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Abstract: Levulinic esters, synthesized by the esterification of biomass-derived levulinic acid with
various alcohols, is an important chemical that plays an essential role in the fields of biomass fuel
additives, organic synthesis, and high value-added products. In the present work, the catalytic
esterification of levulinic acid with n-butyl alcohol was selected as a typical model reaction to investi-
gate the catalytic performance of an inexpensive commercial catalyst, titanium oxide nanoparticles.
The influences of reaction time, reaction temperature, and catalyst loading on the conversion of
levulinic acid to n-butyl levulinate were systematically examined through single-factor experiments.
Additionally, the optimization of the reaction conditions was further investigated by a Box–Behnken
design in response to the surface methodology. The desired product, n-butyl levulinate, with a good
yield (77.6%) was achieved under the optimal conditions (reaction time of 8 h, reaction temperature
of 120 ◦C, and catalyst dosage of 8.6 wt.%) when using titanium oxide nanoparticles as catalysts.
Furthermore, it was found that addition of water to the catalytic system facilitated the reaction
process, to some extent. This study reveals that the nanosized TiO2 material, as an efficient solid acid
catalyst, had good catalytic performance and stability for the esterification of levulinic acid after six
consecutive uses.

Keywords: TiO2 nanoparticles; solid acid catalyst; n-butyl levulinate; esterification; response
surface methodology

1. Introduction

The contradiction between the continuous consumption of fossil fuels and the rapid
growth of energy demand has become more and more intense, motivating people to explore
and develop renewable energy sources for achieving a sustainable future [1,2]. Biomass
is regarded as the only resource of organic carbon that can be regenerated by capturing
carbon dioxide, and it is potentially the most sustainable renewable energy [3–5] and has
recently received a great deal of attention. It is therefore of great significance to explore and
develop an efficient production strategy for biomass-based platform chemicals, which will
effectively relieve the energy shortage and expand the fine chemical industry chain [6,7].

Levulinic acid (LA) is considered one of the most important biomass-derived platform
molecules which can currently be efficiently obtained from biomass on a large-scale [8–10].
Extensive and continuous efforts have been devoted to the use of LA to offer many other bio-
based products with widespread applications, such as fuel additives, high-value chemicals,
and biopolymers [11–15]. Among these LA derivatives, levulinic esters (LEs) are regarded
as a highlighted fuel additive or as a hydrocarbon fuel due to their high lubricity and high
stability. In addition, LEs can be further applied to an important precursor for producing
a variety of high-value chemicals, including γ-valerolactone [16–22], pyrrolidone [23],
1,4-pentanediol [24], succinic acid [25], etc. Among multiple reaction routes, the direct
catalytic conversion of LA to LEs is an efficient and simple pathway in terms of a high
atom economy and a low separation cost, and it has gained remarkable attention [9,10].
Under the advocacy of green chemistry, the replacement of homogeneous catalysts by
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solid catalysts has gradually become a current research trend. Hence, the development of
green and environmentally friendly, benign heterogeneous catalysts for the synthesis of LEs
from LA would be highly desirable and required [26,27]. Recently, various heterogeneous
catalysts including zirconium phosphate [28], sulfonated mesoporous carbon [29], methane
sulfonic acid [30], ion-exchange resins [31], sulfonic acid-functionalized materials [32–34],
heteropolyacids [35–37], and biocatalysts [38,39] have been employed to catalytic LA to
produce LEs. However, some heterogeneous catalysts often suffer from the complex catalyst
preparation process, the severe leaching of catalytic active species, and an unstable catalyst
structure during the esterification reaction process, which limits their use in practical
applications.

The use of nanoparticles as heterogeneous nano-catalysts has attracted considerable
attention, and it has been widely studied. Among the various nano-catalysts, titanium
dioxide (TiO2) is considered a promising nanomaterial in heterogeneous catalysis due to
its fascinating and interesting physical and chemical properties. Recently, nanostructured
TiO2 has been intensively used as a solid acidic catalyst in organic reactions such as the
aldol condensation of furfural [40], synthesis of 5-(hydroxymethyl) furfural [41,42], esterifi-
cation of free fatty acids with ethanol [43], and alcoholysis preparation of diosgenin [44].
Moreover, TiO2 nanomaterials are promising candidates for green organic synthesis owing
to their excellent properties, such as chemical stability, low cost, nontoxicity, and high
reusability [45–47].

