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Abstract: Ceramic nanomaterials are nanoscale inorganic metalloid solids that can be synthesised
by heating at high temperatures followed by rapid cooling. Since the first nanoceramics were
developed in the 1980s, ceramic nanomaterials have rapidly become one of the core nanomaterials
for research because of their versatility in application and use in technology. Researchers are
developing ceramic nanomaterials for dental use because ceramic nanoparticles are more stable
and cheaper in production than metallic nanoparticles. Ceramic nanomaterials can be used to
prevent dental caries because some of them have mineralising properties to promote the reminer-
alisation of tooth tissue. Ceramic minerals facilitate the remineralisation process and maintain
an equilibrium in pH levels to maintain tooth integrity. In addition, ceramic nanomaterials have
antibacterial properties to inhibit the growth of cariogenic biofilm. Researchers have developed
antimicrobial nanoparticles, conjugated ceramic minerals with antibacterial and mineralising
properties, to prevent the formation and progression of caries. Common ceramic nanomaterials de-
veloped for caries prevention include calcium-based (including hydroxyapatite-based), bioactive
glass-based, and silica-based nanoparticles. Calcium-based ceramic nanomaterials can substi-
tute for the lost hydroxyapatite by depositing calcium ions. Bioactive glass-based nanoparticles
contain surface-reactive glass that can form apatite crystals resembling bone and tooth tissue
and exhibit chemical bonding to the bone and tooth tissue. Silica-based nanoparticles contain
silica for collagen infiltration and enhancing heterogeneous mineralisation of the dentin collagen
matrix. In summary, ceramic nanomaterials can be used for caries prevention because of their
antibacterial and mineralising properties. This study gives an overview of ceramic nanomaterials
for the prevention of dental caries.

Keywords: caries; nanoparticles; nanomaterials; remineralising; dentin; dentistry; prevention

1. Introduction

Dental caries is the mineral loss of dental hard tissues (enamel, dentin, cementum)
caused by fermentable acid produced by cariogenic bacteria. Thus, altering the oral
microenvironment to an acidic environment can cause hard tissue demineralisation in a
period and lead to tooth decay or caries (Figure 1) [1]. However, caries is a preventable
disease, and early caries can be remineralised under a favourable environment [2]. In-
hibiting cariogenic bacteria and biofilm or enhancing remineralisation, or applying
dual action, can be a scientific approach for preventing the initiation of primary caries.
Fluoride has been the first attempt in dental practice used for preventive purposes [3].
Subsequently, casein phosphopeptide-amorphous calcium phosphate [4] has been re-
cently introduced and has shown promising results. Nowadays, researchers are using
nanotechnology to develop multifunctional nanomaterials for preventing caries [5]. An
ideal remineralising agent should transport remineralising minerals and ions to the
deeper surface of the carious enamel or dentin to promote deep remineralisation. More-
over, materials should have antimicrobial properties against cariogenic microbes [6].
They protect teeth from demineralisation without making bacteria resistant. Hence, the

Nanomaterials 2022, 12, 4416. https://doi.org/10.3390/nano12244416 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12244416
https://doi.org/10.3390/nano12244416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-6041-1907
https://orcid.org/0000-0001-9084-4001
https://orcid.org/0000-0003-1167-2999
https://orcid.org/0000-0002-5320-2373
https://orcid.org/0000-0002-3471-180X
https://orcid.org/0000-0002-8167-0430
https://doi.org/10.3390/nano12244416
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12244416?type=check_update&version=1


Nanomaterials 2022, 12, 4416 2 of 17

strategies for caries prevention are microbe inhibition and remineralisation enhance-
ment. Nanotechnology is a recent research trend and has been investigated to develop
anticaries materials. They exhibit unique physical, chemical, and biological properties,
such as large surface-to-volume ratios. There are arguments for the development of
novel nanomaterials for caries prevention [7].
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Figure 1. Schematic illustration of the initiation of caries formation [8].

