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Abstract: Nanofluids have gained prominence due to their superior thermo-physical properties.
The current paper deals with MHD nanofluid flow over a non-linear stretchable surface of varying
thickness in the presence of an electric field. We investigated the effects of nanometer-sized copper
(Cu) particles in water (base fluid) as a nanofluid, as well as non-linear thermal radiation, variable
fluid viscosity, Joule heating, viscous dissipation, and non-uniform heat flux. The current study’s aim
is influenced by the immense applications in industry and machine building. It has been observed
that linear stretching sheets have been extensively used in heat transfer research. Moreover, no effort
has been made yet to model a non-linear stretching sheet with variable thickness. Furthermore,
the effects of electromagnetohydrodynamics (EMHD) boundary-layer flow of a nanofluid with the
cumulative impact of thermal radiation, variable viscosity, viscous dissipation, Joule heating, and
variable heat flux have been investigated. Sheets with variable thicknesses are practically significant
in real-life applications and are being used in metallurgical engineering, appliance structures and
patterns, atomic reactor mechanization and paper production. To investigate the physical features
of the problem, we first examined the model and identified all the physical properties of the prob-
lem. This problem has been formulated using basic laws and governing equations. The partial
differential equations (PDEs) that govern the flow are converted into a system of non-dimensional
ordinary differential equations (ODE’s), using appropriate transformations. The Adam–Bashforth
predictor-corrector technique and Mathematica software are utilized to numerically solve the result-
ing non-dimensionalized system. The interaction of various developing parameters with the flow
is described graphically for temperature and velocity profiles. It is concluded that the velocity of
nanoparticles declines as the intensity of the magnetic field increases. However, the temperature
of the nanomaterials rises, as increasing the values of the electric field also increases the velocity
distribution. The radiation parameter enhances the temperature field. The temperature of the fluid
increases the occurrence of space- and time-dependent parameters for heat generation and absorption
and radiation parameters.

Keywords: EMHD; nanofluid; variable thickness; non-uniform heat flux; thermal radiation; vis-
cous dissipation

1. Introduction

In recent years, different areas of technology have incorporated the use of fluid flow
across a stretching sheet due to its various advantages. This led to an increased interest
from scientists and researchers. The fluid flow on a continuous solid surface was first
studied by Sakiadis [1] in comparison to a surface with a finite length. He found that
the differential boundary-layer equations are applicable, provided that boundary-layer
conditions are different in both cases. He analyzed fluid flow on a continuous surface and
derived equations for the differential and integral momentum. Crane [2] expanded the
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work of Sakiadis by looking at fluid flow through a stretched plate with velocity related
to its distance from the slit. By incorporating the influence of viscous dissipation and
internal heat generation and absorption, Vajravelu and Rollins [3] studied the problem of
heat transfer in laminar non-Newtonian fluid flow that passed through a stretched surface.
Vajravelu and Cannon [4] investigated flow on a boundary layer for fluid passing through
a non-linear stretched sheet. After the initial work of Sakiadis, several investigations have
been conducted into the flow through a stretched surface for different flow configurations
and fluid natures. Sheets with variable thicknesses are practically significant in real-life
applications and are being used in metallurgical engineering, appliance structures and
patterns, atomic reactor mechanization, and paper production. Lee [5] utilized a thin needle
and assessed its flow over a boundary layer by comparing its thickness with that of the
boundary layer. Ultimately, he deduced that in the case of a thin needle, the drag force
per unit length and displacement thickness gradually decrease, but finally return to zero
as the needle’s thickness becomes zero. Gupta and Gupta [6] used a stretched flat porous
surface with uniform thickness and investigated the boundary flow over it. By analyzing
two separate cases of CST (plates via continuous surface temperature) and PST (plates via
prescribed surface temperature), Cortell [7] numerically investigated the transmission of
heat in a viscous fluid via a non-linear stretched plate using the R-K scheme. Fang et al. [8]
explored the flow of a boundary layer on an impermeable surface through a stretching
plate with non-uniform thickness. By using a continuous impermeable stretched surface,
Khader and Megahed [9] examined 2D Newtonian fluid flow and concluded that the local
skin friction co-efficient diminishes with a rise in the slip velocity parameter. Elbashbeshy
et al. [10] considered a visco-elastic fluid (Maxwell) and studied its behavior on a slandering
stretching plate. Recently, Ali et al. [11] explored the effect of MHD Jeffery nanofluid flow
via an elongating surface with various thicknesses.