Herein, the catalytic performances of three commercial titanium dioxide nanomaterials
for the transformation of biomass-derived LA into LEs were assessed and compared. The
physicochemical properties of these nanosized TiO2 samples were characterized by XRD,
TEM, NH3-TPD, and the Fourier transformation infrared spectroscopy (FT-IR) of pyridine
adsorption techniques. The influence of reaction parameter such as time, temperature, and
catalyst loading on the esterification of LA was studied and discussed in detail using a single
factor method. Response surface methodology (RSM) based on a Box–Behnken design
(BBD) was employed to optimize the experimental design and elucidate the interactions
between the factors on the LA conversion. A fitted model with the desired product yield as
the response value was established. In addition, the reusability of the nanosized TiO2 was
also discussed.

2. Experimental
2.1. Materials and Reagents

Three commercial TiO2 nanoparticles in pure anatase phase with average particle sizes
ranging from 5 to 60 nm (denoted as TNPs-1, TNPs-2, and TNPs-3) and levulinic acid (99.8%)
were purchased from Aladdin Reagent (Shanghai, China) and used as received. The n-butyl
alcohol and ethanol were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China) and used without further purification.

2.2. Characerization

X-ray diffraction (XRD) patterns of the TiO2 samples were recorded using a Bruker D8
Advance diffractometer with a Cu Kα radiation wavelength (λ = 1.5418 Å) at a scanning
rate of 5◦/min with the diffraction angle (2θ) ranging from 10◦ to 80◦. Transmission
scanning microscopy (TEM) was used to observe the morphologies and particle sizes of the
TiO2 nanoparticles on an FEI Tecnai F20 electron microscope (American). The ammonia
temperature-programmed desorption (TPD-NH3) was obtained on a BEL-Cat II apparatus
(Microtrac BELCat II, Japan). The TiO2 samples (0.1 g) were placed in a tube and pretreated
at 350 ◦C for 1 h with a flow of 30–50 mL/min helium, then cooled to 100 ◦C. A stream of
10% NH3/He was introduced until the samples were ammonia-saturated. After purging
under helium for 1 h at 100 ◦C to remove the weak physical absorption of NH3 on the
surface, the ammonia was desorbed using a 10 ◦C/min heating rate to 800 ◦C in a He
atmosphere. The relative quantification of the acid sites was determined based on the curve
of the ammonia desorption. The surface acidic property (Brønsted and/or Lewis acid) of the



Nanomaterials 2022, 12, 3870 3 of 15

TiO2 samples was measured with pyridine FT-IR on a Bruker Tensor 27 FT-IR spectrometer
(Germany). The TiO2 samples were heated at 200 ◦C for 1 h under vacuum, then exposed
to purified pyridine vapors at 25 ◦C for 30 min. The physic-sorbed pyridine on the samples’
surfaces was degassed at 100, 200, and 300 ◦C under high vacuum, respectively.

2.3. Catalytic Performance Test

The catalytic activity of the nanosized TiO2 for LA esterification was tested in a round
bottom flask equipped with a reflux condenser. In a typical experiment procedure, levulinic
acid (3 mmol), n-butyl alcohol (30 mmol), and 10 wt.% of TiO2 nanoparticles (based on
the LA mass) were added and then conducted at various temperatures ranging from
90–120 ◦C at atmospheric pressure, with vigorous stirring in an oil-washing oven. The
reaction mixture was periodically withdrawn with a syringe, filtered, and analyzed using
gas chromatograph (GC, Beijing Zhongke Huifeng Co., Ltd., Beijing, China). The GC
was equipped with a fame ionization detector (FID) and an HP-5 capillary column. The
temperatures of the injection port, the oven, and the detector were 250 ◦C, 150 ◦C, and 250 ◦C,
respectively. Gas chromatograph-mass spectrometry (GC–MS, Shimadzu, Kyoto, Japan) was
used to confirm the reaction intermediates.

2.4. Design of Experiment Using BBD

The BBD design was employed to systemically study the influence of mainly the
operating parameters, including reaction time, reaction temperature, and catalyst loading,
and the interactions of such variables on the conversion of the LA. Thus, a three factor,
three-level BBD with a total of 15 runs was employed, and the experiments were conducted
in a random manner to decrease errors. The results were analyzed using Design-Expert
software (trial version 8.0.6.1, Stat-Ease, Inc., Minneapolis, MN, USA).

