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Abstract: In this paper, the focus is on the free vibrations of locally resonant metamaterial plates with
viscously damped resonators. Upon formulating a dynamic-stiffness model where the resonators
are represented via pertinent reaction forces depending on the deflections of the attachment points,
the complex eigenvalues are calculated by a contour-integral algorithm introduced in the literature
for general nonlinear eigenvalue problems. The interest in the proposed approach is twofold. The
dynamic-stiffness model involves a limited number of generalised coordinates compared to the
nodal degrees of freedom of a standard finite-element model, and the contour-integral algorithm
proves successful in evaluating all complex eigenvalues, without missing any one, with remarkable
computational efficiency. Numerical results are presented for Lévy plates, but are readily extendible
to other plate theories. Finally, an ad hoc dynamic-stiffness approach is formulated to calculate
the frequency response of the plate under arbitrarily placed loads, which is of particular interest to
investigate its elastic wave attenuation properties.

Keywords: metamaterial plate; local resonance; dynamic-stiffness model; contour-integral algorithm

1. Introduction

There is a considerable body of recent literature on locally resonant metamaterial plates
(LRMPs), i.e., plates engineered with a periodic array of small resonators. Indeed, these
plates exhibit the inherent attenuation properties of elastic waves that make them ideally
suitable for several applications in dynamics. Typically, the resonators may be distributed
over the external surface of homogeneous or composite plates [1–10] or, alternatively, they
may be embedded within the core matrix of sandwich plates [11–13].

Computational models of LRMPs generally rely on standard finite-element (FE) analy-
sis. The model involves a standard FE for the plate, which is coupled with concentrated
mass–spring or mass–spring–damper subsystems representing the resonators [6,8]. In some
cases, the resonators are modelled by FEs as well [12,13].

A very appealing approach for modelling bare plates, i.e., plates without resonators,
is a dynamic-stiffness approach, as it ensures a very accurate description of the plate
dynamics with a limited number of generalised coordinates compared to a standard FE
model. For instance, in a comprehensive treatment for plates of various types, Banerjee and
coworkers [14–21] developed dynamic-stiffness models where a few coefficients of appro-
priate Fourier series expansions proved capable of representing, with remarkable accuracy,
the plate dynamic response. In this context, natural frequencies of the undamped modes
were calculated by the powerful Wittrick–Williams algorithm [17,22], without missing any
one and including multiple ones. As for LRMPs, a pertinent dynamic-stiffness model
and an ad hoc formulation of the Wittrick–Williams algorithm were recently proposed by
Russillo et al. [23].
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A main limitation in the existing dynamic-stiffness models for LRMPs is that no
damping is considered [17,22]. Yet, damping is often intentionally introduced into LRMPs,
for instance by endowing the resonators with viscous dampers [24]. However, dealing
with the free vibrations of dynamic-stiffness models for damped LRMPs poses severe
computational challenges, because the eigenvalues are complex and the Wittrick–Williams
algorithm, i.e., the classical algorithm used in dynamic-stiffness approaches, no longer
applies. Moreover, a further difficulty is that the complex eigenvalues are very close to
each other, as a result of local resonance. In view of these complications, no existing study
deals with the free vibrations of dynamic-stiffness models for damped LRMPs, to the best
of the authors’ knowledge.

This paper addresses the free vibrations of LRMPs with viscously damped resonators,
focusing on Lévy plates. Two main novelties are introduced. A dynamic-stiffness formula-
tion is adopted, which builds on the formulation proposed by Banerjee and coworkers for
bare plates [14–21] and considers the resonators via pertinent reaction forces, expressed
in terms of the deflections of the attachment points by a frequency-dependent stiffness
obtained from the resonator motion equations. In this way, the size of the dynamic-stiffness
model depends only on the number of generalised coordinates of the plate and does
not include any degrees of freedom of the resonators, with a significant computational
advantage as, in general, LRMPs involve a very large number of resonators. Next, the
free-vibration problem is tackled by a contour-integral algorithm [25–28], introduced a
decade ago for nonlinear eigenvalue problems and used by the authors, very recently, for
the free-vibration problem of damped locally resonant sandwich beams [29]. Comparing
the proposed dynamic-stiffness approach to a standard FE one implemented in ABAQUS

demonstrates that: (1) the size of the dynamic-stiffness model is much smaller than the size
of the FE model required to attain the same accuracy; (2) the contour-integral algorithm
is capable of calculating accurately all the complex eigenvalues, without missing any one;
(3) calculating the eigenvalues by the dynamic-stiffness approach via the contour-integral
algorithm is computationally more efficient than by the FE method via standard eigen-
solvers. The formulation presented here for Lévy plates is readily extendible to Kirchhoff
ones with arbitrary boundary conditions (BCs). Finally, the paper proposes a dynamic-
stiffness approach to calculate the frequency response of the LRMP under arbitrarily placed
concentrated loads, for the purpose of investigating the elastic wave attenuation properties
of the plate.

