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Abstract: In this work, thin films of lamellar clays were deposited by laser techniques (matrix assisted
pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD)). The focus of this paper is the
optimization of deposition parameters for the production of highly oriented crystalline films. The
films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic
force microscopy (AFM), and scanning electron microscopy (SEM). Contact angle measurements
were employed to identify the wetting properties of the deposited thin films. Hydrophobic to
superhydrophilic films can be prepared by using different deposition techniques and deposition
parameters. MAPLE led to superhydrophilic films with contact angles in the range 4◦–8◦, depending
on the microstructure and surface roughness at micro and nano scale. The 1064 nm PLD had a high
deposition rate and produced a textured film while at λ = 193 nm an extremely thin and amorphous
layer was depicted. Oriented kaolinite films were obtained by MAPLE even at 5 wt.% kaolinite in
the target.

Keywords: laser processing; kaolinite; lamellar materials; thin films

1. Introduction

Lamellar clay materials are promising candidates as low-cost adsorbents with protein-
binding capacities. Environmental industry uses clay minerals intensively for a variety of
applications ranging from absorbance and storage of hazardous chemicals up to cleaning
of polluted waters and sensing elements [1]. The main property of these lamellar materials
is the adsorption capability, which is connected to the layer charge density, cationic charge
capacity and swelling characteristic [2]. Kaolinite, being the most common clay mineral, is
a lamellar material with the chemical formula (Al2O3 · 2SiO2 · 2H2O) and is used in several
important fields as paper fabrication, pharmaceutical industry, cosmetics, or as adsorbents
in water and wastewater treatment and many more [3]. These applications are based on the
lamellar guest-host structure, which can adsorb a wide range of molecules, at the surface,
at the edge of the lamellas or in the inter-lamellas [4]. Grafting reactions have been studied
intensively in the last decades. For example, modified electrodes for electrochemical
applications were synthesized in a two steps procedure, first grafting triethanolamine on
the interlayer aluminol groups and then reacting with iodomethane for cyanide anions
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detection [5]. Raw clays treated with hydrochloric acid and acetic acid were tested for
adsorption of Cr (VI) and Fe (III) [6] and kaolin/polymer nanocomposite membranes were
prepared for the removal of arsenic from aqueous solutions [7]. The detection of iodide in
aqueous solution containing thiosulfate was reported onto a gold electrode modified by a
thin film of kaolinite, obtained by grafting the ionic liquid (1-(2-hydroxyethyl)-4-(tert-butyl)
pyridinium chloride) [8]. Wettability of hydrogen on kaolinite clay surfaces, in the presence
of brine, was investigated for further use in hydrogen storage, with improved results as
compared to illite or montmorillonite [9].Functionalized kaolinite hybrid materials with
controlled interlayer distance were obtained by grafting trihydroxyethylmethylammonium
iodide, 1-(2-hydroxyethyl)-3-methylimidazolium chloride and 1-benzyl-3-(2-hydroxyethyl)
imidazolium chloride and were used as modified electrodes for electrochemical detection
of different size ions of thiocyanate, sulphite and ferricyanide [10].

The most frequently used methods for kaolinite thin films deposition are solution
cast technique [11], spin coating and electrochemical techniques [12]. O. G. Abdullah
et al. [11] used solution cast technique for preparing composite material light films with
different ratio of polyvinyl alcohol/kaolinite, and thicknesses ranging between 0.20 mm
and 0.44 mm, aiming to study their optical properties. Kaolin light addition leads to a
decrease of the optical energy gaps, while the Urbach energy tends to increase. N. Kouider
et al. [12] describes the growth of porous and corrosion resistant films, via electrochemical
coating method, using kaolin on stainless steel surfaces as modified electrodes suitable for
methanol or ethanol fuel cells.