2.5. Catalyst Reusability Tests

The reusability of the TiO2 samples was tested under the optimal reaction conditions.
In the LA esterification reaction, the TiO2 samples were easily recovered by centrifugation
at 3000 rpm for 5 min, washed repeatedly with ethanol (3 × 5 mL), and dried at 60 ◦C
overnight before a new run. The recovery rate of the TiO2 samples was determined based
on the mass of TiO2 before and after the reaction.

3. Results and Discussion
3.1. Characterization of the TiO2 Nanoparticles

Figure 1 compares the XRD patterns of the different TiO2 nanoparticles. The main
peaks are at 25.6, 38.1, 48.0, 54.2, and 62.9 and belong to the (101), (004), (200), (105), and
(204) planes of anatase for the three samples, confirming that all TiO2 nanoparticles were
pure anatase phase. Compared with TNPs-1, the diffraction peaks of TNPs-2 and TNPs-3
increased in intensity and became sharper. It should be noted that all samples show the
broad diffraction reflections, suggesting the possible existence of crystalline particles of a
nano-scale size (<100 nm). The estimated crystal size was further calculated by the Scherrer
equation. It is noteworthy that the average crystalline size of the TNPs-1 was estimated to
be approximately 6.8 nm.

The size of the primary TiO2 particles was further observed form the TEM images
(Figure 2). The TEM images show that the TNPs-1 was dispersed and the TNPs-1 particles
were relatively regular in shape. The magnified image shows that the TNPs-1 was entirely
tetragonal, with a size of 3–7 nm. The particle size distribution of the TNPs-1 was consistent
with the results of the XRD analysis. However, the TNPs-2 and TNPs-3 particles were not
spherical but irregular, with a prolate or oblate shape. The particle sizes of TNPs-2 and
TNPs-3 were in the range of 30–40 nm and 35–45 nm, respectively.
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Figure 1. XRD patterns of (a) TNPs-1, (b) TNPs-2, and (c) TNPs-3.
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Figure 2. TEM graphs of the TNPs samples: (a,b) TNPs-1, (c,d) TNPs-2, and (e,f) TNPs-3.

Pyridine adsorption experiments on the TNPs were carried out to identify the presence
of Lewis and/or Brønsted surface acid sites, and the results are displayed in Figure 3.
There are two main characteristic peaks observed in the regions of 1400–1452 cm−1 and
1570–1620 cm−1. These absorption bands assigned to the pyridine molecules align with
Lewis acid sites, suggesting the presence of Lewis acid sites in the TNPs. There is a
weak characteristic peak observed at approximately 1555 cm−1, which is assigned to
the adsorption of pyridine at the Brønsted acid sites [48]. In addition, the distinct band
at approximately 1489 cm−1 is ascribed to both Brønsted and Lewis acid sites [49,50].
Moreover, it was seen that with an increase in the desorption temperature from 100 to
300 ◦C, these bands showed slow decreases in intensity. The above observations indicate
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that the strong Lewis acid sites were dominant in the TNPs. It is noted that the Lewis
acid sites could convert to Brønsted acid sites in the presence of water, thus improving the
reaction reactivity, to a certain degree.
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Figure 3. FTIR spectra of the pyridine adsorbed on TNPs-1.

Figure 4 shows the NH3-TPD spectra of TNPs-1, TNPs-2, and TNPs-3. As seen from
Figure 4, there is a broad peak observed at approximately 210–230 ◦C for all samples. In
addition, in the case of TNPs-1, two desorption peaks at higher temperatures of approxi-
mately 550 and 750 ◦C suggest a stronger acid strength [51]. However, a desorption peak at
high temperatures for TNPs-2 (760 ◦C) and TNPs-3 (670 ◦C) was lower than that of TNPs-1,
indicating a lower strong acid strength. The total acidity of TNPs-1, TNPs-2, and TNPs-3
was 1.005 mmol/g, 0.409 mmol/g, and 0.368 mmol/g, respectively.
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3.2. Catalyst Performance of the TNPs