Over the previous decades, several researchers have been captivated by the notion
of nanofluids due to their improvement in the transfer of thermal energy. Choi [12]
defined nanofluids as a colloidal solution of nano crystals and base fluids with diameters
ranging from 1 nm to 100 nm and base fluids that are primarily water, ethanediol and
lubricants. Nanofluids are used in electronic engineering, solar radiation, thermonuclear
energy, heat exchanger tubes, medicinal products, coolant systems, and other fields due
to their wide range of applications. Based on the consideration of the stretching plate,
Khan and Pop [13] first anatomized nanofluid flow by applying Buongiorno’s model.
Nadeem and Lee [14], influenced by thermophoresis and Brownian motion, modelled the
flow of a boundary layer across a porous stretching sheet and employed HAM to find its
solution and discussed heat and mass transfer analysis. Malvandi et al. [15] investigated
the problem of unsteady nanofluid flow close to the stagnation point via a stretched
surface under the influence of slip velocity and stretching parameters. An implicit finite
difference technique was implemented by Khan et al. [16] to explore the problem of 3D
nanofluid flow on an exponentially stretched sheet under the impact of thermophoresis and
Brownian motion. Colangelo et al. [17] examined the relationship between microwaves and
nanofluids. Maleki et al. [18] considered non-Newtonian (pseudo-plastic) nanofluid flow
along a permeable surface and utilized the Runge–Kutta–Fehlberg fourth–fifth method to
find the numerical solution. Lacobazzi et al. [19] investigated the connection between the
clustering phenomena and the thermal conductivity of nanofluids. They also examined
the impact of nanofluid stabilization on thermal conductivity. Ali et al. [20] discussed heat
and mass transfer analysis across an exponentially extending surface for a 3D Maxwell
nanofluid. After taking into consideration three kinds of nanoparticles, i.e., aluminum
oxide, titanium dioxide, and iron oxide, Bognar et al. [21] discussed boundary-layer flow
through a stretched plate. Ali et al. [22] recently published a paper on the 3D Oldroyd-B
nanofluid across an exponentially extending surface. By comparing the performance of two
distinct nanoparticles, i.e., zirconium dioxide-engine oil and copper-engine oil, Alazwari
et al. [23] used the Keller-Box scheme to assess entropy production for non-Newtonian
nanofluids over a porous surface and to find an approximate solution to the problem.
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They demonstrated that entropy elevates the Deborah number and that copper engine
oil has a better value of thermal conductivity than zirconium dioxide engine oil. Aouinet
et al. [24] examined the effects of the concentration of three nanoparticles, i.e., zinc oxide–
water, silicon dioxide–water, and titanium dioxide–water, on velocity, temperature profiles,
wall shear stress, and turbulence intensity. They demonstrated that while raising the
nanoparticle concentration would increase the thickness, increasing the velocity causes the
boundary layer thickness to drop. Waqas et al. [25] investigated Reiner–Philipoff nanofluid
flow with a heat source/sink, melting phenomenon and thermal conductivity with the
existence of motile microorganisms through a stretching surface. They showed that an
increase in the Prandtl number reduces the thickness of the thermal boundary layer and
increases the mass transfer of microorganisms via Peclet and bio-convection Lewis numbers.
Imran et al. [26] studied the two-dimensional bio-convectional flow of cross nanofluids
through a cylinder that contained motile microorganisms, while taking into account the
effects of radiation, thermal conductivity, Brownian motion, and thermophoresis with the
melting phenomenon. They found that a high Peclet number and bio-convection Lewis
number lessen the microorganism profiles, but enhance them for high melting parameter
values. By considering the impact of Cattaeneo–Christov and convective conditions, Rasool
and Wakif [27] analyzed second-grade flow of nanofluids over a Riga plate and used the
spectral local linearization method to find the solution to the problem. Colangelo et al. [28]
performed experimental measurements and showed that nanofluids enhance the rate of
heat transfer.

MHD flow in nanofluids has earned popularity due to its excellent ability to control the
heat transfer rate. It is defined as the study of fluids that conduct electricity, encompassing
the detailed study of their magnetic properties. Magneto-hydrodynamics (MHD) is made
up of the following three terms: magneto (magnetic intensity), hydro (water) and dynamics
(in motion) that were coined by Alfvin [29]. The behavior of magneto-hydrodynamic (MHD)
flow near a stagnation point on a stretched plate was reported by Ishak et al. [30] and
numerically evaluated by using the finite difference method. While considering a nanofluid
flowing over a stretching plate, Ibrahim and Shankar [31] utilized Buongiorno’s model to
study MHD flow with slip conditions. A time-independent, 2D magneto-hydrodynamic
flow of Williamson fluid through a stretching surface with variable thickness has been
scrutinized by Babu and Sandeep [32], by reviewing the effects of slip velocity, the Soret
number, and the Dufour number. By using a time-independent nanofluid passing over a
stretchable surface, Daniel et al. [33] studied MHD flow in the presence of an electric field
under the influence of several parameters. Adem [34] addressed heat and mass transfer in
a porous medium of MHD boundary-layer flow on a stretchable plate in the presence of
an electric field. Ali and Ghori [35] examined the melting effects of Cattaneao–Christove
and heat radiation on MHD nanofluid flow, including microorganisms. Souayeh et al. [36]
discussed the flow of hybrid nanofluids through a peristaltic channel under the influence
of EMHD, activation energy, radiation and gyrotactic microorganisms.