For the sensor industry, the aim is to obtain thin films with oriented structure and
a high active area. Nowadays, the pulsed laser deposition systems are widely used in
laboratories having the potential to deposit various oxide-based materials as metallic oxides
films with a high degree of adhesion onto substrate [13,14]. The experimental set-up of the
PLD system is simple and versatile with great development potential and compatibility
for a wide variation of oxides and hydroxides. By using pulsed lasers and a vacuum
chamber, a variety of stoichiometric oxide films can be grown in vacuum, reactive or inert
background gas without the need for further processing [15]. Based on the vast applications
(i.e., biotechnology, microelectronics, optoelectronics) that are relying on these oxides and
hydroxides, an increasing research interest was observed regarding PLD technique in the
processing of these materials. This laser-based method has many advantages, for example
low processing duration for thin films of hundreds of nanometers and it is a non-polluting
method, the laser being the energy source [16]. Moreover, PLD can produce films with
excellent adhesion, due to the high energy of the species reaching the substrate [17,18].
These unique features of laser-based methods are suitable for the deposition/transfer of
kaolinite thin films in sensor-based applications. Our work is focused on producing for the
first time, via laser-based techniques, thin films of kaolinite with well controlled structure
and aims to overcome the limitations of the classical deposition methods (cost, processing
time, adhesion). In our experiments the laser methods bring the advantage of good
thickness control. The ability of the laser methods to grow oriented and stoichiometric
films of lamellar layered double hydroxides at room temperature has been previously
demonstrated [19,20].

2. Materials and Methods
2.1. Materials

The following product was purchased and used without further purification: Kaolinite
(KAOLINITE, NATURAL) FLUKA 03584-250G from (SIGMA-ALDRICH, CHEMIE GmbH,
Riedstrt. 2 D-89555 Steinheim, Germany). The SEM images presented in Figure 1 highlight
the lamellar structure of kaolinite powder. This clay powder was used in the preparation
of PLD targets (by pressing with a hydraulic press with a pressure of (≈20 MPa) applied
to our kaolinite material) and MAPLE (by using an aqueous solution with 5 or 10 wt.%
kaolinite in deionized water (as matrix)).
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Figure 1. SEM images representing the topography of kaolinite powder with the magnifications of
1000× (a) and 20000× (b).

2.2. Lamellar Thin Films Deposition

Pulsed laser deposition (PLD) and matrix-assisted pulsed laser evaporation (MAPLE)
experiments were performed starting from pressed kaolinite powder as targets for PLD tech-
nique, or from water-dispersed kaolinite solutions (5 or 10 wt.%) and then solidified/frozen
by using liquid nitrogen, for the MAPLE method.

For PLD depositions, a Nd:YAG pulsed laser (Continuum Surelite II & Neocera
workstation, Santa Clara, CA, USA) working in IR, VIS or UV and an ArF excimer laser
at 193 nm were used to irradiate the target while for MAPLE, the fourth harmonic of the
Nd:YAG pulsed laser working at 266 nm wavelength was chosen, based on our previous
experiments [21–26]. The repetition rate was set at 10 Hz, the target and the substrate
(Si <110>) were kept parallel at 4 cm distance, with the laser beam translated and the
target rotated during depositions, for both PLD and MAPLE experiments. Kaolinite thin
films were deposited by PLD method, as a result of 20.000–40.000 pulses at laser fluences
ranging from 1 up to 5 J/cm2, while for MAPLE technique, 72.000 pulses were used to
irradiate the target with a laser fluence between 1 and 2 J/cm2. The films deposition was
made in vacuum conditions (1 × 10−5 mbar), with a small increase of the pressure during
irradiation. For both PLD and MAPLE during experiments, the substrate (Si) was kept at
room temperature (RT).

2.3. Characterization

X-ray diffraction (XRD) (PANalytical X’Pert MPD system, Almelo, The Netherlands)
with a wavelength of 0.15418 nm was used for the crystalline structure investigation, for
both powder material/target and deposited thin films. The HighScore software package
(Version 4.0, PANalytical B.V., Almelo, The Netherlands, 2013) was used for the struc-
tural data analysis. X-ray photoelectron spectroscopy (XPS) survey spectra and high-
resolution XPS scan spectra were acquired using an Escalab Xi+ system (Thermo Scientific,
Waltham, MA, USA).

Thin films morphology and topography were analyzed by atomic force microscopy in
ambient conditions, in non-contact mode-AFM XE-100 type from Park Systems,
(Suwon, South Korea) and by scanning electron microscopy-SEM (FEI, model Inspect S50,
Hillsboro, OR, USA) at an accelerating voltage of 10 kV.