The paper is organised as follows. The dynamic-stiffness model of Lévy LRMPs is
described in Section 2. Details on the contour-integral algorithm are illustrated in Section 3,
and the dynamic-stiffness approach to calculate the frequency response is described in
Section 4. A numerical example is discussed in Section 5.

2. Dynamic-Stiffness Model

Consider the equation of motion of a Kirchhoff plate strip in Figure 1 where the
rotational inertia is taken into account [14]:

D
(

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
+ ρh

∂2w
∂t2 −

1
12

ρh3
(

∂4w
∂x2∂t2 +

∂4w
∂y2∂t2

)
= 0 (1)

w(x, y, t) being the transverse deflection, h the thickness, ρ the volumetric mass density,
and D the bending rigidity of the plate. A solution that enforces simply supported BCs at
y = 0 and y = L is considered:

w(x, y, t) =
∞

∑
m=1

Wm(x) sin(αmy)eiωt (2)

where αm = mπ
L for m = 1, 2, . . . , ∞. Replacing Equation (2) in Equation (1) yields:
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d4Wm

dx4 +

(
ρh3ω2

12D
− 2α2

m

)
d2Wm

dx2 +

(
α4

m −
ρhω2

D
− ρh3ω2

12D
α2

m

)
Wm = 0 (3)

Introduce the vectors collecting the generalised displacements and forces along the
two unconstrained edges of the strip:

us
m =


W1m
Φ1m
W2m
Φ2m

 =


Wm(0)
Φym(0)
Wm(b)
Φym(b)

; fs
m =


V1m
M1m
V2m
M2m

 =


−Vxm(0)
−Mxm(0)

Vxm(b)
Mxm(b)

 (4)

where Φym(x) = −dWm/dx is the rotation in the xz plane and Vxm(x) and Mxm(x) are
the shear force and bending moment per unit length along the edge of the strip. Making
use of the Kirchhoff plate equations providing Vxm(x) and Mxm as functions of Wm(x), the
following matrix relation is obtained [14]:

fs
m = Ds

m(ω)us
m (5)

where Ds
m is the dynamic-stiffness matrix of the single strip for m = 1, 2, . . . , ∞.

L

b

W1m, V1m

Φ1m, M1m

W2m, V2m

Φ2m, M2m

z

y

x

h

Figure 1. Generalised displacements and forces for a single plate strip with simply supported edges
parallel with the x-axis.

The dynamic-stiffness matrix of a plate consisting of ne− 1 strips (ne is number of lines)
is assembled in a finite-element fashion, and the following equation of equilibrium holds:

fm = Dm(ω)um (6)

for m = 1, 2, . . . , ∞, where fm =
[
fT

m,1 . . . fT
m,ne

]T
and um =

[
uT

m,1 . . . uT
m,ne

]T
. Trun-

cating the Fourier series (2) up to N terms, Equation (6) can be equivalently written in
matrix form:  f1

...
fN


︸ ︷︷ ︸

f

=

D1(ω) . . . 0
...

. . .
...

0 . . . DN(ω)


︸ ︷︷ ︸

D(ω)

u1
...

uN


︸ ︷︷ ︸

u

(7)

It is noticed that the displacement/force qi(y) along the ith line, either at the bound-
ary or between two adjacent strips of the assembled plate, can be expanded into a sine
Fourier series:

qi(y) =
∞

∑
m=1

Qim sin(αmy) (8)
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where the coefficients Qim are given as:

Qim =
2
L

∫ L

0
qi(y) sin(αmy) dy (9)

Now, consider a resonator placed on the ith line at y = yj. Resonators attached along the
ith line exert a force per unit length:

fi(y) = −keq(ω)
ns

∑
j=1

wi(yj)δ(y− yj) (10)

where δ is Dirac’s delta function, ns is the number of resonators attached along the ith line,
and keq(ω) is the frequency-dependent stiffness of the resonator, which can be obtained
from its dynamic-stiffness matrix, as demonstrated by the authors in [23,29–31].

By means of Equation (8), the displacement of the attachment point is:

wi(yj) =
∞

∑
`=1

Wi` sin(α`yj) (11)

Replacing Equation (11) in Equation (10) yields:

fi(y) = −keq(ω)
ns

∑
j=1

∞

∑
`=1

Wi` sin(α`yj)δ(y− yj) (12)

Applying the transformation in Equation (9) to Equation (12) gives the Fourier series
coefficients associated with the reaction forces exerted by the resonators:

Fim = −
2keq(ω)

L

ns

∑
j=1

∞

∑
`=1

Wi` sin(α`yj) sin(αmyj) (13)

Equation (13) is readily written in matrix form as:Fi1
Fi2
...

 = −Dres(ω)

Wi1
Wi2

...