Thermal engineering’s subspeciality of heat transfer concerns the utilization, transfor-
mation, production, and transmission of heat energy between systems. There are several
heat transfer mechanisms, including radiation, convection, and conduction. Heat transfer
has numerous applications in climate engineering, chemical process industries, architec-
ture, greenhouse effects and human body heat transfer. Temperature gradients have a
large influence on fluid properties. Temperature and viscosity, in particular, have a direct
relationship with gases, whereas temperature and viscosity have an inverse relationship
with liquids. Radiation is a method or mode of transferring energy from one medium to
another without the use of a third medium. Radiation from radioactive elements is emitted
in all directions and travels to the point of absorption. Radiation can take the form of
waves or particles. Several researchers are fascinated by the effect of thermal radiation
on account of its extensive utilization in the engineering industry, i.e., as an electrical
energy supply and in solar panels, atomic power stations, turbines. When a material
is heated, radiation is emitted from the surface in the form of electro-magnetic waves,
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which is thermal radiation. All bodies emit thermal radiation with a temperature greater
than zero. Abel and Mahesha [37] discussed the analysis of heat transfer while taking
into account PST and PHF. Mukhopadhyay [38] studied the impact of thermal radiation
and slip velocity on an exponentially stretched surface for MHD flow through a porous
medium. While taking into account the two different cases, the PST case and the PHF case,
Ahmad et al. [39] found an analytical solution via HAM of magneto-hydrodynamic fluid
flow on an exponential stretched plate with radiation effects and noticed that the thermal
boundary layer decreases with an increment in the Prandtl number. Under the influence
of Brownian motion, thermophoresis, and radiation, Sheikholeslami et al. [40] considered
two rotatable plates and analyzed the magneto-hydrodynamic flow of nanofluids between
them. A reduction in the thermal boundary layer was observed because of the escalation in
radiation parameters. By considering two types of nanofluids, aluminum copper–water
and copper–water, Krishna et al. [41] analyzed the fluid flow through a slandering stretched
sheet with slip effects. Khan et al. [42] showed the visco-elastic (Maxwell) nanofluid flow
on a stretched plate caused by the effects of radiation and EMHD. Jamshed et al. [43] pre-
sented the analysis of entropy generation for an unsteady MHD flow of Casson nanofluid
across a stretching sheet with slip conditions. They observed that elevating the Reynolds
number, together with the Brinkmann number, improved the system’s overall entropy.
Waqas et al. [44] explored the mathematical modeling of Carreau–Yasuda nanofluid flow
on a porous surface in the presence of motile microorganisms and developed a numerical
solution via the shooting method. They determined that an elevating bio-convection Lewis
number and Peclet number decreases the microorganisms’ profiles, whereas boosting the
microorganisms’ Biot number improves the microorganisms’ profile. Kumar et al. [45]
explored tangent hyperbolic nanofluid flow over a stretching sheet with thermal radiation,
MHD, a heat source, and convective boundary conditions. They used MATLAB bvp4c to
develop a numerical solution.

