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Abstract: Two three-dimensional (3D) stochastic microsensors based on immobilization of proto-
porphyrin IX (PIX) in single-walled carbon nanotubes (SWCNT) and multi-walled carbon nan-
otubes (MWCNT) decorated with copper (Cu) and gold (Au) nanoparticles were designed and
used for the molecular recognition of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydroge-
nase 2 (IDH2) in biological samples (brain tumor tissues, whole blood). The linear concentration
ranges obtained for the molecular recognition and quantification of IDH1 and IDH2 were: IDH1
(1 × 10−5–1 × 102 ng mL−1) and IDH2 (5 × 10−8–5 × 102 ng mL−1). The limits of quantification
obtained using the proposed microsensors were: 10 fg mL−1 for IDH1 and 5 × 10−3 fg mL−1 for
IDH2. The highest sensitivities were obtained for the microsensor based on MWCNT. High recoveries
versus enzyme-linked immunosorbent assay (ELISA) standard method were recorded for the assays
of IDH1 and IDH2, all values being higher than 99.00%, with relative standard deviations (RSD)
lower than 0.10%.

Keywords: stochastic microsensors; isocitrate dehydrogenase 1; isocitrate dehydrogenase 2;
carbon nanotubes

1. Introduction

Enzyme and gene assays play a very important role in cancer diagnosis. There
are two genes—human isocitrate dehydrogenase (IDH) isoforms—which are homodimer
isoenzymes: IDH1 found in cytoplasm and peroxisomes, and IDH2 in mitochondria. IDH1
and IDH2 play a very important role in the diagnosis of brain cancer [1–6]. Accordingly,
they can be used as biomarkers for the rapid diagnosis of brain cancer/gliomas, which
are encountered frequently in highly developed countries and have the worst prognosis
among solid cancers. Diffuse gliomas are the most common primary brain tumors found in
adults, affecting approximately 20,000 people annually in the United States [7].

To date, polymerase chain reaction (PCR) and deoxyribonucleic acid (DNA) sequenc-
ing are the main techniques used for the assay of IDH1 and IDH2, e.g., DNA pyrosequenc-
ing was proposed for the assay of IDH1 and IDH2 [8]. A multiplex-based bead assay [9]
and a fluorescence method [10] were also proposed for the assay of IDH1 and IDH2. The
only sensors proposed to date are the 2D disposable stochastic sensors, which are capable
of determining IDH1 and IDH2 in whole blood and tissue samples [11]. There are numer-
ous commercial ELISA kits used for the assay of IDH1 and IDH2 in clinical laboratories
as standard methods. The US Food and Drug and Administration (FDA) office recently
approved a method for the assay of IDH1 and IDH2 based on PCR analysis [12]. These
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methods are very expensive and time-consuming; furthermore, extensive processing of the
biological sample is needed.

To address the necessities of clinical practice for the molecular recognition and de-
termination of IDH1 and IDH2 in biological samples, we developed a reliable, fast, and
cost-effective screening method based on the utilization of stochastic microsensors—the
only type of sensors able to perform qualitative and quantitative analysis [13–15]. The
stochastic microsensors were based on immobilization of a solution of PIX in SWCNT and
MWCNT decorated with Cu and Au nanoparticles. Carbon nanotubes (CNT) have the good
conductivity (improved by the addition of Cu and Au nanoparticles) and good chemical
stability needed to maintain in shape the channels of the stochastic microsensors [16,17].
Protoporphyrin IX is well known for its ability to form the molecular aggregates and stable
channels needed for stochastic sensing [18].

The main advantage of the proposed 3D stochastic sensors versus the 2D stochastic
sensors is that they can be used for more than one month continuously for more than
100 measurements, maintaining a highly reliable profile for the analysis.

2. Materials and Methods
2.1. Materials and Reagents

Isocitrate dehydrogenase 1, isocitrate dehydrogenase 2, protoporphyrin IX ≥ 95%,
copper powder (spheroidal, 10–25 µm, 98%), gold nanoparticles (10 nm diameter, OD 1,
stabilized suspension in 0.1 mM phosphate buffer solution (PBS), reactant free), single
wall and multiwall carbon nanotube, sodium phosphate monobasic monohydrate, sodium
phosphate dibasic heptahydrate, and sodium chloride were procured from Sigma Aldrich
(Burlington, Massachusetts, USA). The paraffin oil was purchased from Fluka (Buchs,
Switzerland). The IDH1 and IDH2 solutions of different concentrations, 1.00 × 10−11

to 10 µg mL−1, and 5.00 × 10−11 to 50 µg mL−1, respectively, were prepared in a PBS
0.15 mol L−1 of sodium chloride, using the serial dilution method. For the assay of IDH1,
an ELISA kit from Biomatik (Wilmington, DE, USA) was used, while for the assay of IDH2,
an ELISA kit from Abbexa (Cambridge, UK) was used.

