shown in Figure 3b. The expected value of
the electron–hole distance increased with electric field application, as shown in the figure.
More detailed behaviors of carriers in ground states are shown in Figure 3c,d. The electron
and hole positions were almost symmetric without an electric field (Figure 3c); however,
the symmetricity was broken with an electric-field application (Figure 3d).
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Wavefunction distributions as a function of electron and hole positions are shown
in Figure 4; the wavefunctions with the lowest five energy levels are shown in the figure.
Without an external electric field (Figure 4a), the first and fifth states showed symmetric
distributions. For the second and third states, the electron distribution was concentrated at
the center region, and the hole distribution was dispersed along the axis; for the fourth state,
the hole distribution was concentrated in the center region, and the electron distribution
was dispersed along the axis. The smaller effective mass of the electron allowed it to
concentrate around the center, whereas the heavier hole was dispersed along the axis in
the lower energy states (second and third states). With an external electric field along
the negative direction (Figure 4b), the electron and hole moved in positive and negative
directions, respectively, compared with those without an external electric field.

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 9 
 

 

with and without external electric field, are shown in Figure 3b. The expected value of the 
electron–hole distance increased with electric field application, as shown in the figure. 
More detailed behaviors of carriers in ground states are shown in Figure 3c,d. The electron 
and hole positions were almost symmetric without an electric field (Figure 3c); however, 
the symmetricity was broken with an electric-field application (Figure 3d). 

 
Figure 2. (a) Schematic diagram of a QD (top) and its potential profile (bottom), and (b) bandgap 
energy and wavelength as a function of the core diameter. 

 
Figure 3. (a) Bandgap energy and wavelength as a function of the external electric-field intensity, 
(b) probability densities as a function of the one-dimensional electron–hole distance, and ground 
state wavefunction distributions as a function of electron and hole positions (c) without and (d) with 
external electric field. The legend shows the external electric-field intensity values. 

Figure 3. Cont.



Nanomaterials 2022, 12, 3590 7 of 10

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 9 
 

 

with and without external electric field, are shown in Figure 3b. The expected value of the 
electron–hole distance increased with electric field application, as shown in the figure. 
More detailed behaviors of carriers in ground states are shown in Figure 3c,d. The electron 
and hole positions were almost symmetric without an electric field (Figure 3c); however, 
the symmetricity was broken with an electric-field application (Figure 3d). 

 
Figure 2. (a) Schematic diagram of a QD (top) and its potential profile (bottom), and (b) bandgap 
energy and wavelength as a function of the core diameter. 

 
Figure 3. (a) Bandgap energy and wavelength as a function of the external electric-field intensity, 
(b) probability densities as a function of the one-dimensional electron–hole distance, and ground 
state wavefunction distributions as a function of electron and hole positions (c) without and (d) with 
external electric field. The legend shows the external electric-field intensity values. 

Figure 3. (a) Bandgap energy and wavelength as a function of the external electric-field intensity,
(b) probability densities as a function of the one-dimensional electron–hole distance, and ground
state wavefunction distributions as a function of electron and hole positions (c) without and (d) with
external electric field. The legend shows the external electric-field intensity values.

Nanomaterials 2022, 12, x FOR PEER REVIEW 7 of 9 
 

 

Wavefunction distributions as a function of electron and hole positions are shown in 
Figure 4; the wavefunctions with the lowest five energy levels are shown in the figure. 
Without an external electric field (Figure 4a), the first and fifth states showed symmetric 
distributions. For the second and third states, the electron distribution was concentrated 
at the center region, and the hole distribution was dispersed along the axis; for the fourth 
state, the hole distribution was concentrated in the center region, and the electron distri-
bution was dispersed along the axis. The smaller effective mass of the electron allowed it 
to concentrate around the center, whereas the heavier hole was dispersed along the axis 
in the lower energy states (second and third states). With an external electric field along 
the negative direction (Figure 4b), the electron and hole moved in positive and negative 
directions, respectively, compared with those without an external electric field. 

 

 

 

 

Figure 4. Cont.



Nanomaterials 2022, 12, 3590 8 of 10

Nanomaterials 2022, 12, x FOR PEER REVIEW 7 of 9 
 

 

Wavefunction distributions as a function of electron and hole positions are shown in 
Figure 4; the wavefunctions with the lowest five energy levels are shown in the figure. 
Without an external electric field (Figure 4a), the first and fifth states showed symmetric 
distributions. For the second and third states, the electron distribution was concentrated 
at the center region, and the hole distribution was dispersed along the axis; for the fourth 
state, the hole distribution was concentrated in the center region, and the electron distri-
bution was dispersed along the axis. The smaller effective mass of the electron allowed it 
to concentrate around the center, whereas the heavier hole was dispersed along the axis 
in the lower energy states (second and third states). With an external electric field along 
the negative direction (Figure 4b), the electron and hole moved in positive and negative 
directions, respectively, compared with those without an external electric field. 

 

 

 

 

Figure 4. Spatial wavefunction distributions (a) without and (b) with an external electric field of
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state, respectively.

4. Conclusions

A QD energy level simulation was designed to reproduce a quantum mechanical
analytic solution based on perturbation theory. The simulation was conducted using a
numerical method. Using this approach, the electron and hole behavior in a QD could be
analyzed effectively based on the Schrödinger equation, with appropriate consideration
of the core/shell structure and material properties. As this approach imitates the analytic
perturbation method, the results are equivalent to analytic solutions based on a perturbation
method. Owing to the effectiveness of the proposed method, QD behavior according to
the core diameter and external electric-field intensity could be analyzed reliably and easily.
The light-emission wavelength dependency on the core diameter was examined; a 9.2 nm
diameter CdSe/ZnS QD with a 4.2 nm diameter core and a 2.5 nm thick shell emitted
a 530 nm green light. The electric-field-induced redshift was examined and resulted in
a ~4 nm shift at 5.4 × 105 V/cm electric-field intensity. The QD diameter, amount of
redshift, and electric-field intensity for the redshift agree well with previously reported
experimental results. In addition to the energy levels and light emission wavelengths, the
spatial distributions of wavefunctions were resolved; this information helps explain carrier
behavior in a QD, which could lead to improved QD and QLED structures. Thus, this
analysis method is widely applicable for studying QD characteristics for various structures
and material compositions. Despite the success of this work, it is desirable to conduct
additional studies to improve the analysis method further, such as by calculating transition
probabilities between the quantum-confined states.
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