The heat produced by the flow of an electric current through a conductor is referred to
as Joule heating. Joule heating is used in a variety of everyday applications, such as electri-
cal fuses, the glowing filament of an incandescent light bulb, electrical tabletop hotplates,
and so on. Hsiao [46] analyzed EMHD-free convection and mass transfer nanofluid flow for
a two-dimensional and incompressible fluid under the impact of a heat source/sink, viscous
dissipation, radiation, thermophoresis, and Brownian motion. In order to develop an ana-
lytical solution, Sharma and Gupta [47] studied the flow of MHD nanofluids with heat flux
and used HAM to account for the effects of the radiation parameter and viscous dissipation.
Shahzad et al. [48] scrutinized the MHD Jeffery nanofluid boundary-layer flow in response
to the consequences of viscous dissipation and ohmic heating on a stretching surface. They
found that lowering the magnetic parameter lowered both the Nusselt number and the
skin friction coefficient. Kumar et al. [49] expanded their work on Oldroyd-B nanofluids
that pass over a stretched plate in light of Brownian and thermophoresis diffusion, viscous
dissipation, thermal radiation, and ohmic heating effects. Muhammad et al. [50] used HAM
to find a series solution and assessed the 3D magnetohydrodynamic flow generated by
an exponentially stretched surface, after reviewing the impact of viscous dissipation and
Joule heating. Maleki et al. [51] proposed the boundary-layer flow of nanofluids with heat
generation and absorption through a permeable surface under the effects of thermal radia-
tion, viscous dissipation, and slip conditions. Maleki et al. [52] carried out heat transfer
analysis of pseudo-plastic nanofluids that flowed over a moveable porous surface with
viscous dissipation and heat generation/absorption. They presented a numerical solution
by utilizing the Runge–Kutta–Fehlberg fourth–fifth order. Zeeshan et al. [53] investigated
the entropy generation and EMHD using Poiseuille flow of a nanofluid through a wavy
channel, while accounting for thermal radiation, viscous dissipation, and Joule heating.
They showed that increasing the pressure gradient causes an average energy loss. Thi-
agarajan and Kumar [54] proposed MHD boundary-layer flow of a nanofluid with heat
production/absorption through an exponential stretched plate by considering Brownian
and thermophoresis diffusion phenomena. Swain et al. [55] developed a heat transfer
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model for magnetohydrodynamic boundary-layer flow on a permeable surface that in-
cluded Joule heating and viscous dissipation. Thumma and Mishra [56] found an analytical
solution for the heat transfer analysis in an Eyring–Powell nanofluid under the effects of
ohmic heating, heat flux, and viscous dissipation over an elongated sheet, by using the
Adomian decomposition technique and came to the conclusion that enhancing the heat
flux parameter actually reduces the shear stress rate. Sharma et al. [57] carried out heat and
mass transfer analysis of magnetohydrodynamic fluid flow using HAM by incorporating
the effects of viscous dissipation, radiation, chemical processes, variable viscosity, and heat
sources through a stretched surface of varying thickness. Sajid et al. [58] addressed the heat
and mass transfer analysis of an incompressible micro-polar fluid through a porous stretch-
able sheet and utilized the non-linear shooting method by considering viscous dissipation,
thermal radiation, and convective boundary conditions. They noticed that higher order
reactivity improves the heat transfer rate, whereas mass convection boosts concentration.
In addition to analyzing the generation of flow in a parabolic trough solar collector through
a non-linear stretching surface under the influence of radiation and Cattaneo–Christov
heat flux, Abu-Hamdeh et al. [59] determined the entropy generation in a Powell–Eyring
nanofluid across a porous surface. They observed that the generation of entropy is inversely
related to thermal efficiency. Nazeer et al. [60] analyzed the mathematical modeling of
non-Newtonian cross-flow with viscous dissipation and slip boundary conditions and
presented the numerical solution of the problem.

The current study’s aim is influenced by the above-mentioned analysis and extensive
applications in industry and machine building. It has been observed that linear stretching
sheets have been extensively used in heat transfer research. Moreover, no effort has been
made yet to model a non-linear stretching sheet with variable thickness of electromagneto-
hydrodynamics (EMHD) boundary-layer flow of a nanofluid, with the cumulative impact
of thermal radiation, variable viscosity, viscous dissipation, Joule heating, and variable
heat flux. Sheets with variable thickness are practically significant in real-life applications
and are being used in metallurgical engineering, appliance structures and patterns, atomic
reactor mechanization, and paper production. The purpose of this research is to examine
the effects of electro-magnetohydrodynamics (EMHD), non-linear thermal radiation, ohmic
heating, viscous dissipation, and variable heat flux on nanofluid flow over a slandering
stretching plate. To investigate the physical features of the problem, we first examined the
model and identified all the physical properties of the problem. This problem has been
formulated using basic laws and governing equations. The prevailing equations of the flow
model are highly non-linear PDEs (partial differential equations) that have been converted
into a dimensionless form using similarity transformations and non-dimensional variables.
The resulting non-dimensional system of equations has been numerically computed by
utilizing the Adam–Bashforth predictor-corrector technique. Graphs were used to visu-
ally examine the effects of a variety of dimensionless parameters on the flow field. It is
concluded that the velocity of nanoparticles declines as the intensity of the magnetic field
increases. However, the temperature of nanomaterials rises, as increasing the values of
the electric field also increases the velocity distribution. The radiation parameter enhances
the temperature field. The temperature of the fluid increases the occurrence of space and
time-dependent parameters for heat generation, absorption, and radiation. To the best of
the author’s knowledge, this is the first attempt to investigate the EMHD boundary-layer
flow of a nanofluid over a non-linear stretching sheet with variable thickness, under the
combined effects of thermal radiation, variable viscosity, viscous dissipation, Joule heating,
and variable heat flux. This will serve as a good addition to the literature on the flow of
nanofluids over non-linear stretching surfaces.

2. Problem Formulation

In the presence of an electric field, we investigated the 2D MHD flow of a nanofluid
across a non-linear stretchable surface with changing thickness. The surface is stretched
with velocity Uw(x) = b(x + c)n, where b is a constant, c is the sheet extension parameter
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and n is the velocity exponential factor. For the current analysis, a rectangular coordinate
system with (x, y)-axes parallel and normal to the stretching surface has been used. We

suppose that the surface is not flat; therefore, its thickness varies as y = N(x + c)
1−n