In order to study the wettability of the surfaces as well as to determine the total free
energy of the surface (SFE), contact angle measurements (WCA) were performed. For
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this matter two types of liquids were used: water (double distilled) and methylene iodide
(MI), water as polar liquid and MI as nonpolar liquid. Kaolinite thin film wettability was
analyzed by sessile drop method using static contact angle measurements. The WCA
measurements were made using an optical Contact Angle Tensiometer, CAM 101, from
(KSV Instruments Ltd., Espoo, Finland), equipped with a CCD camera, an LED source,
stands for substrate and a standard syringe from Hamilton (1000 µL). These wetting
experiments were performed in the atmospheric environment at room temperature (RT)
by placing the liquid droplet with the volume of 2 µL on the investigated surface. To
calculate the total surface free energy (SFE) of the solids the Owens, Wendt, Rabel, and
Kaelble (OWRK) [27,28] method was used. The solvents used in this SFE study for wetting
experiments were: bidistilled water and methylene iodide (MI). The values for these
solvents in terms of their dispersive and polar components are given in Table 1. These
values used in the calculation of SFE are taken from the database of the device used to
measure the contact angle.

Table 1. Total surface energy, dispersive and polar components for the solvents.

Solvent Total Surface Energy
[mN/m]

Dispersive Component
[mN/m]

Polar Component
[mN/m]

Bidistilled water 72.80 21.80 51.00
Methylene iodide 50.80 50.80 0.00

The DRIFT spectra of as deposited PLD films were collected using a JASCO (Tokyo, Japan)
FT/IR-4700 spectrometer with a diffuse reflectance accessory (PIKE). The Si(001) substrate
spectrum was extracted from the acquired spectra of the films.

3. Results and Discussion

Taking into account the profilometric measurements, it was observed that kaolinite thin
films deposited as a result of target irradiation with 40.000 pulses for PLD and 72.000 pulses
for MAPLE have thicknesses between tens of nanometers and a few microns, depending
on the laser wavelength used for experiments. This leads to high deposition rates for
PLD experiments, excepting 193 nm deposition and, considerably lower rates for MAPLE
depositions. The comparison between deposition rate of kaolinite thin films using PLD and
MAPLE methods is presented in Figure 2.
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Figure 2. Kaolinite thin films deposition rates. Comparison between deposition methods: PLD
and MAPLE.

The commercial powder from Fluka contains as dominant phase anorthic kaolinite-1A
Al2 Si2O5(OH)4 (ICDD card 00-058-2028) and traces of monoclinic-(SiO2)× (ICDD card
00-042-005). The same kaolinite 1A phase is found in the targets. The particular preparation
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of the PLD target, by pressing, induced increased intensities of the (00l) reflections marking
a preferred orientation of the layers along the c-axis (Figure 3a) The MAPLE target prepared
by dispersing the kaolinite powder in water which is then dried in ambient atmosphere,
exhibits also a preferred orientation along the c-axis due to the restacking of the layers in
the aqueous solution (Figure 3b).
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Figure 3. XRD patterns of the kaolinite commercial powder, (a) PLD target and (b) MAPLE target.

There is a large number of studies on the structure and proper definition of order and
disorder in clays crystal structures [29]. The term of crystallinity is to be rather avoided
in connection with clays and other parameters were introduced to describe the variety
of order or disorder forms occurring in phyllosilicates [30]. We calculated two of such
order-disorder indexes: the Hinckley index (HI), the most widely used, allowing a semi-
quantitative evaluation of the degree of order-disorder of the kaolinite lattice, which was
proposed in 1963 [31] and the Aparacio-Galan-Ferrel index (AGFI) proposed in 2006 [32].
In both cases, the indexes are determined by using reflections in the range 19◦ to 23◦ 2θ,
considered to be sensitive to the structural defects as random and interlayer displacements.
The HI includes the background in the calculation while, AGFI only the peaks intensities,
which allows a higher degree of confidence. Values of HI < 0.5 and AGFI < 0.90 designates a
disordered kaolinite while HI > 1.5 and AGFI >1.6 [29,30] characterizes an ordered kaolinite.
FWHM-001 (F1) and FWHM-002 (F2) indexes determined as the width at half height of
the basal reflections of kaolinite, (001) and (002), are the only one derived from oriented
aggregates. Values (in degree) range from >0.4 (disordered) to <0.3 (ordered) [29]. The
crystallite size D001 obtained from FWHM-001 through the Scherrer formula describes the
thickness of coherent diffraction domain along the c-axis, which is the stacking axis of platy
phyllosilicate layers. Awad et al. [33] found correlations between the crystallite size D001 of
28 kaolinite samples and their HI order-disordered index.