Ceramic nanomaterials are nanoscale materials that are inorganic metalloid solids
made up of oxides, carbides, carbonates, and phosphates. These ceramic nanomaterials
are synthesised by heating at high temperatures followed by rapid cooling [9]. Ceramic
nanoparticles are more stable and cheaper in production than metallic nanoparticles. Most
ceramic nanoparticles resemble tooth minerals (hydroxyapatite, also known as a calcium
phosphate ceramic). Ceramic materials are biocompatible and have a high affinity to tooth
structure. In addition, they exhibit antimicrobial properties against cariogenic microbes [10].
Common ceramic nanomaterials studied for caries prevention include calcium-based (in-
cluding hydroxyapatite-based), bioactive glass-based, and silica-based nanoparticles. They
could be potential candidates for caries prevention. In this paper, we comprehensively
review ceramic nanomaterials that have been studied for caries prevention.

2. Method

Two investigators searched publications in English on ceramic nanomaterials (includ-
ing their nanocomposite) for caries prevention. They searched three databases: PubMed,
EMBASE, and Web of Science. The keywords were (nanomaterials OR nanoparticles OR
nanocomposites) AND (caries OR tooth decay OR demineralisation OR remineralisation).
The search was restricted to publications in English. No publication year limit was set. The
last search was performed on 11 November 2022 (Figure 2).
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Figure 2. Flow chart of the literature search.

The two investigators removed duplicate publications to attain a list of publications.
They screened the titles and abstracts to exclude literature reviews, abstracts, publications
not related to dental caries or ceramic nanomaterials, publications on ceramic nanomate-
rials that were not in nanoscale, and other irrelevant publications. The two investigators
retrieved the full texts of the remaining publications for review. They then performed
a manual screening of the reference lists in the selected publications. They discussed
the selected publications with another investigator to achieve an agreement on the list of
publications included in this review.

3. Result

The initial literature search revealed 2318 publications (840 articles in PubMed, 441 ar-
ticles in EMBASE, and 1037 articles in Web of Science). In total, 683 duplicate publications
were removed. After screening the titles and abstracts, 1572 publications were removed, as
they were literature reviews, abstracts, publications not related to dental caries or ceramic
nanomaterials, publications on ceramic nanomaterials that were not in nanoscale, or other
irrelevant publications. The references of these selected 63 publications were searched, and
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17 publications that met the inclusion criteria were added. A total of 80 publications met
the eligibility criteria and were included in this review.

Based on the included publications, the investigators categorised ceramic nanomate-
rials into calcium-based nanoparticles (including hydroxyapatite-based nanoparticles), bioactive
glass-based nanoparticles, and silica-based nanoparticles (Table 1).

Table 1. Types of ceramic materials with anticaries properties.

Types of Ceramic Materials Anticaries Properties
[Reference(s)]

1. Calcium-Based Nanoparticles
Nanohydroxyapatite [11–28]
Nanohydroxyapatite (synthetic enamel) [29]
Calcium fluoride nanoparticles [30–32]
Calcium fluoride nanoparticles and dimethylaminohexadecyl
methacrylate [33,34]

Casein phosphopeptide-amorphous calcium phosphate [35]
Nanoamorphous calcium phosphate [36–41]
Dimethylaminohexadecyl methacrylate and nanoamorphous
calcium phosphate [42–47]

Calcium carbonate [48]
Statherin protein-inspired poly(amidoamine) dendrimer and
nanoamorphous calcium phosphate [49]

Nanocalcium phosphate [36,42,43,50–56]
Calcium phosphate polymer-induced liquid precursor [57]
Phosphorylated chitosan-amorphous calcium phosphate [58]
2-methacrylox-ylethyl dodecyl methyl ammonium bromide and
nanoamorphous calcium phosphate [59]

Triethylene glycol dimethacrylate, dimethylaminohexadecyl
methacrylate, and nanoamorphous calcium phosphate [60,61]

2. Bioactive Glass-Based Nanoparticles
Nanobioactive glass and arginine-glycine-aspartate-serine [62]
Nanobioactive glass [63–73]
Nanobioactive glass and fluoride [74,75]
Nanobioactive glass and biosilicate [76,77]
Nanobioactive glass and amorphous calcium phosphate-casein
phosphopeptide [78,79]

Nanobioactive glass and polyacrylic acid [80]
Nanobioactive glass and chitosan [81]
Nanobioactive glass, sodium fluoride, and triclosan [82]
Nanobioactive glass, silver, and silica [83]

3. Silica-Based Nanoparticles
Mesoporous silica nanoparticles and calcium [35,84]
Silica nanoparticles and nanohydroxyapatite [85–87]
Tricalcium silicate [88–90]
Nano-silica [91]
Mesoporous silica-based epigallocatechin-3-gallate and
nanohydroxyapatite [92]