 (14)

matrix Dres being defined as follows:

(Dres)m`(ω) =
2keq(ω)

L

ns

∑
j=1

sin(αmyj) sin(α`yj) (15)

Matrix Dres in Equation (15) is the dynamic-stiffness matrix associated with the res-
onators. Now, consider Equation (15), and define the following diagonal matrix with
ne submatrices:

Dm`(ω) =

Γm`(ω) . . . 0
...

. . .
...

0 . . . Γm`(ω)

 Γm`(ω) =

[
(Dres)m`(ω) 0

0 0

]
(16)
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Notice that the ith block refers to the ith line of the assembled plate. Using Equation (16)
and truncating the Fourier series (13) up to N terms, the following relation is readily
obtained, which mirrors Equation (7):

f1
f2
...

fN


︸ ︷︷ ︸

f

=


D11(ω) D12(ω) . . . D1N
D21(ω) D22(ω) . . . D2N

...
...

. . .
...

DN1(ω) DN2(ω) . . . DNN


︸ ︷︷ ︸

Dr(ω)


u1
u2
...

uN


︸ ︷︷ ︸

u

(17)

Finally, replacing Equation (17) for f in Equation (7) leads to the following nonlinear
eigenproblem for the free-vibration response:

D̃(ω)u =
(

D(ω) + Dr(ω)
)

u = 0 (18)

The matrix D̃(ω) is the dynamic-stiffness matrix of the Lévy LRMP.

3. Contour-Integral Algorithm

In order to compute the eigenvalues of the Lévy LRMP, it is necessary to solve the
nonlinear eigenproblem given by Equation (18). The presence of viscous dampers within
the resonators makes the system non-classically damped and, consequently, the eigenvalues
are complex. In this case, the usual algorithm employed to solve the eigenproblems
associated with dynamic-stiffness models, that is the Wittrick–Williams algorithm, is no
longer applicable. Therefore, the recently introduced contour-integral algorithm formulated
by Asakura and coworkers [26] is used here, for the first time, to solve this challenging
problem. The application of the algorithm follows these steps:

1. Select a circle on the complex plane Γ = γ0 + ρ0eiθ with centre γ0 and radius ρ0 with
0 ≤ θ ≤ 2π;

2. Compute two complex random source matrices U and V having dimensions n0 × L0,
n0 being the size of the dynamic-stiffness matrix D̃(ω) in Equation (18) and L0 the
number of source vectors collected in U and V;

3. Compute the shifted and scaled moments Mk using the N0-point trapezoidal rule:

Sk =
1

N0

N0−1

∑
j=0

(
ωj − γ0

ρ0

)k+1
D̃(ωj)

−1V, k = 0, 1, . . . , 2K− 1

Mk = UHSk

with K the maximum moment degree considered for the moment and UH the Hermi-
tian transpose of U;

4. Construct the Hankel matrices ĤKL0 and Ĥ<
KL0
∈ CKL0×KL0 such that:

ĤKL0 = [Mi+j−2]
K
i,j=1 Ĥ<

KL0
= [Mi+j−1]

K
i,j=1;

5. Perform the singular-value decomposition of ĤKL0 ;
6. Omit small singular-value components σi < ε ·maxi σi; set the number m̃ of remaining

singular value components (m̃ < KL0); construct Ĥm̃ and Ĥ<
m̃ extracting the principal

submatrix with maximum index m̃ from ĤKL0 and Ĥ<
KL0

, i.e.,

Ĥm̃ = ĤKL0(1 : m̃, 1 : m̃); Ĥ<
m̃ = Ĥ<

KL0
(1 : m̃, 1 : m̃);
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7. Compute the eigenvalues ζ j of the linear pencil:

Ĥ<
m̃ = ζĤm̃;

8. Calculate the eigenvalues:

ωj = γ0 + ρ0ζ j, j = 1, . . . , m̃.

The algorithm allows calculating all the eigenvalues ωj of the nonlinear eigenprob-
lem (18) that fall within the selected circle Γ, including multiple roots [25–27].

4. Frequency Response

The frequency response of a Lévy LRMP can be computed by considering the equilib-
rium equation:

f = D̃(ω)u (19)

A distributed force pi(y) and moment mi(y) acting along the ith line, either at the
boundary or between two adjacent strips of the assembled plate, can be expanded into a
sine Fourier series by Equation (8), whose coefficients Vim and Mim are:

Vim =
2
L

∫ L

0
fi(y) sin(αmy) dy

Mim =
2
L

∫ L

0
mi(y) sin(αmy) dy

(20)

The coefficients in Equation (20) are collected in the subvector fm,i =
[
Vim, Mim

]T of
the force vector fm in Equation (6) (represented in Figure 2), which in turn is collected in
the global force vector f in Equation (19). Once the vector f is built, the Fourier coefficients
of the frequency response are given as:

u = D̃−1(ω)f (21)

where u =
[
uT

1 . . . uT
N
]T collects displacement vectors associated with the terms of the

Fourier series, i.e., um =
[
uT

m,1 . . . uT
m,ne

]T
with m = 1, . . . , N and um,i =

[
Wim Φim

]T.
The displacement ui(y) and rotation φi(y) along the ith line are simply given as:

ui(y) =
∞

∑
m=1

Wim sin(αmy)

φi(y) =
∞

∑
m=1

Φim sin(αmy)
(22)

where Wim and Φim are respectively the coefficients of the Fourier series expansion of the
displacement and rotation along the ith line.