2.2. Instruments and Methods

All experimental measurements were performed at room temperature inside the Fara-
day cage with an AUTOLAB/PGSTAT 12 (Metrohm) linked to a computer with GPES
software version 4.9 (Utrecht, The Netherlands), to record and interpret the measure-
ments. A chronoamperometric method was used for the measurements of toff and ton,
at a fixed potential (125 mV vs. silver/silver chloride (Ag/AgCl)), with 360 s for the
calibration measurements for the analytes as well as for the samples. The electrochemical
cell comprised three electrodes: the auxiliary electrode—a platinum wire, the reference
electrode—Ag/AgCl, and the working electrode—the stochastic microsensor designed for
the molecular recognition of IDH1 and IDH2.

The 3D microtubes with internal diameters of 25 µm were printed in the laboratory
using a Stratasys Objet 24 printer (Rehovot, Israel). The determination of the pH for
the buffer solutions was done using a Mettler Toledo pH meter (Columbuo, OH, USA).
Deionized water from a Direct-Q3 UV water purification system (Millipore Corporation,
Darmstadt, Germany) was used for the preparation of all solutions.

The structural analysis of the active surfaces of the sensors was performed by X-ray
diffraction using a PANalytical diffractometer (FEI Company, The Netherlands), with Cu-
Kα radiation (λ = 0.15406 nm), and 2θ ranging from 20◦ to 80◦. The surface morphology
and elemental analysis were performed with a scanning electron microscope (FEI Company,
The Netherlands), equipped with an energy-dispersive X-ray detector (EDX). In this case,
the working parameters were the following: high voltage (HV), magnification, the working
distance (WD), and the used detector (LFD—for low vacuum), with scanning rate not being
a given parameter.
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2.3. Design of 3D Stochastic Microsensors

A total of 100 mg SWCNT powder and MWCNT, respectively, were mixed with 10 µL
of Au nanoparticle dispersion which contained 1 mg powder copper, and paraffin oil until
two homogeneous pastes were obtained. To obtain the modified pastes, 100 µL solution of
PIX (1.00 × 10−3 mol L−1, prepared in tetrahydrofuran) was added to each of the pastes.

The modified pastes were placed in the 3D microtubes with internal diameters of
25 µm (Figure 1). When not in use, the stochastic microsensors were placed at 4 ◦C, in a
dark place.

Figure 1. Experimental set-up.

2.4. Stochastic Mode

The chronoamperometric method was used for the qualitative and quantitative analy-
sis of IDH1 and IDH2, based on their signatures (toff values), as well as the corresponding
ton (which was read in between two toff values) (Figure 2). A constant potential of 125 mV
vs. Ag/AgCl at 25 ◦C was applied for the determination of IDH1 and IDH2. The designed
microsensors were introduced into a cell containing analyte solutions of different concen-
trations. The calibration equations 1/ton = a + b × CIDH1orIDH2 were determined using the
linear regression method. The concentrations of IDH1 and IDH2 in the biological samples
were determined by inserting the values of 1/ton obtained after measuring the biological
samples, in the calibration equations.

Figure 2. The model for current development in stochastic sensing.
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The principle behind the functioning of the stochastic sensor is based on pore con-
ductivity [19–22]. The current development of stochastic sensors is shown in Figure 2.
Accordingly, with the principles of stochastic methods, all molecules from a solution
(sample) may enter into the pores/channels as a function of their sizes, geometry, stereo-
chemistry, and capacity for unfolding. The molecule responsible for the stochastic sensing
was the PIX, which in contact with water forms at the membrane–solution interface molec-
ular aggregates presenting the necessary pores for stochastic sensing. After the application
of 125mV (Figure 2), the molecular recognition of the biomarkers takes place in two stages.
During the first stage, the analyte enters the pore and blocks it, and the current intensity
drops to 0 A until the whole analyte enters the pore—the time needed to enter the pore
is the signature of the analyte (toff value) and is the qualitative parameter. In the second
stage, the interaction of the analyte with the wall of the pore and the redox processes
take place during the ton—its value is measured in between two toff values and is the
quantitative parameter.