Mesoporous silica nanoparticles-encapsulated chlorhexidine [93,94]
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4. Discussion
4.1. Mechanisms of Caries Progression and Prevention

The mechanisms behind dental caries are well-established. Studies have commonly
described microbial (cariogenic bacteria and biofilm) effects and dental hard tissue dem-
ineralisation for the caries mechanism. However, due to the complex nature of caries
progression, these mechanisms are not linear. Cariogenic bacteria grow on surfaces as
organised groups called dental plaque. This dental plaque is basically a biofilm. Biofilm
leads to caries formation. However, precepted biofilm on a tooth surface does not confirm
the presence of caries. Caries initiates only after a complex interaction of host factors,
including stagnation area (the tooth surface), fermentable carbohydrate (free sugars), and
cariogenic bacteria that can lead to caries expression over time (Figure 3) [95].
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Figure 3. Pathological and protective factors affecting demineralisation of tooth tissue.

Organic acids produced by biofilm bacteria demineralise the crystalline mineral struc-
ture of the tooth in demineralisation. Lactic acid predominantly exists in this process and is
considered to be the main acid involved in caries formation [96]. In this acidic condition,
the pH level drops to a favourable condition for the dissolution of hydroxyapatite in dental
hard tissue. Hydrogen ions in the acidic environment dissolve hydroxyapatite, producing
calcium ions, phosphate ions, and water. Therefore, the surface demineralisation of the
tooth occurs [97]. After that, the loss of minerals leads to developing permeability and
porosity, enamel crystal derangement, and further acid diffusion to enamel pores. This
acid diffusion decreases the pH around the enamel crystals and further dissolves the hy-
droxyapatite [98]. Some of the anticaries agents inhibit the growth of cariogenic bacteria
to decrease the organic acids produced by bacteria. Some of the anticaries agents protect
the surface layer from further demineralisation and facilitate remineralisation when the
calcium and phosphate content increases in saliva [99].

The buffering of saliva plays a crucial role in maintaining a neutral pH in the oral
environment (Figure 3). The increased pH value makes saturated calcium and phosphate
ions redeposited, leading demineralisation to stop and minerals to add back to the dissolved
enamel surface. Therefore, partially dissolved enamel crystal and enamel surface become
remineralised. Saliva is essential for this remineralisation and maintaining tooth integrity.
Saliva can be supplemented with an antibacterial/antibiofilm component or remineralising
mineral components or their combination to prevent caries formation and progression.
It can arrest demineralisation and facilitate remineralisation. In Figure 4, the schematic
illustration explains the mechanism of de- and remineralisation.
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Figure 4. Schematic illustration of enamel demineralisation and remineralisation. (a) Deminera-
lisation—acid from biofilm dissolves the enamel crystal and leaks out minerals such as calcium,
phosphate, and carbonate. (b) Remineralisation—antimicrobial or remineralising or dual functional
ceramic nanoparticles inhibit cariogenic biofilm and restore the lost minerals by the accumulation of
calcium, phosphate, and fluoride in the partially dissolved enamel crystal.

4.2. Calcium-Based Nanoparticles

Dietary sources provide calcium, which is an essential mineral for teeth and bones [40].
Unlike acidic desolation, the leak of calcium also starts the demineralisation of the tooth,
resulting in dental caries [100]. Calcium-enriched saliva facilitates remineralisation. Cal-
cium and phosphate ions are mainly responsible for the inhibition of demineralisation
and enhancement of remineralisation and act as a natural defence mechanism against
dental caries. However, in the persistent cariogenic condition, the balance of these ions
disrupts and rearranges the enamel surface [1]. A secondary supply can overcome the
requirement. Noninvasive caries management by remineralisation has been shown to
be a major advantage in clinical dentistry. Therefore, some researchers have employed
calcium nanomaterials to meet these requirements. Recently, researchers have studied
several calcium phosphate-based remineralisation systems for caries management [101].