The catalytic performances of the different TNPs in the LA esterification reaction were
investigated, and the results are summarized in Table 1. The LA conversion rate without
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any catalyst was low. Notably, the conversion of LA was 71.6%, 48.4%, and 43.5% when
the TNPs-1, TNPs-2, and TNPs-3 were used as catalysts, respectively. The high catalytic
activity of TNPs-1 may be because it has more acidic sites compared to TNPs-2 and TNPs-3.
The catalytic performance of TNPs-3 was comparable to that of TNPs-2 because the total
acid amount and particle size of both are close to each other. The catalytic performance
of the commercial SiO2 nanoparticles was poor due to the lower concentration of acid
sites. These results imply that the number of acid sites on the catalyst directly affects the
catalytic activity. Moreover, two products, BL and pseudo-BL, were detected by GC-MS
in the esterification reaction of LA with n-butanol. Similar phenomena for the reaction of
intermediate pseudo-BL have been reported in several studies [52–54], and the reaction
process can be described as shown in Scheme 1. Among these TNPs materials, TNPs-1
showed a good catalytic performance for LA esterification and was therefore selected for
the experiments that followed.

Table 1. Comparison of the various nanoparticles’ activities for LA esterification.

Entry Sample LA Conv. (%) BL Sel. (%)

1 - 37.9 74.7
2 TNPs-1 71.6 96.4
3 TNPs-2 48.4 84.5
4 TNPs-3 43.5 95.8
5 SiO2 (commercial) 39.5 79.2

Reaction conditions: LA: n-butanol = 1:10, reaction temperature: 120 ◦C, reaction time: 6 h, and catalyst dosage:
10 wt.% (based on the mass of LA).
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3.3. Effect of Reaction Time on LA Esterification

In order to elaborate in detail the overall catalytic esterification process, the influence
of reaction time on the conversion of LA was firstly evaluated using TNPs-1 as catalyst, and
the corresponding results are depicted in Figure 5. It was observed that the LA conversion
rate was increased with a prolonged reaction time, whereas the selectivity of pseudo-BL
decreased. The selectivity of pseudo-BL kept a low level (approximately 5.5%) after 4 h of
reaction. The selectivity of BL was 96.4% with a 71.6% conversion of LA after the reaction
proceeded for 6 h. The above-described results suggest that the reaction of LA with n-butyl
alcohol would firstly tend to generate pseudo-BL. It was noteworthy that the LA conversion
had no remarkable change with further prolonging the reaction time to 8 h. This may be
the reason that the esterification reaction reached a chemical equilibrium status, thereby
presenting a slight increase in LA conversion and BL selectivity [55].
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Figure 5. Influence of reaction time on the esterification of LA. Reaction conditions: LA:
n-butanol = 1:10, catalyst loading: 10 wt.% (based on the LA mass), and reaction temperature: 120 ◦C.

3.4. Effect of the Reaction Temperature on LA Esterification

The catalytic activities of the TiO2 nanoparticles were further tested at various reaction
temperatures (90–120 ◦C) under other fixed reaction conditions: a reaction time of 6 h and
TNPs-1 catalyst loading of 10 wt.%. Figure 6 illustrates the conversion of LA enhanced
linearly with increasing the reaction temperature from 90 to 120 ◦C. Thus, the conversion
of LA reached the maximum value of 71.6% at 120 ◦C. At the same time, it was observed
that the selectivity of n-butyl levulinate was close to 100% in all tests. High temperatures
were expected to promote the reaction equilibrium shift towards n-butyl levulinate, thereby
improving the BL yield. These results clearly demonstrate that the reaction temperature
has a great positive influence on the LA esterification.
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Figure 6. Influence of the reaction temperature on the esterification of LA. Reaction conditions: LA:
n-butanol = 1:10, catalyst loading: 10 wt.% (based on the LA mass), and reaction time: 6 h.
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3.5. Effect of the Catalyst Dosage on LA Esterification

The influence of the TNPs dosage on the LA esterification was evaluated by the change
in the mass of TNPs-1 in the range of 4 to 12 wt.% (based on the LA mass) and keeping
all other parameters constant. It was clearly observed, as seen in Figure 7, that a low LA
conversion with a relatively high selectivity of pseudo-BL was obtained when 4 wt.% of
the catalyst dosage was added. As depicted in Figure 7, the increase in the LA conversion
aligned with the increased catalyst dosage, which should be attributed to the increase in the
number of availability active sites. When the 10 wt.% catalyst was added, the conversion of
LA to BL showed the maximum conversion (71.6%), with a selectivity of 96.4% toward BL.
However, the conversion of LA did not improve significantly with the further increase in
catalyst dosage. This can be explained by the reaction reaching an equilibrium state and the
excessive acidic sites were not necessary, resulting in a marginal increase in LA conversion.
Furthermore, a high dosage of catalyst will limit the mass transfer rate, leading to lower
catalytic activity [34,56].
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3.6. BBD Design and Data Analysis

The BBD design and experiments were performed to optimize the reaction conditions,
with full consideration of the interaction of the multi-factors. In this study, three variables
and the corresponding level, catalyst dosage (A, 5–10 wt.%), reaction time (B, 4–8 h), and
reaction temperature (C, 100–120 ◦C) were mainly considered and investigated. In this
study, 15 set of experiments were conducted, and the center point experiment was repeated
three times to decrease errors.