2.5. Sample Preparation

The proposed 3D stochastic microsensors were used for the molecular recognition
and quantitative determination of IDH1 and IDH2 in brain tumor tissue and whole blood
samples. The biological samples were collected from confirmed patients with a brain tumor,
in accordance with the procedures specified in the Ethics Committee approval number
65573/14.12.2018 awarded by the University Emergency Hospital from Bucharest; written
consent was obtained from all patients. All tissues were frozen instantly after resection and
stored at temperatures of −80 ◦C. The whole blood samples were used for the assay of IDH1
and IDH2 immediately after taking them from the patients, without any pre-treatment.

3. Results and Discussion
3.1. Morphological Characterization of the CNT Pastes

The morphology of the pastes (CuAuNP-PIX/SWCNT and CuAuNP-PIX/MWCNT)
that contain the necessary channels for the stochastic response is shown in Figure 3(a.2,b.2).
To evaluate the elemental composition, the quantification of the elements, and their distri-
bution in the material, semi-quantitative analysis was performed by EDX. Moreover, from
the mapping, the uniform distribution of the elements in both modified pastes may be seen
in Figure 3(a.1,b.1).

Figure 3. Elemental mapping (a.1,b.1), surface morphology (a.2,b.2), and EDX spectrum of the pastes
based on: (a) CuAuNP-PIX/SWCNT and (b) CuAuNP-PIX/MWCNT.
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3.2. Response Characteristics of the Stochastic Microsensors

The response characteristics of the stochastic microsensors used for molecular recogni-
tion of IDH1 and IDH2 are shown in Table 1. The signatures obtained for IDH1 and IDH2
were different for each of these microsensors, thus demonstrating the ability of the microsen-
sors to perform the molecular recognition of IDH1 and IDH2 in the biological samples.

Table 1. The response characteristics of the stochastic microsensors used for the molecular recognition
of IDH1 and IDH2.

Stochastic
Microsensor

Based On

Signature
of IDH
toff (s)

Linear
Concentration

Range (ng mL−1)

Calibration Equations;
The Correlation Coefficient,

r *

Sensitivity
(s µg mL−1)

LOQ
(fg mL−1)

IDH1

CuAuNP-
PIX/SWCNT

0.7 1 × 10−5–1 × 102 1/ton = 0.03 + 1.48 × C;
r = 0.9999 1.48 10

IDH2

1.4 5 × 10−8–5 × 102 1/ton = 0.03 + 7.30 × 104 × C;
r = 0.9999 7.30 × 104 5 × 10−3

CuAuNP-
PIX/MWCNT

IDH1

1.5 1 × 10−5–1 × 102 1/ton = 0.04 + 9.58 × 105 × C;
r = 0.9989 9.58 × 105 10

IDH2

0.7 5 × 10−8–5 × 102 1/ton = 0.16 + 1.50 × 107 × C;
r = 0.9999 1.50 × 107 5 × 10−3

* <C-concentration> = µg mL−1; <ton> = s; LOQ—limit of quantification.

Utilization of SWCNT or MWCNT did not influence the linear concentration ranges
for the assay of IDH1 (1 × 10−5–1 × 102 ng mL−1) and IDH2 (5 × 10−8–5 × 102 ng mL−1),
as well as the limits of quantification for IDH1 (10 fg mL−1) and IDH2 (5 × 10−3 fg mL−1),
but it influenced the sensitivity of the proposed stochastic microsensors: the highest
sensitivity was obtained when MWCNT was used for the molecular recognition of IDH1
(9.58 × 105 s µg mL−1) and IDH2 (1.50 × 107 s µg mL−1). Accordingly, the stochastic
microsensor of choice for the molecular recognition and quantification of IDH1 and IDH2
is the one based on CuAuNP-PIX/MWCNT.

Compared with the disposable stochastic sensors proposed before [11] (Table 2), a
wider linear concentration range and a lower limit of quantification versus the disposable
Chitosan/Cu nanolayer-based stochastic sensor was recorded for the assay of IDH1. More-
over, a lower limit of quantification was achieved for the assay of IDH2 with the stochastic
sensors based on CNT. Analyses with sensors based on CNT are more cost-effective than
those performed using the disposable stochastic sensors because the former can be kept
and used continuously for more than one month.

Ten of each type of microsensor were designed and used for 1 month for the assay of
IDH1 and IDH2. In this period of time, the sensitivities for IDH1 and IDH2 were recorded.
For each type of microsensor, the measurements performed during one day showed that the
RSD% values for the variation of the sensitivities recorded for 10 microsensors were 0.10%
for IDH1 and 0.15% for IDH2 despite the type of microsensor, proving a highly reliable
(reproducible) design of the proposed stochastic microsensors. When used for 1 month, the
sensitivity variations were 0.37% for the assay of IDH1 and 0.40% for the assay of IDH2
despite the type of microsensor, proving the stability of the microsensors in time.