Hydroxyapatite is a natural mineral in the form of a calcium phosphate apatite that is
similar to the human hard tissues in morphology and chemical composition [102]. Hydrox-
yapatite is the key component of teeth and bones. It usually exists with a length of 60 nm
and a width of 5–20 nm. It is responsible for the rigidity and strength of the basic structure
of hard dental tissue [103]. Nanohydroxyapatite has received great attention and is promis-
ing in cariology research for its morphological and mineral structure similarity with bone
and teeth [104]. Due to its biocompatibility, bioactivity, and antibacterial effect [12], it can
enhance several beneficial properties of existing restorative materials [105].
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Several studies have reported the remineralisation potentials of nanohydroxyapatite
when researchers incorporated it into restorative materials or toothpaste [14,24,106]. The
efficacy of nanohydroxyapatite in remineralising caries lesions was effective [11]. A study
examined different nanohydroxyapatite concentrations on initial enamel caries lesions
under dynamic pH-cycling conditions and found that nanohydroxyapatite improved
surface microhardness [12]. It was also reported that nanohydroxyapatite particles were
deposited on the cellular structure of the demineralised enamel and formed new layers on
the enamel surface.

Simultaneously, a study found that the remineralisation effect of nanohydroxyapatite
on demineralised bovine enamel was better than that of microhydroxyapatite in different
pH cycling conditions [13]. In addition, the researchers described that nanohydroxyap-
atite can contribute to both the particle and ion-regulated remineralisation for repairing
demineralised enamel.

At the same time, a study added nanohydroxyapatite to a sports drink and found it
to be effective against dental erosion [25]. In another study, nanohydroxyapatite-treated
enamel block showed a protective layer formation with increased microhardness on the
enamel surface in a cariogenic condition [27].

One study reported higher remineralising effects of nanohydroxyapatite compared to
amine fluoride toothpaste on bovine dentine and suggested using nanohydroxyapatite for
caries prevention [14]. At the same time, an article investigated nanohydroxyapatite and
Galla chinensis on the remineralisation of initial enamel caries lesions [26]. The researchers
reported that they had found enhanced remineralisation by depositing more minerals to
the decay to reduce the depth of the lesions.

Another study reported the remineralisation effect of nanohydroxyapatite in a conju-
gate of sealant and found it effective in sealing demineralised microleakage of enamel pits
and fissures by depositing nanoparticles [28]. It also maintained the shear bond strength of
the sealant. Thus, the study suggested use in minimal intervention dentistry applications
for sealing demineralised pits and fissures on the enamel.

Another study showed no demineralisation in the sound enamel when it is exposed
to nanohydroxyapatite [15]. These researchers demonstrated that nanohydroxyapatite
dentifrice showed remineralisation comparable to fluoride. Thus, they suggested using
nanohydroxyapatite as an alternative to fluoride toothpaste to prevent caries. In another ar-
ticle, researchers employed nanohydroxyapatite gel, ozone therapy, and their combination
therapy [16]. They reported that although these exert some capacities for remineralisation
individually, the combination showed the best effect in nonrestorative caries management.
Therefore, the researchers suggested using this combination therapy for a longer period to
provide nonrestorative caries treatment.

Another study showed that nanohydroxyapatite toothpaste remineralised caries le-
sions [17]. The study also reported a great reduction in lesion depth, and formation of
a new enamel layer was noticed using nanohydroxyapatite toothpaste. It reported that
the combined effects of a nanohydroxyapatite and fluoride mouth rinse on an early caries
lesion in human enamel improves remineralisation. They showed that the level of reminer-
alisation was proportionate to the concentration of nanohydroxyapatite. In addition, yet
another study reported that nanohydroxyapatite exhibits a synergistic role in remineralisa-
tion with a fluoride mouth rinse [18]. However, researchers should conduct further study
to determine the optimum concentration of nanohydroxyapatite and sodium fluoride in
mouth rinse for clinical applications.

A similar study reported that the microhardness decreased significantly after immer-
sion in a demineralisation solution and increased following immersion in a nanohydroxya-
patite and sodium fluoride mouth rinse [19]. Although this increase was not statistically
significant, this study reported that nanohydroxyapatite and sodium fluoride mouth rinses
enhance remineralisation and tooth microhardness. In a comparative study, researchers
reported that nanohydroxyapatite gel can significantly remineralise enamel and cementum
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caries [20]. Another study demonstrated that nanohydroxyapatite can significantly increase
microhardness of tooth enamel following exposure to soft drinks [21].