Notice that concentrated loads can readily be handled within the framework above:
for this, two strips separated by a line passing through the load application point can be
considered, and the load can be modelled as a standard 1D Dirac’s delta.
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(a)

(b)

x

z

fm,1 fm,2 fm,3 fm,i = [Vim  Mim]T fm,ne

x

z

um,1 um,2 um,3 um,i = [Wim  Φim]T um,ne

Figure 2. Plate consisting of ne − 1 strips: (a) displacements and (b) generalised forces.

5. Numerical Applications

To validate the proposed method, consider a simply supported locally resonant steel
plate coupled with 2-DOF viscously damped resonators and having dimensions 0.20 m×
0.20 m× 0.01 m. The plate and resonator parameters are: Young’s modulus E = 200 GPa,
Poisson’s ratio ν = 0.3, volumetric mass density ρ = 7750 kg/m3, k1 = k2 = 10 kN/m,
m1 = m2 = 0.01 kg, c1 = c2 = 0.05 Nsm−1.

The proposed dynamic-stiffness approach is implemented by applying the contour-
integral algorithm to solve the eigenvalue problem involving the dynamic-stiffness matrix
in Equation (18), where the frequency-dependent stiffness of the resonators is calculated as
in [30]. The parameters of the contour-integral algorithm are N0 = 36, L0 = 60, K = 15.

The first 150 eigenvalues are computed using the proposed method and, in order to
assess the accuracy, modelling the plate in Figure 3 with the FE code ABAQUS using a mesh
of 200× 200 S4R5 elements. Some eigenvalues are reported in Table 1, while the complete
list of the first 150 is given in Tables A1–A3 in Appendix A, for conciseness. The calculated
eigenvalues are in excellent agreement and the maximum relative error computed is equal
to ε = 3.65% for the real part and ε = 0.78% for the imaginary part. Furthermore, it is seen
that the contour-integral algorithm is capable of capturing eigenvalues very close to each
other, which may differ even by a few digits. An excellent agreement is found in terms
of mode shapes, as shown in Figures 4–8. Notice that the mode shapes are complex, as
they are associated with complex eigenvalues; see Tables 1 and A1–A3 in Appendix A; in
particular, Figures 4–8 show the dimensionless real parts, as obtained upon dividing all
components by the one with the maximum absolute value.

As for the size of the two models, the proposed dynamic-stiffness model involves a
144× 144 dynamic-stiffness matrix (corresponding to eight strips with nine generalised co-
ordinates each), while the FE model involves 11,8791 × 11,8791 stiffness and mass matrices
(corresponding to 40,401 nodes). It is seen that the eigenvalues and the maximum relative
error do not change appreciably by increasing the sizes of the two models. Moreover,
no significant differences are found in the eigenvalues if the parameters of the contour-
integral algorithm are changed. As for the computational effort, it is noteworthy that
the contour-integral algorithm is implemented in an in-house MATLAB code. For the
parameters assumed, i.e., N0 = 36, L0 = 60, K = 15, the computation time required to
calculate the eigenvalues in Tables 1 and A1–A3 of Appendix A is 44.4 s. On the other hand,
the corresponding eigenvalues of the finite-element model in ABAQUS are calculated by
the default Lanczos eigensolver, the computation time of which is 111.2 s. Therefore, it can
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be concluded that the dynamic-stiffness model in conjunction with the contour-integral
algorithm provides very accurate results compared to a standard FE approach, requiring a
very limited size of the model and computational effort.

Table 1. Complex eigenvalues (from 1 to 150) of the LRMP in Figure 3 with 2-DOF resonators,
computed by means of the proposed dynamic-stiffness approach (DS) and the FE method (FE).

Mode Eigenvalue (·104) (DS) Eigenvalue (·104) (FE)

1 0.06099453± 0.00009052i 0.06097390± 0.00009040i
2 0.06167468± 0.00009470i 0.06167134± 0.00009468i
3 0.06167470± 0.00009470i 0.06167133± 0.00009468i
4 0.06175305± 0.00009518i 0.06175079± 0.00009517i
5 0.06177108± 0.00009529i 0.06176983± 0.00009528i
6 0.06177113± 0.00009529i 0.06176980± 0.00009528i
7 0.06178420± 0.00009537i 0.06178295± 0.00009537i
8 0.06178422± 0.00009537i 0.06178293± 0.00009537i
9 0.06179204± 0.00009542i 0.06179124± 0.00009542i

10 0.06179212± 0.00009542i 0.06179117± 0.00009542i
11 0.06179329± 0.00009543i 0.06179227± 0.00009542i
12 0.06179513± 0.00009544i 0.06179431± 0.00009544i
13 0.06179520± 0.00009544i 0.06179425± 0.00009544i
14 0.06179803± 0.00009546i 0.06179724± 0.00009545i
15 0.06179807± 0.00009546i 0.06179761± 0.00009546i
...