The selectivity of the stochastic microsensors is given by the signatures (toff values)
recorded for different analytes. The signature of the analyte and the possible interference
depends on several factors such as molecule size and conformation, deployment capacity,
or speed of going in the channel; thus, the signature can act as an element of molecular
recognition, contributing to the qualitative analysis of mixtures. The different signatures
obtained for analytes such as IDH1, IDH2, heregulin-α, dopamine, epinephrine, and
levodopa proved the selectivity of the proposed stochastic microsensor (Table 3).
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Table 2. The comparison of stochastic microsensors for the assay of IDH1 and IDH2.

Stochastic
Microsensors

Linear Concentration
Range

(ng mL−1)

Sensitivity
(s µg mL−1)

LOQ
(fg mL−1) Reference

Disposable
Chitosan/Cu

nanolayer

IDH1

[11]

1 × 10−4–1 × 102 1.00 × 107 102

IDH2
5 × 10−7–5 × 102 9.51 × 105 5 × 10−1

Disposable
Chitosan/GR *

nanolayer

IDH1
1 × 10−8–1 × 102 3.77 × 107 10−2

IDH2
5 × 10−8–5 × 102 1.88 × 107 5 × 10−2

Disposable
Chitosan/GR-Cu

composite
nanolayer

IDH1
1 × 10−5–1 × 102 2.73 × 107 10−1

IDH2
5 × 10−8–5 × 102 4.44 × 106 5 × 10−2

CuAuNP-
PIX/SWCNT

IDH1

This work

1 × 10−5–1 × 102 1.48 10
IDH2

5 × 10−8–5 × 102 7.30 × 104 5 × 10−3

CuAuNP-
PIX/MWCNT

IDH1
1 × 10−5–1 × 102 9.58 × 105 10

IDH2
5 × 10−8–5 × 102 1.50 × 107 5 × 10−3

* GR = graphene.

Table 3. The selectivity of the stochastic microsensors.

Stochastic
Microsensor Based On

toff (s), Signature

IDH1 IDH2 Heregulin-α Dopamine Epinephrine Levodopa

CuAuNP-PIX/SWCNT 0.7 1.4 0.2 1.9 3.0 2.5
CuAuNP-PIX/MWCNT 1.5 0.7 1.8 2.4 3.2 2.8

3.3. Determination of IDH1 and IDH2 in Tumor Brain Tissue and Blood Samples

Eight brain tumoral tissues and twelve whole blood samples were screened using the
proposed stochastic microsensors. Typical diagrams obtained for the screening tests of
the brain tumoral tissue and whole blood samples (Figures 4 and 5) were used to perform
the molecular recognition of IDH1 and IDH2, based on their signatures, as well as the
quantification of IDH1 and IDH2 using the equations of calibration (Table 1). No processing
of samples was needed in the case of tissue or whole blood samples; the cell was filled
with the sample, and the three electrodes were inserted in the sample. After recording the
diagram, the IDH1 and IDH2 were identified accordingly with their signatures (toff), and
after that, the ton values were read (in between two toff values) and used in the calibration
graphs accordingly with the stochastic mode described above, for the quantification of
IDH1 and IDH2.

Tables 4 and 5 show the results obtained for the screening of tumoral brain tissues
and whole blood samples. The validation of the proposed stochastic microsensors and the
screening method was performed versus the standard method used in clinical laboratories
for the determination—ELISA.
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Figure 4. Examples of diagrams recorded for the molecular recognition of IDH1 and IDH2 in brain
tumor tissue samples using the stochastic microsensors based on (A) CuAuNP-PIX-SWCNT and (B)
CuAuNP-PIX-MWCNT.

Figure 5. Examples of diagrams recorded for the molecular recognition of IDH1 and IDH2 in
whole blood samples using the stochastic microsensors based on (A) CuAuNP-PIX-SWCNT and (B)
CuAuNP-PIX-MWCNT.

Table 4. Determination of IDH1 and IDH2 in brain tumor tissue samples using the stochastic
microsensor and ELISA.