Furthermore, other studies concerned nanohydroxyapatite-incorporated dental ma-
terials. One such study found that nanohydroxyapatite-incorporated resin infiltrants
can improve the prevention of recurrent demineralisation [22]. Moreover, another study
showed that a fluorine-free toothpaste containing biomimetic nanohydroxyapatite has
potential in preventing dental caries in the primary tooth [23]. This toothpaste prevents
fluorosis and remineralizes and repairs enamel. The same study also reported that an
acidic paste consisting of fluoride-hydroxyapatite was applied to repair small caries lesions.
These researchers found that nanocrystalline growth can rapidly and seamlessly repair
early caries with negligible wastage of enamel structure [29]. There was outstanding poten-
tial in using nanohydroxyapatite, but most of it was the in vitro stage. Researchers should
conduct more advanced studies to validate the laboratory findings for the development of
a novel nontoxic remedy that could be introduced in caries prevention.

Calcium phosphate nanoparticles can substitute for the lost hydroxyapatite by form-
ing a new layer on carious teeth through the depositing of calcium and phosphate ions [107].
One study revealed that nanoamorphous calcium phosphate incorporated adhesive-enhanced
dentin remineralisation [37]. These researchers reported that the incorporated adhesive can
enhance acid neutralisation, thus enhancing calcium and phosphate content. In addition, it
maintained a strong bond interface, inhibited secondary caries, and increased the longevity
of the restoration. At the same time, some researchers reported on the amorphous calcium
phosphate capability to have calcium and phosphate ions recharge and rerelease [38,108].

Simultaneously, the researchers described nanoamorphous calcium phosphate to pro-
vide long-term and sustained release of calcium and phosphate ions to create an anticaries
environment. They also suggested using nanoamorphous calcium phosphate in conjunc-
tion with dental adhesives, composites, cement, and pit and fissure sealants to provide
long-term anticaries properties. Researchers also studied amorphous calcium phosphate-
containing orthodontic cement for effective caries inhibition and remineralisation to avoid
white spot lesions in orthodontic treatments [36].

Nanoamorphous calcium phosphate with an antibacterial agent exhibited antibac-
terial and remineralising actions. The researchers reported nanoamorphous calcium
phosphate-dimethylaminohexadecyl methacrylate composites as antibacterial and reminer-
alising agents. Several studies have demonstrated that they inhibit lactic acid production,
biofilm growth, and demineralisation. At the same time, they increase bond strength
with dentin [42–44,46]. Moreover, another study reported that nanoamorphous calcium
phosphate and quaternary ammonium methacrylate composites can inhibit oral microbes
and their biofilm. They can also enhance the recovery of the dentin–pulp complex and
dentin reformation [109].

In one study, 2-methacrylox-ylethyl dodecyl methyl ammonium bromide and nanoamor-
phous calcium phosphate exhibited antibacterial activities and remineralising properties
without altering the bond strength of the composite resin [59]. Another study investi-
gated the salivary statherin protein-inspired poly(amidoamine) dendrimer and adhesive
containing nanoamorphous calcium phosphate in a cyclic artificial saliva/demineralising
solution [49]. The nanocomposites exhibited significant remineralisation of artificial caries.

A nanoamorphous calcium phosphate and dimethylaminohexadecyl methacrylate
nanocomposite-incorporated dental adhesive showed antibacterial and remineralisation
capabilities. In addition, the nanocomposite inhibited biofilm without changing mechani-
cal properties. Thus, it exhibited the ability to be incorporated into other existing dental
materials [47]. Another study used nanoamorphous calcium phosphate and dimethy-
laminohexadecyl methacrylate nanocomposites with a resin-based crown cement. The
nanocomposite showed the development of antibacterial activity against a saliva micro-
cosm biofilm.

In addition, self-healing microcapsules (poly[urea-formaldehyde] shells containing
triethylene glycol dimethacrylate, dimethylaminohexadecyl methacrylate, and nanoamor-
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phous calcium phosphate) have been developed for preventing secondary caries. This
agent has shown antibacterial and remineralising effects. The researchers demonstrated
that this agent has excellent dentin bond strength, autonomous crack-healing and fracture
toughness, and strong antibiofilm properties [60].

In a different study, a fluoride dentifrice containing nanocalcium phosphate reminer-
alised early caries and prevented artificial incipient caries [50,51]. In yet another study, the
researchers used nanocalcium carbonate for enamel remineralisation. The carbonate had
the potential to remineralise incipient enamel caries using the unique anticaries proper-
ties of nanocalcium carbonate. In addition, these researchers reported that nanocalcium
carbonate can be retained on oral surfaces and release calcium ions into oral fluids [48].