2 ,
where N is a minor factor that ensures the sheet is thin enough to avoid a noticeable
pressure difference along its length. A sheet is extended from a slit by two equal and
opposite forces, with the flow being regarded as going in the direction of the applied
magnetic and electric field. Ohm’s law states that J = σ(E + V× B), where J is the current
density, σ is the electrical conductivity and V is the velocity of the fluid. The magnetic

field B(x) = B0(x + c)
n−1

2 and electric field E(x) = E0(x + c)
n−1

2 are applied normally to
the flow in order to keep the Reynolds’ number as low as possible. When the magnetic
Reynolds’ number is small, the generated magnetic field is less than the applied magnetic
field. As a result, no induced magnetic field exists. The temperature of the surface is

taken as Tw = T∞ + T0(x + c)
1−n

2 . We assume that there is a smaller temperature difference
inside the flowing fluid, allowing T4 to be stated as a linear function of temperature by
using the Taylor series technique to extend T4 at an ambient temperature T∞. Additionally,
consideration has been given to the effects of viscous dissipation, Joule heating and non-
uniform heat flux that occur in the energy equation. The geometry of the flow problem is
presented in Figure 1.

Figure 1. Schematic diagram of the model.

Based on these assumptions, the equations for boundary-layer flow, which are made
up of a continuity equation, momentum equation and energy equation, are as follows:

∂u
∂x

+
∂v
∂y

= 0, (1)

ρn f

(
u

∂u
∂x

+ v
∂u
∂y

)
=

∂

∂y

(
µ(T)

∂u
∂y

)
+ σn f

(
E(x)B(x)− B(x)2u

)
, (2)

(
ρcp
)

n f

(
u

∂T
∂x

+ v
∂T
∂y

)
= κn f

∂2T
∂y2 +

16σ∗T∞
3

3k∗
∂2T
∂y2 + µn f

(
∂u
∂y

)2
+ q′′′ + σn f (uB(x)− E(x))2, (3)

with the following boundary conditions:

u = Uw(x) = b(x + c)n, v = 0, −κ ∂T
∂y = h(Tw − T) at y = N(x + c)

n−1
2

u→ 0, T → T∞ as y→ ∞.
(4)
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where u and v denote the velocity components, T represents the fluid temperature, ρn f ,

σn f , αn f =
κn f

(ρcp)n f
denotes the density, electrical conductivity and thermal diffusivity of

the nanofluid. σ∗ and k∗ denote the Stefan–Boltzmann constant and mean absorption
coefficient, respectively. The fluid’s viscosity co-efficient is defined as follows [57]:

µ(T) = µ∗[a1 + b1(1− θ)(Tw − T∞)]. (5)

where a1 and b1 are constants and µ∗ denotes the reference viscosity. In Equation (3), the
term q′′′ represents the non-uniform heat flux and is expressed by the following equa-
tion [37]:

q′′′ =
κn f Uw(x)
υ f (x + c)

[A∗(Tw − T∞) + B∗(T − T∞)]. (6)

Here, A∗ and B∗ are space- and time-dependent heat flux parameters. Therefore, using
the similarity transformations [57], the following equations can be obtained:

u = b(x + c)nF′(ξ), v = −
√

(n+1)υb(x+c)n−1

2

(
F(ξ) + ξF′(ξ)

(
n−1
n+1

))
,

ξ =

√
(n+1)b(x+c)n−1

2υ y, T = T∞ + (Tw(x)− T∞)Θ(ξ)

(7)

Using Equations (5)–(7), the continuity equation is identically satisfied and Equations
(2) and (3) take the following form:

A0
[
(a1 + A(1−Θ))F′′′ − AΘ′F′′

]
+ A1

[
F′′ F− 2n

n + 1
(

F′
)2
]
+ A2M

(
E1 − F′

)
= 0, (8)

Θ′′
(

A4 +
4
3 Rd

)
+ Pr

[
A0Ec(F′′ )2 + A2EcM(F′ − E1)

2 + A3FΘ′ − A3F′Θ
(

1−n
1+n

)]
+

A4
2

n+1 (A∗F′ + B∗Θ) = 0
(9)

The boundary conditions in Equation (4) are given as

F(ξ) =
(

1−n
1+n

)
α, F′(ξ) = 1, Θ′(ξ) = −δ(1−Θ(0)) at ξ = 0
F′(ξ) = 0, Θ(ξ) = 0 as ξ → ∞

(10)

According to Ref. [57],

F(ξ) = f (ξ − α) = f (η),
Θ(ξ) = θ(ξ − α) = θ(η)

(11)

Equations (8)–(10) become

A0
[
(a1 + A(1− θ)) f ′′′ − Aθ′ f ′′

]
+ A1

[
f ′′ f − 2n

n + 1
(

f ′
)2
]
+ A2M

(
E1 − f ′

)
= 0, (12)

θ′′
(

A4 +
4
3 Rd

)
+ Pr

[
A0Ec( f ′′ )2 + A2EcM( f ′ − E1)

2 + A3 f θ′ − A3 f ′θ
(

1−n
1+n

)]
+

A4
2

n+1 (A∗ f ′ + B∗θ) = 0
(13)

f (η) =
(

1−n
1+n

)
α, f ′(η) = 1, θ′(η) = −δ(1− θ(0)) at η = 0
f ′(η) = 0, θ(η) = 0 as η → ∞

(14)