...
...

90 0.16179997± 0.00065447i 0.16179932± 0.00065446i
91 0.16180003± 0.00065448i 0.16179955± 0.00065447i
92 0.16180020± 0.00065448i 0.16179805± 0.00065444i
93 0.16180029± 0.00065448i 0.16179969± 0.00065447i
94 0.16180039± 0.00065448i 0.16179984± 0.00065447i
95 0.16180047± 0.00065448i 0.16179996± 0.00065447i
96 0.16180062± 0.00065448i 0.16179999± 0.00065447i
97 0.16180063± 0.00065448i 0.16180003± 0.00065448i
98 0.16180070± 0.00065449i 0.16180008± 0.00065448i
99 0.16180070± 0.00065448i 0.16180010± 0.00065448i
100 0.16180076± 0.00065449i 0.16180016± 0.00065448i

...
...

...
135 3.21092421± 0.00012816i 3.15927753± 0.00012834i
136 3.21092421± 0.00012816i 3.15939426± 0.00012844i
137 3.39884491± 0.00012807i 3.31429443± 0.00012829i
138 3.77441335± 0.00012790i 3.68814316± 0.00012808i
139 3.77441335± 0.00012790i 3.68894501± 0.00012809i
140 4.71172216± 0.00012751i 4.57325706± 0.00012775i
141 4.71172217± 0.00012751i 4.57372169± 0.00012786i
142 4.89890560± 0.00012743i 4.79083290± 0.00012797i
143 4.89890560± 0.00012744i 4.79105072± 0.00012793i
144 5.45989728± 0.00012722i 5.30883064± 0.00012762i
145 5.45989728± 0.00012722i 5.30934525± 0.00012751i
146 6.02005043± 0.00012701i 5.80780907± 0.00012723i
147 6.39302010± 0.00012688i 6.17382736± 0.00012755i
148 6.39302011± 0.00012688i 6.17507515± 0.00012727i
149 6.95177672± 0.00012667i 6.74670029± 0.00012756i
150 6.95177673± 0.00012668i 6.74753723± 0.00012768i
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0.025m

0.020m

0.020m

0.020m

0.20m 0.20m

y

x

z

0.025m

0.025m

Figure 3. Simply supported LRMP with mass–spring–damper subsystems modelling 2-DOF resonators.

0

0.1

0.2

0

0.1

0.2
−1

0

1

(a) (b)

Figure 4. Simply supported LRMP in Figure 3, real part of Mode 127: (a) dynamic-stiffness approach
and (b) finite-element method.

Finally, the dynamic-stiffness approach proposed in Section 4 is applied to calculate
the transmittance of the plate in Figure 3, considering two sets of BCs: (i) all edges are
simply supported; (ii) two edges are simply supported and two are free. Specifically, a unit
harmonic concentrated load is applied at (x0, y0) = (0.025, 0.10), and the transmittance is
evaluated as the ratio of the deflection at (x1, y1) = (0.175, 0.10) to the deflection at the
load application point (x0, y0). For completeness, Figure 9 includes the band gaps of the
corresponding infinite LRMP, as computed by the standard FE approach [32]. The trans-
mittance varies significantly with the BCs and, within the band gaps of the corresponding
infinite plate, better wave attenuation properties of the finite plate are found when two
edges of the plate are free and two simply supported, compared to the case where all the
edges are simply supported.
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Figure 5. Simply supported LRMP in Figure 3, real part of Mode 130: (a) dynamic-stiffness approach
and (b) finite-element method.
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Figure 6. Simply supported LRMP in Figure 3, real part of Mode 144: (a) dynamic-stiffness approach
and (b) finite-element method.
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Figure 7. Simply supported LRMP in Figure 3, real part of Mode 150: (a) dynamic-stiffness approach
and (b) finite-element method.
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(a) (b)

(c) (d)
Figure 8. Simply supported LRMP in Figure 3, view along the line x = y of the real part of the
modes: (a) 127, (b) 130, (c) 144, and (d) 150; dynamic-stiffness approach (black continuous line) and
finite-element method in ABAQUS (black dots).
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Figure 9. LRMP in Figure 3, amplitude ratio of the deflection frequency response at (0.175, 0.10)
to the deflection frequency response at the application point (0.025, 0.10) of a unit harmonic force,
calculated by the dynamic-stiffness approach (black continuous line) and FE model in ABAQUS
(black dots), considering: (a) all edges simply supported; (b) two edges simply supported and two
edges free.