Two studies developed rechargeable agents that can provide long-term release of cal-
cium and phosphate ions for remineralisation and reduction of caries [52,53]. In addition,
there was no adverse effect on dentin bond strength. Nanoamorphous calcium phosphate-
containing adhesives had high remineralising properties. The study demonstrated that
nanoamorphous calcium phosphate adhesive released calcium and phosphate, neutralised
acidic conditions, and reduced the production of lactic acid and biofilm. The developed
adhesive also has potential for remineralisation [41]. Another study used nanosilver, qua-
ternary ammonium dimethacrylate, and nanoamorphous calcium phosphate with adhesive.
They suggested that this novel approach of combining antimicrobial and remineralising
agents with adhesive could be used for caries prevention [56].

One study demonstrated that calcium phosphate nanoparticle-filled dental cement
showed good bond strength to enamel, calcium, and phosphate ion recharge/rerelease.
The cement can also inhibit biofilm to reduce caries [54]. Other researchers developed
calcium fluoride nanoparticles incorporated in a nanocomposite. They reported that
nanocomposites have high fluoride release, strong mechanical properties, durability, high
strength, and high load-bearing capacities. Calcium fluoride nanocomposites could be a
promising stress-bearing and caries-inhibiting restorative material [31].

One study showed that calcium fluoride nanoparticles reduced biofilm formation
and exopolysaccharide production. The same study also reported that calcium fluoride
nanoparticles substantially inhibit cariogenic biofilm and could be used as a topical anti-
caries agent [32]. Another study suggested that calcium fluoride nanoparticles enhanced
remineralisation by increasing labile fluoride concentration in the oral fluid [30]. Still
another study incorporated calcium fluoride nanoparticles with dimethylaminohexadecyl
methacrylate to increase the release of fluoride and calcium ions to promote remineralisa-
tion [33,34].

Besides the antibacterial effect, the current research focuses on synthesising biomimetic
dental enamel using calcium phosphate nanoparticles as a widely accepted research theme.
One study investigated the biomimetic remineralisation potential of a calcium phosphate
polymer-induced liquid precursor at demineralised artificial caries and dentin caries lesions.
They have shown biomimetic remineralisation with better bonding of interfacial of the
biomimetic remineralised artificial caries dentin lesion [57].

Another study showed that phosphorylated chitosan–amorphous calcium phosphate
exhibited biomineralisation to form a dental hard tissue-like structure that resembles enamel
structures. In addition, the remineralisation of enamel by using phosphorylated chitosan–
amorphous calcium phosphate was higher than that of fluoride [58]. Researchers should
conduct advanced studies to translate these potentials in in vivo and clinical settings.

4.3. Bioactive Glass-Based Nanoparticles

Bioactive glasses are surface-reactive bioceramic materials widely used in biomed-
ical applications [110]. They usually dissolve in body fluids and form apatite crystals
that resemble bone and tooth tissue, and exhibit chemical bonds to the bone and tooth
surface [111,112]. In one study, nanobioactive glass containing resin composites showed
a uniform apatite layer formation on the tooth surface with no negative effects on their
underlying properties [113].
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At the same time, a nanobioactive glass-containing composite increased the micro-
hardness of demineralised dentin [114]. Nanobioactive glass can induce hydroxyapatite
formation and osteoinductive ability. In oral conditions, nanobioactive glass forms hydrox-
yapatite on the dentin surface, seals the orifices of the dentinal tubules, and reduces dentin
permeability and sensitivity [115–117]. Demineralised dentin treated with nanobioactive
glass was enriched with minerals and ions. The nanobioactive glass also increased the
microhardness of the carious lesion surface [118,119].

Although remineralisation is well-reported, researchers have not well explored its
mechanism. There are no clear data on whether it is intrafibrillar or extrafibrillar minerali-
sation. In one study, arginine–glycine–aspartate–serine was conjugated with nanobioactive
glass. The conjugate showed a crystal lattice formation in the demineralised dentin matrix.
The crystal lattice has the highest dentin cohesive strength and intrafibrillar mineralisation.
Thus, researchers have suggested using this composite in dentin erosion, hypersensitivity,
a bonding interface, and regenerative dentistry [62].