The non-dimensional parameters that appear in Equations (7)–(9) are the magnetic
field parameter M, electric field parameter E1, radiation parameter Rd, Eckert number
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Ec, Prandtl number Pr, wall thickness parameter α, heat transfer Biot number δ, and
dimensionless variable viscosity parameter A, which are defined as follows:

M =
2σf B0

2

ρ f b(n+1) , E1 = E0
B0b(x+c)n , Rd = 4σ∗T3

∞
k∗κ f

, Ec = b2(x+c)2n

(cp) f (Tw−T∞)
,

Pr =
υ f (ρcp) f

κ f
, α = N

√
b(n+1)

2υ f
, δ = h

κ f

√
2υ f

(n+1)b (x + c)1−n, A = b1(Tw − T∞).
(15)

3. Thermo-Physical Properties

Table 1 represents the experimental relationship between the nanofluid’s thermo-
physical properties, where ρn f ,µn f ,

(
ρcp
)

n f , κn f are the density, dynamic viscosity, specific
heat capacity, and thermal conductivity of the nanofluid, respectively, as given by Hamil-
ton [61] and Raza et al. [62]. φ is the volume fraction of nanoparticles, ρp and ρ f are the
densities of the nanoparticles and the base fluid,

(
ρcp
)

p and
(
ρcp
)

f are the heat capacities
of nanoparticles and the base fluid; κp and κ f are the thermal conductivities of the nanopar-
ticles and base fluid. Table 2 shows the numerical values of the thermophysical quantities
of the nanomaterials, which are used to calculate the values of the constant.

Table 1. Thermal properties of nanofluids.

Properties Nanofluid

Density ρn f = (1− φ)ρ f + φρp

Viscosity µn f =
µ f

(1−φ)2.5

Heat capacity
(
ρcp
)

n f = (1− φ)
(
ρcp
)

f + φ
(
ρcp
)

p

Thermal conductivity κn f =

(
κp+2κ f−2φ(κ f−κp)
κp+2κ f +φ(κ f−κp)

)
κ f

Electric conductivity
σn f = 1 +

3φ

(
σp
σf
−1
)

(
σp
σf
+2
)
−
(

σp
σf
−1
)

φ
σf

Table 2. Numerical values of thermo-physical properties of nanoparticles and base fluid.

Physical Properties Base Fluid (H2O) Copper (Cu)

ρ
(

kg/m3
)

997.1 8933

cp(J/kg ·K) 4179 385

κ(W/mk) 0.613 401

σ(/Ωm) 0.05 5.96× 107

4. Physical Quantities

The following definitions provide the mathematical formulations for the wall shear
stress and the heat transfer rate in terms of thermal flux at the wall:

C f =
τw

ρn f U2
w

, τw = µn f

(
∂u
∂y

)∣∣∣
y=N(x+c)

n−1
2

Nux = (x+c)qw
κ f (Tw−T∞)

, qw = −κn f
∂T
∂y

∣∣∣
y=N(x+c)

n−1
2

,
(16)

We obtain the following dimensionless form of the skin friction coefficient and Nusselt
number by incorporating the similarity variables from Equations (7) and (11) into Equation
(16) as follows:

Rex
1/2C f =

A0

A1

√
n + 1

2
f ′′ (0), Rex

−1/2Nux = −A4

√
n + 1

2
θ′(0), (17)
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where the local Reynolds number Rex, a dimensionless quantity, is defined as Rex =
Uw(x + c)/ν f .

5. Numerical Method

In this part, we explored the numerical approach for solving our non-dimensionalized
equations under the provided boundary conditions. The Adam–Bashforth predictor correc-
tor method, being a linear multistep technique, was employed for this purpose. Multistep
techniques try to enhance effectiveness by retaining and using previous phase information
instead of deleting it; hence, they make use of such a large number of earlier points and
derivative values. It works in two phases, which are as follows: firstly, we used the Adam–
Bashforth technique to generate an approximation of the desired values as a predictor.
Then, we used the Adam–Moulton method as a corrector step that rectifies the initial
estimate. The first order system for f (η) and θ(η) is as follows:

f1 = f ′, f2 = f1
′, f3 = f2

′

f3 = f2
′ =

1
[a1 + A(1− θ)]

[
Aθ1 f2 −

A1

A0

(
f2 f − 2n

n + 1
( f1)

2
)
− A2

A0
M(E1 − f1)

]
and the temperature equation θ(η) can be expressed as

θ1 = θ′, θ2 = θ1
′

θ2 = θ1
′ =

1(
1 + 4

3 Rd
)[−Pr

(
A0

A4
Ec( f2)

2 +
A2

A4
EcM( f1 − E1)

2 +
A3

A4
f θ1 −

A3

A4
f1θ

(
1− n
1 + n

))]
The suitable boundary conditions for f (η) and θ(η) are given as follows:

f (0) =
(

1−n
1+n

)
α, f ′(0) = 1,

θ′(0) = −δ(1− θ(0))

In the above equations,

A0 =
µn f
µ f

= 1
(1−φ)2.5 ,

A1 =
ρn f
ρ f

= (1− φ) + φ
ρp
ρ f

,

A2 =
σn f
σf

= 1 +
3φ

(
σp
σf
−1
)

(
σp
σf

+2
)
−
(

σp
σf
−1
)

φ
,

A3 =
(ρcp)n f

(ρcp) f
= (1− φ) + φ

(ρcp)p

(ρcp) f
,

A4 =
κn f
κ f

=

(
2κ f +κp−2φ(κ f−κp)
2κ f +κp+φ(κ f−κp)

)
.