6. Discussion

This paper has addressed the free vibrations of non-classically damped locally reso-
nant metamaterial plates, focusing on Lévy plates. The main novelties of the proposed
approach can be summarized as: (1) the formulation of a reduced-order dynamic-stiffness



Nanomaterials 2022, 12, 541 12 of 17

model where multi-degree-of-freedom resonators are represented via frequency-dependent
reaction forces, involving the deflection of the attachment points only and no resonator
DOFs; (2) the application of the contour-integral algorithm to calculate the complex eigen-
values; (3) a dynamic-stiffness approach to the calculation of the frequency response under
arbitrarily placed concentrated loads, which is of interest to investigate the elastic wave
attenuation properties of the plate. Considering a simply supported plate coupled with
2-DOF viscously damped resonators, it has been demonstrated that the proposed approach
provides very accurate eigenvalues and mode shapes, with a very limited size of the model
and computational costs compared to a standard FE approach implemented in ABAQUS. It
is noteworthy that the proposed approach requires only that the dynamic-stiffness matrix
of the bare plate is available. As such, it is readily extendible to locally resonant metamate-
rial Kirchhoff plates with arbitrary BCs, using the appropriate dynamic-stiffness matrix
formulated in [18,19,21].

It is important to remark that the LRMPs under study are of interest not only as
structural/mechanical components at the macroscale, but also at much smaller scales.
For instance, the concept of periodic arrays of resonators coupled with a primary host
system was proposed at the microscale, e.g.,: Reference [33] investigated numerically and
experimentally the formation of locally resonant band gaps in a 2D surface phononic crystal
with inverted conical pillars; specifically, the inverted conical pillars were deposited on
a semi-infinite lithium–niobate substrate and arranged in a honeycomb lattice array for
applications in low-frequency guiding, acoustic wave isolation, acoustic absorbers, and
acoustic filters. Moreover, numerical and experimental investigations demonstrated the
existence of band gaps at a multi-GHz frequency range in a pillar-based hypersonic 2D
phononic crystal with nanoscale dimensions [34]; in this case, the fabricated phononic
crystal consisted of a periodic array of nanopillars arranged according to the triangular
lattice structure of the crystal. An interesting discussion on the potential applications of
locally resonant phononic nanostructures with other pertinent references may be found
in the work by Guo et al. [35]. These recent studies demonstrate the interest in LRMPs at
various scales, for which the proposed approach may represent a valuable analysis tool.
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Appendix A. Eigenvalues

Table A1. Complex eigenvalues (from 1 to 50) of the LRMP in Figure 3 with 2-DOF resonators,
computed by means of the proposed dynamic-stiffness approach (DS) and the FE method (FE).

Mode Eigenvalue (·104) (DS) Eigenvalue (·104) (FE)

1 0.06099453± 0.00009052i 0.06097390± 0.00009040i
2 0.06167468± 0.00009470i 0.06167134± 0.00009468i
3 0.06167470± 0.00009470i 0.06167133± 0.00009468i
4 0.06175305± 0.00009518i 0.06175079± 0.00009517i
5 0.06177108± 0.00009529i 0.06176983± 0.00009528i
6 0.06177113± 0.00009529i 0.06176980± 0.00009528i
7 0.06178420± 0.00009537i 0.06178295± 0.00009537i
8 0.06178422± 0.00009537i 0.06178293± 0.00009537i
9 0.06179204± 0.00009542i 0.06179124± 0.00009542i