Simultaneously, a study demonstrated that nanobioactive glass can increase the Vick-
ers hardness number and reduce caries depth on the surface of the lesion [63]. Interestingly,
researchers have found that dental materials with bioactive glass can release ions to inhibit
dental caries. The study showed nanobioactive glass contents in sealant-enhanced inhibi-
tion of demineralisation of the enamel surface in a cariogenic environment. The researchers
stated that despite some marginal leakage, these novel sealants were effective in inhibiting
secondary caries at the margins [64].

On the other hand, researchers have also reported that nanobioactive glass apatite
can induce cell proliferation and differentiation of dental stem cells into a mineralising
lineage. One study investigated the effects of nanobioactive glass on the odontogenic
differentiation and mineralisation of human dental pulp cells. The nanobioactive glass can
exhibit enhanced alkaline phosphatase activity, collagen type I, dentin sialophosphoprotein,
dentin matrix protein 1 production, and mineralised nodule formation [66].

Similarly, nanobioactive glass can also induce odontogenic differentiation of rat dental
pulp stem cells, which might be used as a potential dentin regenerative additive for existing
or new dental material for enhancing odontoblast differentiation [67]. An investigation
explored whether nanobioactive glass-incorporated endodontic sealer promoted cemento-
blast differentiation of human periodontal ligament stem cells without any growth factors.
It also enhanced gene expression for the production of mineralised tissues [68].

Studies have also reported the antimicrobial and remineralisation properties of nanobioac-
tive glass [69,73]. One study reported that nanobioactive glass has a stronger antibacterial and
antibiofilms effect than that of triclosan or sodium fluoride alone. What is more, nanobioactive
glass combined with either triclosan or sodium fluoride may exert an addictive antibacterial
effect and enhanced biofilm inhibition effect [82].

Combining apatite-forming capability and antimicrobial activity, nanobioactive glass
was incorporated into several commercial dental products, especially in toothpaste [120,121].
Studies showed that when nanobioactive glass-incorporated toothpaste is introduced into
the oral environment, the toothpaste can release sodium, calcium, and phosphate ions.
These ions react with oral fluid and form crystalline hydroxyapatite that structurally and
chemically resembles tooth minerals. The nanobioactive glass can increase remineralisation
and seal dentinal tubules. It can also provide continuous occlusion and inhibit tooth sensi-
tivity. Thus, it can potentially be used for remineralisation and caries prevention [70,71,115].

Nanobioactive glass is capable of depositing layers of hydroxyl carbonate apatite in
body fluids. In one study, researchers treated caries lesions in human dental enamel with
a nanobioactive glass paste and phosphoric acid. This paste formed a crystalline layer
that was later converted to hydroxyapatite crystals in artificial saliva. The researchers
suggested restoring incipient enamel erosive lesions with an abrasion-durable layer of
hydroxyapatite crystals [65]. At the same time, some researchers reported that fluoride- and
phosphate-incorporated nanobioactive glass can form fluorapatite, which is more active
than hydroxyapatite in resisting an acidic environment. In addition, they can provide
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dentin sealing and control the release of calcium, phosphate, and fluoride ions for a longer
period after tooth brushing [74,75].

Chitosan–nanobioactive glass is effective in promoting subsurface mineral deposition
without the salivary pellicle. It exhibits greater mineral deposition and enhanced subsurface
microhardness. Therefore, the researchers reported that it is promising for remineralising
enamel caries as well as desensitising exposed porous vital dental tissues. Thus, the
researchers suggested using it as an alternative clinical strategy in caries prevention [81]. A
study reported that nanobioactive glass containing resin bonding can reduce microleakages
of the resin–dentin interface by depositing minerals that facilitate remineralisation [72].

On the other hand, it has been shown that silver-doped bioactive glass/mesoporous
silica nanoparticles can effectively seal the orifices of the dentinal tubules in acidic con-
ditions and form a membrane-like layer. Moreover, it did not decrease bond strength
in the self-etch adhesive system and had low or negligible cytotoxicity and antibacterial
effects [83]. Some researchers incorporated nanobioactive glass into BiodentineTM to form
nanobioactive glass–biodentine composites. The product can accelerate apatite forma-
tion, seal the orifices of the dentinal tubules, and enhance the formation of a mineral-rich
interfacial layer on the dentine surface [76]. Demineralised enamel and dentin surfaces
treated with nanobioactive glass and amorphous calcium phosphate–casein phosphopep-
tide showed a highly significant increase in microhardness. They effectively remineralised
the early caries of enamel. However, nanobioactive glass showed better results initially, but
eventually both had a similar remineralising potential [78,79].