The experimental design matrix and the corresponding results are recorded in Table 2.
A polynomial model regression for the three parameters was given and expressed as shown
in Equation (1).

Y(%) = 60.20 + 7.69A + 5.71B + 10.10C − 1.22AB + 0.30AC + 2.75BC − 7.71A2 + 0.94B2 − 2.79C2, (1)

where Y is the yield of BL and A, B, and C are the catalyst dosage, reaction time, and
reaction temperature, respectively.
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Table 2. Results of the BBD for the LA esterification optimizing process.

Run No. Catalyst Dosage
(A)

Reaction Time
(B) Temperature (C) Yexp (%)

1 5 4 110 38.5
2 10 4 110 56.9
3 5 8 110 52.4
4 10 8 110 65.9
5 5 6 100 31.0
6 10 6 100 45.2
7 5 6 120 53.6

8 10 6 120 69.0
9 7.5 4 100 46.8
10 7.5 8 100 52.7
11 7.5 4 120 58.5
12 7.5 8 120 75.4
13 7.5 6 110 60.3
14 7.5 6 110 60.6
15 7.5 6 110 59.7

The experimental values of the BL yield versus the corresponding predicted values, as
displayed in Figure 8a, show good agreement with a high R2 value (0.9897). This result
demonstrates the validity of the model. Moreover, as revealed in Figure 8b, it was observed
that the normal distribution of the residuals in the plot of residuals versus the predicted
response was perfect due to these points being close to a straight line. The fitted model was
further analyzed by analysis of variance (ANOVA), and the results are given in Table 3.
If the p-value was lower than 0.05, this would indicate that the model’s terms were more
statistically significant [57,58]. Based on this point, the F-value and the corresponding
p-value for the model were found to be 53.41 and 0.0002, respectively, indicating that the
fitted model is significant and can be successfully used to predict the LA esterification
process. Furthermore, the “Adequate precision” value was 28.023 greater than 4, implying
that the fitted model can describe the good relationship between the BL yield and the three
variables [59].

The independent variables affect the catalytic activity in the following order: tempera-
ture (C) > catalyst dosage (A) > reaction time (B). This means that the reaction temperature was
the major parameter affecting the esterification process, which is consistent with the above results.
Furthermore, the interaction terms of the reaction time × temperature (BC) and the quadratic
terms, such as catalyst dosage × catalyst dosage (A2) and temperature × temperature (C2),
were highly significant to the BL yield because these p-values were as low as <0.05 (Table 3).
Further, the interaction effects between any two independent variables on the yield of BL
were evaluated. It was observed that the interaction between time (B) and temperature (C) (BC)
on BL yield was significant (p-value = 0.0373). The three-dimensional (3D) response surface
plots and contour plots were further represented in order to investigate the interaction
effects between temperature and time on the yield of BL.

Figure 9 shows that the yield of BL did not increase significantly with the reaction time
at lower reaction temperatures. Further, it was noticeable that the BL yield remained at a
low level at lower reaction times. The yield of BL showed an increase with the increase in
reaction temperature from 100 to 120 ◦C at a relatively long reaction time (5–8 h). Notably,
a rise in BL yield was observed, while the reaction temperature increased at longer reaction
time levels. The predicted optimal esterification conditions, based on the obtained RSM
model, were found to be a time of reaction of 8 h, a dosage of catalyst of 8.6 wt.%, and a
temperature of the reaction of 120 ◦C. Under these reaction conditions, the model predicted
that the experiment result of the BL was 78.4% and 77.6%, respectively. There is a negligible
difference between the model’s predicted value and the experimental result, which indicates
that the optimum conditions for LA esterification are reliable and accurate.
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3.7. Reusability and Stability of the TNPs