10 0.06179212± 0.00009542i 0.06179117± 0.00009542i
11 0.06179329± 0.00009543i 0.06179227± 0.00009542i
12 0.06179513± 0.00009544i 0.06179431± 0.00009544i
13 0.06179520± 0.00009544i 0.06179425± 0.00009544i
14 0.06179803± 0.00009546i 0.06179724± 0.00009545i
15 0.06179807± 0.00009546i 0.06179761± 0.00009546i
16 0.06179834± 0.00009546i 0.06179774± 0.00009546i
17 0.06179849± 0.00009546i 0.06179721± 0.00009545i
18 0.06179928± 0.00009547i 0.06179866± 0.00009546i
19 0.06179941± 0.00009547i 0.06179855± 0.00009546i
20 0.06180004± 0.00009547i 0.06179963± 0.00009547i
21 0.06180033± 0.00009547i 0.06179971± 0.00009547i
22 0.06180043± 0.00009547i 0.06179929± 0.00009547i
23 0.06180064± 0.00009547i 0.06180020± 0.00009547i
24 0.06180090± 0.00009548i 0.06180034± 0.00009547i
25 0.06180100± 0.00009548i 0.06180053± 0.00009547i
26 0.06180122± 0.00009548i 0.06180054± 0.00009547i
27 0.06180123± 0.00009548i 0.06180059± 0.00009547i
28 0.06180128± 0.00009548i 0.06179999± 0.00009547i
29 0.06180145± 0.00009548i 0.06180092± 0.00009548i
30 0.06180154± 0.00009548i 0.06180095± 0.00009548i
31 0.06180164± 0.00009548i 0.06180109± 0.00009548i
32 0.06180172± 0.00009548i 0.06180121± 0.00009548i
33 0.06180187± 0.00009548i 0.06180123± 0.00009548i
34 0.06180188± 0.00009548i 0.06180127± 0.00009548i
35 0.06180195± 0.00009548i 0.06180133± 0.00009548i
36 0.06180196± 0.00009549i 0.06180134± 0.00009548i
37 0.06180201± 0.00009548i 0.06180141± 0.00009548i
38 0.06180210± 0.00009548i 0.06180079± 0.00009548i
39 0.06180220± 0.00009548i 0.06180159± 0.00009548i
40 0.06180223± 0.00009549i 0.06180160± 0.00009548i
41 0.06180227± 0.00009549i 0.06180166± 0.00009548i
42 0.06180231± 0.00009549i 0.06180178± 0.00009548i
43 0.06180240± 0.00009549i 0.06180179± 0.00009548i
44 0.06180245± 0.00009549i 0.06180181± 0.00009548i
45 0.06180246± 0.00009549i 0.06180184± 0.00009548i
46 0.06180251± 0.00009549i 0.06180187± 0.00009548i
47 0.06180254± 0.00009549i 0.06180193± 0.00009548i
48 0.06180261± 0.00009549i 0.06180195± 0.00009548i
49 0.06180263± 0.00009549i 0.06180200± 0.00009548i
50 0.06180264± 0.00009549i 0.06180201± 0.00009548i



Nanomaterials 2022, 12, 541 14 of 17

Table A2. Complex eigenvalues (from 51 to 100) of the LRMP in Figure 3 with 2-DOF resonators,
computed by means of the proposed dynamic-stiffness approach (DS) and the FE method (FE).

Mode Eigenvalue (·104) (DS) Eigenvalue (·104) (FE)

51 0.06180269± 0.00009550i 0.06180204± 0.00009548i
52 0.06180273± 0.00009549i 0.06180205± 0.00009548i
53 0.06180277± 0.00009549i 0.06180207± 0.00009548i
54 0.06180278± 0.00009551i 0.06180211± 0.00009548i
55 0.06180279± 0.00009549i 0.06180213± 0.00009548i
56 0.06180280± 0.00009549i 0.06180214± 0.00009548i
57 0.06180281± 0.00009548i 0.06180217± 0.00009548i
58 0.06180287± 0.00009549i 0.06180220± 0.00009548i
59 0.06180289± 0.00009553i 0.06180158± 0.00009548i
60 0.06180290± 0.00009549i 0.06180224± 0.00009548i
61 0.06180290± 0.00009546i 0.06180227± 0.00009548i
62 0.06180294± 0.00009549i 0.06180230± 0.00009549i
63 0.06180297± 0.00009548i 0.06180222± 0.00009548i
64 0.16086702± 0.00063822i 0.16083957± 0.00063771i
65 0.16167059± 0.00065236i 0.16166713± 0.00065230i
66 0.16167061± 0.00065236i 0.16166711± 0.00065230i
67 0.16175137± 0.00065368i 0.16174909± 0.00065365i
68 0.16176966± 0.00065398i 0.16176840± 0.00065396i
69 0.16176970± 0.00065398i 0.16176838± 0.00065396i
70 0.16178289± 0.00065420i 0.16178165± 0.00065418i
71 0.16178291± 0.00065420i 0.16178162± 0.00065418i
72 0.16179077± 0.00065433i 0.16178997± 0.00065431i
73 0.16179085± 0.00065433i 0.16179100± 0.00065433i
74 0.16179202± 0.00065435i 0.16178991± 0.00065431i
75 0.16179387± 0.00065438i 0.16179304± 0.00065436i
76 0.16179394± 0.00065438i 0.16179299± 0.00065436i
77 0.16179677± 0.00065442i 0.16179599± 0.00065441i
78 0.16179681± 0.00065442i 0.16179637± 0.00065442i
79 0.16179708± 0.00065443i 0.16179649± 0.00065442i
80 0.16179723± 0.00065443i 0.16179730± 0.00065443i
81 0.16179803± 0.00065444i 0.16179742± 0.00065443i
82 0.16179816± 0.00065445i 0.16179596± 0.00065441i
83 0.16179879± 0.00065446i 0.16179838± 0.00065445i
84 0.16179908± 0.00065446i 0.16179845± 0.00065445i
85 0.16179918± 0.00065446i 0.16179873± 0.00065445i
86 0.16179939± 0.00065447i 0.16179895± 0.00065446i
87 0.16179965± 0.00065447i 0.16179910± 0.00065446i
88 0.16179975± 0.00065447i 0.16179928± 0.00065446i
89 0.16179997± 0.00065447i 0.16179929± 0.00065446i
90 0.16179997± 0.00065447i 0.16179932± 0.00065446i
91 0.16180003± 0.00065448i 0.16179955± 0.00065447i
92 0.16180020± 0.00065448i 0.16179805± 0.00065444i
93 0.16180029± 0.00065448i 0.16179969± 0.00065447i
94 0.16180039± 0.00065448i 0.16179984± 0.00065447i
95 0.16180047± 0.00065448i 0.16179996± 0.00065447i
96 0.16180062± 0.00065448i 0.16179999± 0.00065447i
97 0.16180063± 0.00065448i 0.16180003± 0.00065448i
98 0.16180070± 0.00065449i 0.16180008± 0.00065448i
99 0.16180070± 0.00065448i 0.16180010± 0.00065448i