The acquired differential system for f (η) and θ(η) are commonly expressed as follows:

d f
dη = q(η, f ), f (η0) = f0,
dθ
dη = q(η, θ), θ(η0) = θ0.

The Adam–Bashforth predictor approach can be expressed in general as

fk+1 = fk +
3h
2 q(ηk, fk)− h

2 q(ηk−1, fk−1)

θk+1 = θk +
3h
2 q(ηk, θk)− h

2 q(ηk−1, θk−1),
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The general expression for the Adam–Moulton corrector approach is as follows:

fk+1 = fk +
h
2 q(ηk+1, fk+1)− h

2 q(ηk, fk),
θk+1 = θk +

h
2 q(ηk+1, θk+1)− h

2 q(ηk, θk)

where h is a parameter that defines the step size.
For the validation of the results obtained from the Adam–Bashforth predictor-corrector

technique, we have compared our results with those obtained from the explicit Runge–Kutta
method. In Figure 2a, we plot the velocity profile obtained from both the Adam–Bashforth
method and the explicit Runge–Kutta method for varying values of the wall thickness
parameter α. In Figure 2b, we present the absolute error for different values of α. It is
observed that the absolute error between the results obtained from the Adam–Bashforth
method and the explicit Runge–Kutta method is around 10−6 − 10−10, which is considered
to be negligible, and hence validates our results. Similarly, Figure 3a,b show the temperature
profile and absolute error for varying values of the Hartmann number M.

Figure 2. Velocity profile and absolute error for varying values of α. (a) Velocity profile with Adam–
Bashforth and explicit Runge–Kutta method. (b) Absolute error.

Figure 3. Temperature profile and absolute error for varying values of M. (a) Temperature profile
with Adam–Bashforth and explicit Runge–Kutta method. (b) Absolute error.
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6. Graphical Analysis

In this portion, we have discussed the effects and behavior of physical characteristics
on all the profiles. The velocity and temperature curves for numerous physical parameter
values are shown in Figures 4–11. These different parameters include magnetic and electric
field parameters; the wall thickness parameter; radiation parameter; viscous dissipation pa-
rameter; velocity power index; heat transfer Biot number; and heat generation/absorption
parameter. The alteration of the velocity power index n determines the behavior of the
slandering surface. The impact of n on the velocity and temperature profiles is depicted
in Figure 4. An increase in n values enhances the stretching velocity, causing more fluid
deformation, which, as a result, causes the elevation of the velocity boundary layer. In
addition, the temperature of the fluid raises with n, causing the thickness of the thermal
layer to increase.

Figure 4. Impact of n on velocity and temperature.

Figure 5. Impact of α on velocity and temperature.
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Figure 6. Impact of M on velocity and temperature.

Figure 7. Effects of Ec on temperature.

Figure 8. Effects of Rd on temperature.
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Figure 9. Effects of δ on temperature.

Figure 10. Effects of A∗ on temperature. (a) A∗ > 0. (b) A∗ < 0.

Figure 11. Effects of B∗ on temperature. (a) B∗ > 0. (b) B∗ < 0.
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The impact of the wall thickness parameter α on velocity and temperature is presented
in Figure 5. The flow characteristics are considerably reduced when they approach the
surface, resulting in a decrease in wall thickness in accordance with the velocity for each
position inside this zone. The temperature gradient is also depreciated by the wall thickness
parameter. This is due to the lower thermal energy transfer through the thicker parts
towards the fluid flow, as compared to the more narrow parts.

Figure 6 shows the relation between the magnetic field parameter M with fluid velocity
and temperature. It was found that boosting the magnetic field lessens the movement
of nanoparticles. The impact of a vertical magnetic field on an electrically conductive
nanoparticle induces an escalation in the Lorentz force, which is a type of resistive force.
The magnetism property can be used to manipulate fluid velocity. As a result, the increment
of M enables the fluid velocity to descend. Similarly, due to an increment in the values
of M, the velocity gradient drops, which results in the formation of Lorentz force, thus
amplifying the boundary-layer thickness and process of heat conduction, leading to a rise
in thermal distribution.