Table 2 presents the structural data and the above-described indexes for the commercial
powder and the prepared targets. The d001 basal spacing calculated via the Bragg equation
was also included. The targets preserved almost the same crystallographic parameters,
namely the reduced unit cell parameters, hence their unit cell volume, as the commercial
powder. The data shows that the commercial powder according to its HI, AGFI, F1 and
F2 indexes is a low-defect kaolinite. Its crystallographic phase composition with very low
amount of impurities and its high purity chemical composition, as the XPS data presented
later, explain this result. The PLD target shows an increase of all the calculated order-
disorder indexes. A. La Iglesia reported that very high static pressure induced disorder
in kaolinites such as fractures, deformation and rolling of the layers [34,35]. The pressure
of ≈ 20 MPa for the manufacture of the target/pellet used in the PLD experiments is 3
orders of magnitude less as those reported by La Iglesia. Actually, at this low-pressure
value an increase of the coherence stacking layers distance occurs. The MAPLE target
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presents a very slight decrease of the D001 size value and of the AGFI index as a result of
the dissolution in water and the presence between the kaolinite layers of a larger number
of polar hydroxyl groups.

Table 2. Structural data of the commercial powder and the targets obtained from XRD analysis.

Sample Reduced Unit Cell Parameters d001
(Å) HI AGFI

F1
(deg)

F2
(deg)

D001
(nm)

a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦) Vol(Å3)

ICDD card
00-058-2028 5.156 7.409 8.950 88.18 89.81 75.34 330.59 7.1697

powder 5.14(8) 7.40(9) 8.95(8) 88.0514(3) 89.91(2) 74.94(2) 328.67 7.214 1.14 1.53 0.27 0.23 33.7

PLD
target 5.15(7) 7.38(6) 8.94(9) 88.0055(3) 89.62(2) 74.91(2) 328.14 7.102 1.68 1.63 0.24 0.21 37.4

MAPLE
(10%)
target

5.16(8) 7.36(7) 8.9(1) 88.9991(3) 89.61(2) 75.09(1) 327.80 7.081 1.25 1.04 0.30 0.27 31.0

There is a linear relationship between the overall order-disorder index AGFI and the
size of the coherent diffraction domain perpendicular to the (001) plane, D001. In conclusion
the XRD analysis evidenced that the targets preparation procedures preserved all the
intimate structural features of the commercial powder used for their preparation.

The XPS investigation employed to identify the chemical composition of lead to a ratio
Al/Si of 0.82 (Table 3). The larger proportion of Si is consistent with the XRD observation
of a small amount of SiO2.

Table 3. Atomic composition for kaolinite powder.

Element Atomic Ratio %

O1s 59.88
Si2p 19.15
Al2p 15.72
C1s 5.25

The PLD films show reflections except for the λ = 193 nm (Figure 4a and Table 4). No
(hkl) with h 6= 0 and k 6= 0 is observable. For λ = 1064 nm all the four (00l) peaks are visible,
and the intensities are high which turns this wavelength as the most effective one. The F1
and F2 values are <0.3◦ indicative of ordered kaolinite. In addition, the coherent domain
size values characterizing the extension of the staking of layers, D001, are slightly larger for
the 1064 nm and 532 nm than the corresponding value for PLD target, indicative of highly
oriented films. The d001 basal spacing values are similar to their corresponding PLD target,
with a slight increment for the 1064 nm film, marking slight larger interlayer distance.