100 0.16180076± 0.00065449i 0.16180016± 0.00065448i
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Table A3. Complex eigenvalues (from 101 to 150) of the LRMP in Figure 3 with 2-DOF resonators,
computed by means of the proposed dynamic-stiffness approach (DS) and the FE method (FE).

Mode Eigenvalue (·104) (DS) Eigenvalue (·104) (FE)

101 0.16180085± 0.00065449i 0.16180033± 0.00065448i
102 0.16180095± 0.00065449i 0.16180034± 0.00065448i
103 0.16180098± 0.00065449i 0.16180035± 0.00065448i
104 0.16180103± 0.00065449i 0.16180041± 0.00065448i
105 0.16180106± 0.00065449i 0.16180053± 0.00065448i
106 0.16180119± 0.00065449i 0.16180054± 0.00065448i
107 0.16180121± 0.00065449i 0.16180056± 0.00065448i
108 0.16180125± 0.00065450i 0.16180060± 0.00065448i
109 0.16180126± 0.00065450i 0.16180062± 0.00065449i
110 0.16180129± 0.00065449i 0.16180068± 0.00065449i
111 0.16180136± 0.00065450i 0.16180069± 0.00065449i
112 0.16180136± 0.00065450i 0.16180074± 0.00065449i
113 0.16180139± 0.00065450i 0.16180075± 0.00065449i
114 0.16180146± 0.00065450i 0.16180078± 0.00065449i
115 0.16180148± 0.00065450i 0.16180079± 0.00065449i
116 0.16180152± 0.00065450i 0.16180081± 0.00065449i
117 0.16180153± 0.00065450i 0.16180085± 0.00065449i
118 0.16180155± 0.00065450i 0.16180087± 0.00065449i
119 0.16180156± 0.00065450i 0.16180089± 0.00065449i
120 0.16180161± 0.00065450i 0.16180092± 0.00065449i
121 0.16180162± 0.00065450i 0.16180096± 0.00065449i
122 0.16180164± 0.00065450i 0.16180098± 0.00065449i
123 0.16180165± 0.00065450i 0.16180099± 0.00065449i
124 0.16180169± 0.00065450i 0.16180102± 0.00065449i
125 0.16180172± 0.00065450i 0.16180105± 0.00065449i
126 0.16180228± 0.00065458i 0.16179967± 0.00065447i
127 0.38637283± 0.00015015i 0.38188243± 0.00015078i
128 0.94979965± 0.00013164i 0.93953762± 0.00013174i
129 0.94979965± 0.00013164i 0.93953552± 0.00013173i
130 1.51582776± 0.00012963i 1.48995104± 0.00012971i
131 1.89304723± 0.00012909i 1.87023849± 0.00012922i
132 1.89304723± 0.00012909i 1.87044411± 0.00012920i
133 2.45835312± 0.00012860i 2.41032791± 0.00012871i
134 2.45835312± 0.00012860i 2.41037235± 0.00012874i
135 3.21092421± 0.00012816i 3.15927753± 0.00012834i
136 3.21092421± 0.00012816i 3.15939426± 0.00012844i
137 3.39884491± 0.00012807i 3.31429443± 0.00012829i
138 3.77441335± 0.00012790i 3.68814316± 0.00012808i
139 3.77441335± 0.00012790i 3.68894501± 0.00012809i
140 4.71172216± 0.00012751i 4.57325706± 0.00012775i
141 4.71172217± 0.00012751i 4.57372169± 0.00012786i
142 4.89890560± 0.00012743i 4.79083290± 0.00012797i
143 4.89890560± 0.00012744i 4.79105072± 0.00012793i
144 5.45989728± 0.00012722i 5.30883064± 0.00012762i
145 5.45989728± 0.00012722i 5.30934525± 0.00012751i
146 6.02005043± 0.00012701i 5.80780907± 0.00012723i
147 6.39302010± 0.00012688i 6.17382736± 0.00012755i
148 6.39302011± 0.00012688i 6.17507515± 0.00012727i
149 6.95177672± 0.00012667i 6.74670029± 0.00012756i
150 6.95177673± 0.00012668i 6.74753723± 0.00012768i
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