Sample No

ng mL−1, IDH1 ng mL−1, IDH2

Stochastic Microsensors Based on

ELISA

Stochastic Microsensors Based on

ELISACuAuNP-PIX-
SWCNT

CuAuNP-PIX-
MWCNT

CuAuNP-PIX-
SWCNT

CuAuNP-PIX-
MWCNT

1 15.26 ± 0.02 16.22 ± 0.03 16.03 26.40 ± 0.02 26.50 ± 0.03 26.85
2 14.03 ± 0.03 14.52 ± 0.02 14.48 42.42 ± 0.03 42.65 ± 0.04 42.82
3 14.76 ± 0.03 16.22 ± 0.04 16.00 27.30 ± 0.03 28.56 ± 0.04 27.85
4 29.97 ± 0.03 29.62 ± 0.02 29.03 35.60 ± 0.04 35.27 ± 0.03 35.57
5 9.19 ± 0.02 9.73 ± 0.03 9.54 63.87 ± 0.05 64.40 ± 0.04 63.90
6 15.26 ± 0.03 15.02 ± 0.04 15.05 34.77 ± 0.03 34.68 ± 0.02 34.70
7 6.90 ± 0.02 6.07 ± 0.03 6.93 22.44 ± 0.04 21.73 ± 0.03 22.48
8 15.85 ± 0.03 15.14 ± 0.02 16.12 23.02 ± 0.02 23.72 ± 0.05 23.80

t-test 2.94 1.83 2.87 2.08
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Table 5. Determination of IDH1 and IDH2 in whole blood samples using the stochastic microsensor
and ELISA.

Sample No

ng mL−1, IDH1 ng mL−1, IDH2

3D Stochastic Microsensors Based on

ELISA

3D Stochastic Microsensors Based on

ELISACuAuNP-PIX-
SWCNT

CuAuNP-PIX-
MWCNT

CuAuNP-PIX-
SWCNT

CuAuNP-PIX-
MWCNT

1 55.25 ± 0.03 53.56 ± 0.02 54.24 98.64 ± 0.02 97.98 ± 0.02 98.70
2 77.25 ± 0.03 73.28 ± 0.05 75.00 70.55 ± 0.02 71.85 ± 0.04 70.88
3 55.24 ± 0.04 53.35 ± 0.05 54.28 97.30 ± 0.03 99.00 ± 0.08 99.02
4 10.84 ± 0.03 9.89 ± 0.03 10.94 34.77 ± 0.05 34.49 ± 0.04 35.00
5 52.75 ± 0.03 53.66 ± 0.05 53.84 56.68 ± 0.03 54.52 ± 0.04 55.94
6 5.36 ± 0.03 5.33 ± 0.02 5.40 21.98 ± 0.02 22.81 ± 0.03 23.03
7 52.97 ± 0.03 53.34 ± 0.04 54.02 44.14 ± 0.02 44.95 ± 0.05 45.00
8 13.04 ± 0.04 13.14 ± 0.02 13.15 20.43 ± 0.03 20.35 ± 0.02 21.00
9 17.50 ± 0.03 17.69 ± 0.04 17.70 33.38 ± 0.04 33.61 ± 0.05 33.54

10 14.49 ± 0.03 13.28 ± 0.05 14.53 35.59 ± 0.03 34.52 ± 0.02 35.80
11 96.48 ± 0.01 96.34 ± 0.02 97.00 102.36 ± 0.03 102.65 ± 0.02 103.00
12 14.11 ± 0.02 14.95 ± 0.03 15.00 26.31 ± 0.02 26.81 ± 0.04 26.90

t-test 2.20 1.75 2.56 2.21

A paired t-test was performed at a 99.00% confidence level (tabulated theoretical
t-value: 4.032) for each type of sample. All calculated t-values (Tables 4 and 5) were less
than 3.00, proving that there is no statistically significant difference between the results
obtained using the proposed stochastic sensors. Accordingly, the proposed stochastic
microsensors can be reliably used for the molecular recognition and quantification of IDH1
and IDH2 in whole blood and brain tumor tissue samples.

Further, the price of ELISA kits used for IDH1 (more than 800 €/kit) and IDH2 (more
than 700 €/kit) is far higher than the price of one stochastic sensor based on SWCNT or
MWCNT, which does not exceed 2€ and can be used for more than 100 analyses of tissue
and whole blood samples while both IDH1 and IDH2 were determined.

4. Conclusions

The two-3D stochastic microsensors proposed for the molecular recognition of IDH1
and IDH2 were reliably used for screening tests of biological samples such as brain tumor
tissue samples and whole blood samples.

The highest sensitivity was recorded when the stochastic microsensor based on
MWCNT was used.

Very good correlations between the screening method based on stochastic sensors and
ELISA were obtained; this was also proved by the results obtained using the paired t-test.

The price of the proposed sensors is 750 times less than the total price of ELISA kits
used as a standard method in clinical laboratories.
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