The stability of the TNPs-1 in the LA esterification reaction under the above optimal
conditions was examined by performing consecutive batch reactions. After the reaction,
TNPs-1 could be separated easily by centrifugation, and the recovery rate of TNPs-1 from
the reaction mixture was quite high (>95%). The reusability results of the TiO2 nanoparticles
are summarized in Figure 10. A small progressive decrease in BL yield was observed after
six consecutive uses. This phenomenon may be attributed to a combination of reasons,
such as a loss in mass of the catalyst and the adsorption of organic matter on the catalyst
surface. Therefore, it can be inferred that the TNPs can be reused without a considerable
loss in catalytic activity. Moreover, the spent catalyst was further characterized by XRD.
As displayed in Figure 11, it was clearly shown that was no remarkable difference in
the XRD pattern of the spent catalyst, indicating the TiO2 nanoparticles are stable for LA
esterification.
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In addition, the catalytic performances of the TiO2 nanoparticles were further com-
pared with the reported catalysts. Amberlyst-15, which as a typical solid acid catalyst, gave
a low yield of BL (55%). The CMK-8-SO3H catalyst only showed moderate catalytic activity
towards LA esterification at high temperatures. Using NER@3DOM/m-OS biocatalyst
facilitates the LA conversion into BL at low temperatures, achieving 74.6% of the BL yield.
Other heterogeneous catalysts, such as WOx/mesoporous-ZrO2 and commercial H-Beta,
are found to be efficient catalysts for the conversion of LA. It can be clearly seen from
Table 4 that the pure TiO2 nanoparticles exhibited good catalytic performances for synthesis
of n-butyl levulinate from LA.

Table 4. Comparison of the catalytic performances for LA esterification using various catalysts.

Catalyst Mole Ratio
(LA:Alcohol) Temp. (◦C) Time (h) BL Yield (%) Ref.

Amberlyst-15 1:20 117.7 5 55 [60]
CMK-8-SO3H 1:10 130 10 75.1 [29]

NER@3DOM/m-OS 1:10 40 12 74.6 [61]
WOx/mesoporous-

ZrO2
1:5 120 2 64.9 [52]

Commercial H-Beta 1:7 120 4 82.2 [62]
TiO2 1:10 120 8 77.6 This work

3.8. Possible Reaction Mechanism

The reaction mechanism suggested for generating BL from LA is depicted in Scheme 2.
An LA molecule was firstly adsorbed on the surface’s acidic sites, giving a protonated
intermediate. Then, the presence of alcohol facilitated the corresponding intermediate
towards pseudo-BL under the mild reaction conditions. Subsequently, the pseudo-BL
underwent nucleophilic addition and ring opening to provide the final BL. A remarkable
trans-esterification of the pseudo-BL into BL was clearly observed with the increased
reaction time at the initial reaction period in the previous experiments (Figure 5). Moreover,
the numbers of acid sites and the moderate acid strength in case of the TiO2 NPs are
important factors for converting pseudo-BL to BL. Interestingly, we found that the yield
of BL can be improved from 77.6% to 82.2% and 87.5% when 5 wt.% and 10 wt.% (based
on the mass of the LA) water is added under the optimal conditions, respectively. The
above results elucidate that the presence of the moderate water was expected to convert
the surface Lewis acid sites into Brønsted acid sites, thereby enhancing the reactivity in
the catalytic system. This will be very important for acid-catalyzed LA esterification in
practical applications.
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4. Conclusions

In conclusion, the esterification reaction of biomass-derived LA with n-butanol under
solvent-free conditions using commercial TiO2 nanoparticles as the solid acid catalyst was
investigated. The experimental results showed that a relatively high conversion of LA and
a high selectivity of BL were obtained under mild conditions. The reaction model based on
the BBD in RSM was built, and it was statistically significant. The reaction temperature was
the major parameter affecting the esterification process. The optimum operation conditions
were a catalyst dosage of 8.6 wt.%, a reaction temperature of 120 ◦C, and a reaction time of
8 h. It is highly important that the TiO2 catalyst could be easily separated for reuse, and
it continued to exhibit a good catalytic performance after six repetition cycles. Moreover,
the experimental results suggest that the conversion of LA to BL via pseudo-BL provides
a more detailed description and better understanding of the reaction process. This work
demonstrates that the nano-sized TiO2 materials are simple, green, and efficient candidate
catalysts which have great potential for applications in biomass conversion.
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