Figure 7 shows the effect of temperature distribution on the viscous dissipation param-
eter. The Eckert number illustrates heat dissipation by showing the relationship between
the fluid flow’s kinetic energy and the difference in enthalpy between the boundary layer
and the surrounding medium. As the Eckert number rises, the temperature difference
between the fluid’s surface and the surrounding air reduces, allowing the fluid’s tempera-
ture to rise across the domain. As a result, the thickness of the thermal boundary layer is
typically enhanced.

The temperature profile for various Rd values can be observed in Figure 8. The rate
of conduction heat transfer to thermal radiation transfer is described by the radiation
parameter. Thermal radiation accelerates heat transfer because the enhancement in thermal
radiation will increase the thickness of the thermal boundary layer. The temperature and
the thickness of the thermal boundary layer rise as a result of the higher values of Rd
supplying more heat to the working fluid. The heat transfer Biot number δ generates
heat, which is displayed in Figure 9. The Biot number is expressed as the ratio of the
convective heat transfer coefficient to heat conduction and is associated with the convective
boundary conditions somewhere at the surface. An increment in its value represents a high
temperature at the surface, decreasing fluid conductance and raising the thickness of the
temperature profile.

The consequence of the space-dependent heat generation/absorption factor A∗ can be
observed in Figure 10a,b. It was revealed that the temperature distribution engenders en-
ergy, enabling the temperature gradient to expand, due to the escalation in the values of A∗,
whereas the boundary layer absorbs heat, which leads to a substantial drop in temperature
for the negative values of A∗. The effects of a time-dependent heat generation/absorption
factor on temperature are shown in Figure 11a,b. These graphs reflect that as the values of
B∗ increase, i.e., B∗ > 0, more heat energy is produced. As a result of this, the temperature
rises. When the value of B∗ decreases, however, more heat energy is absorbed, resulting in
a significant decrease in temperature.

Table 3 compares the results for the limiting case to those found in the literature by
Daniel et al. [33]. We can observe that the values of − f ′′ (0) for the changing values of n
show good agreement.

Table 3. Comparison of− f ′′ (0) when E1 = 0,M = 0, A = 0, a1 = 1, φ = 0, and α = 0.25 for changing
values of n.

n Daniel et al. [33] Present Result

10 1.143316 1.143220

9 1.140388 1.140575

7 1.132281 1.132588
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Table 3. Cont.

n Daniel et al. [33] Present Result

5 1.118587 1.118767

3 1.090490 1.090916

1 1.000001 1.000019

0.5 0.933828 0.933556

0 0.784284 0.784312

−1/3 0.500000 0.500003

−0.5 0.083289 0.083242

−0.51 0.038484 0.038349

−0.55 −0.197647 −0.197772

−0.60 −0.850207 −0.850697

−0.61 −1.224426 −1.22459

7. Conclusions

In this work, we have investigated a two-dimensional EMHD nanofluid flow on a
stretchable surface with varying thickness. The effects of magnetic fields, electric fields,
variable heat flux, variable fluid viscosity, thermal radiation, viscous dissipation, and
Joule heating on a stretching surface of variable thickness have all been explored. The
leading equations after using similarity transformations and non-dimensional variables
were computed numerically. By visualizing velocity and temperature distributions, the
impacts of various physical parameters were investigated. The main observations drawn
from this study are as follows:

• The fluid’s velocity, as well as the temperature of the nanofluid, increase when the
velocity power index increases.

• By increasing the wall thickness parameter, the fluid’s velocity and temperature are
reduced.

• As the temperature rises, both the fluid velocity decreases and the Hartmann number
decrease.

• By raising the heat transfer Biot number, thermal radiation parameter, and viscous
dissipation parameter, the fluid’s temperature rises.

• When the positive values increase, the impact of the space-dependent and time-
dependent heat generation and absorption parameters generates heat and absorbs
temperature when the negative values decrease.
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Nomenclature

Bo Magnetic field strength (T)
E0 Electric field strength (NC−1)
M Magnetic field parameter
E1 Electric field parameter
T Fluid temperature (K)
Tw Surface temperature (K)
T∞ Free stream temperature (K)
cp Heat capacity (Jkg−1K−1)
Rd Radiation parameter
Pr Prandtl number
δ Biot number
Ec Eckert number
α Wall thickness parameter
qr Radiative heat flux (Wm−2)
k∗ Mean absorption coefficient
n Velocity power index parameter
A Variable viscosity parameter
u, v Components of velocity (ms−1)
N Co-efficient related to stretching sheet
A∗ Space-dependent co-efficient
B∗ Time-dependent co-efficient
Greek symbol
θ Dimensionless temperature (K)
ρ Density (kgm−3)
υ Kinematic viscosity (m2s−1)
µ Dynamic viscosity (kgm−1s−1)
σ Electric conductivity (Sm−1)
σ∗ Stefan–Boltzmann constant (Wm−2K−4)
κ Thermal conductivity (Wm−1K−1)
η Non-dimensional similarity variable
Uw Stretching velocity (ms−1)
Subscript
nf Nanofluid
f Base fluid
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