In another study, researchers found that nanobioactive glass powder and nanobioac-
tive glass containing polyacrylic acid could enhance the remineralisation of enamel of
white spot lesions. The material also exhibited significantly higher surface and cross-
section Knoop microhardness. Although there was a significant mineral deposition, lesion
depth was not significantly reduced [80]. Another study evaluated nanobioactive glass
ceramic for erosion and caries control. The ceramic can exhibit a higher potential in re-
ducing surface loss and initiation and the progression of erosion and enamel caries [77].
Nanobioactive glass ceramics are opening a noninvasive treatment strategy for caries pre-
vention. More advanced research will find the optimal application of nanobioactive glass
in caries management.

4.4. Silica-Based Nanoparticles

Silica is an inorganic ceramic material composed of silicon dioxide [122]. Silica in a
colloidal solution occurs as an insoluble dispersion of amorphous fine silica particles [123].
Silica is one of the attractive minerals for collagen infiltration. It is assumed that it can
penetrate the demineralised collagen matrix without precipitating on the surface [116,124].
Calcium-doped mesoporous silica nanoparticles as inorganic fillers improve the mechanical
properties of the resin composites. Some researchers have suggested using these nanoparti-
cles as a carrier for ciprofloxacin hydrochloride loading to add antibacterial properties to
facilitate secondary caries prevention [84].

In one study, calcium mesoporous silica nanoparticles were shown to reduce rough-
ness and to be effective in minimising tooth surface loss compared to that of casein
phosphopeptide–amorphous calcium phosphate, titanium fluoride, and sodium fluoride.
Therefore, the researchers suggested that these nanoparticles are promising in reducing
dental erosion [35]. In other studies, researchers have studied nanohydroxyapatite and
silica nanoparticles on erosive enamel and dentin lesions. They reported that the mineral de-
position in enamel was not statistically different. However, in dentin, nanohydroxyapatite
infiltrated significantly more minerals than did the nanosilica infiltrant [85].

Some researchers have investigated a versatile dentin surface biobarrier comprising a
mesoporous silica-based epigallocatechin-3-gallate/nanohydroxyapatite delivery system.
This system can protect orifices of the dentinal tubules against acid and abrasion, reduce
dentin permeability, and inhibit the S. mutans biofilm formation to protect the exposed
dentin [92]. In another study, demineralised dentin infiltrated with silica nanoparticles
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exhibited enhanced heterogeneous mineralisation of the dentin collagen matrix in an
artificial saliva solution [86]. Another study showed that bioactive tricalcium silicate
was capable of repairing the acid-etched enamel. Thus, the researchers suggested it as a
potential in protecting demineralised teeth [88]. Similarly, other researchers also reported
that tricalcium silicate paste may have the potential for remineralising subsurface enamel
lesions [89].

Some researchers have reported that orthodontic adhesives containing calcium silicate
are effective for acid neutralisation, apatite formation, and enamel remineralisation [90].
One study showed that collagen infiltrated with hydroxyapatite and nanosilica can be used
as a scaffold for remineralising dentin [87]. Another study used rice husk nanosilica and
demonstrated that they exhibit dentin hydroxyapatite formation. In addition, they exhibited
antimicrobial effects [91]. On the other hand, another study reported that mesoporous silica
biomaterials had the potential to be a catalyst and carrier in the repair and/or regeneration
of dental hard tissue [94].

To incorporate antimicrobial activity into glass ionomer cement without altering its
mechanical properties, some researchers have added mesoporous silica nanoparticles-
encapsulated chlorhexidine to glass ionomer cement. These researchers found that the
nanoparticles may obtain antibiofilm ability with no adverse effects on mechanical prop-
erties. Thus, mesoporous silica nanomaterials can be suggested as a new strategy for
preventing secondary caries [93]. Researchers should conduct further studies to choose the
better application of silica nanoparticles in caries prevention as well as in clinical dentistry.

5. Conclusions

In conclusion, ceramic minerals have potential in the prevention of dental caries. They
facilitate the remineralisation process and maintain the equilibrium of pH levels to maintain
tooth integrity. Antimicrobial nanoparticles-conjugated ceramic minerals provide dual
action and prevent caries formation and progression.
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