Table 4. Structural data of the films deposited via PLD and MAPLE.

Films d001 (Å) F1(deg) F2(deg) D001 (nm)

MAPLE 5% 7.014 0.274 0.247 33.8

MAPLE 10% 7.126 0.213 0.210 39.2

PLD 1064 nm 7.172 0.217 0.212 38.6

PLD 532 nm 7.005 0.197 0.184 42.4

PLD355 nm 7.127 0.243 0.172 34.4
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Figure 4. XRD patterns of the films deposited by PLD (a) and MAPLE (b) and their corresponding targets.

In the XRD patterns of MAPLE films (Figure 4b and Table 4) all the four (00l) reflections
are clearly visible even for the film originating for the target with a lower concentration
of 5%. The F1 and F2 indexes are also <0.3◦ with coherent domain sizes characterizing
ordered kaolinite samples. The d001 basal spacing values are consistent with d001 spacing of
the MAPLE (10%) target.

In conclusion the transfer of kaolinite as films via laser techniques from properly
prepared targets produced highly oriented and ordered films in particular for 1064 nm
wavelength for PLD and 10% concentration for MAPLE.

Scanning electron microscopy (SEM) and atomic force microscopy (AFM) used to
study the surface morphology and the topography of the samples show clay films with a
compact appearance, completely covering the substrate, with three-dimensional clusters
and high roughness, especially for higher wavelengths (532 nm, 1064 nm). The decrease in
laser fluence leads to a decrease in film roughness and a change in surface microstructure
appearance. At 193 nm wavelength, the film surface is structured, dense, presenting grains
in the range of tens of nanometers.

Figure 5 displays the SEM, whereas Figure 6 shows AFM images and the RMS rough-
ness depending on the wavelength used for the experiments, correlated with the film
thickness (Figure 7).

Samples elemental composition as analyzed by XPS is presented in Table 5 and Figure 8
it displays the presence of Si, Al and O, with similar composition found in the starting ma-
terial, and ratio Al/Si smaller than 1, for most of the samples. The 193 nm PLD deposition
is accompanied by Si leaching, consistent with the XRD measurements, supporting the
decomposition of kaolinite structure.

Table 5. Films atomic composition and Al/Si ratio.

Atomic % MAPLE 5% MAPLE 10% PLD 1064 nm PLD 532 nm PLD 335 nm PLD 193 nm

O1s 66.22 65.33 62.79 60.92 62.63 63.06

Si2p 20.73 17.95 22.97 20.69 20.51 17.80

Al2p 13.05 16.71 14.24 18.39 16.85 19.13

Al/Si 0.63 0.93 0.62 0.88 0.82 1.07
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Figure 8. Al/Si atomic ratio for films deposited by MAPLE and PLD, as resulted from XPS survey.

In Figure 9a are shown water contact angle measurements (WCA) for kaolinite films
obtained by PLD and MAPLE.
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Figure 9. Contact angle (a) and surface energy components (b) for films deposited by MAPLE
and PLD.

In general, the wettability of surfaces and implicitly the measurement of the water con-
tact angle depends on many factors. For instance, in the case for clay minerals, wettability of
the surface and the water contact angle is more complicated and difficult to determine and
can be affected by: experimental procedure, film deposition method, deposition parameters,
surface roughness, humidity, temperature, heterogeneity of surface, adsorption phenomena
and particle size [36]. Some authors have reported that pure kaolinite has a hydrophilic or
moderate hydrophilic character due to the hydroxyl groups on the surface [36–40] having a
water contact angle value of 17–26◦, respectively, 46.1◦ and 42◦. In addition, in [36,41] the
wetting characteristics of the silica tetrahedral face and alumina octahedral face of kaolinite
was studied. The result of these study shows that the silica face of kaolinite has a modest
level of hydrophobicity and the alumina face of kaolinite is hydrophilic.

In our case, similar values to those in the literature were found for water contact angle,
namely 46◦ and was obtain for kaolinite film deposition by IR PLD techniques. As can be
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seen from the graph, MAPLE leads to superhydrophilic films with contact angles in the
range 4◦ and, respectively, 8◦, depending on both the microstructure and surface roughness
at micro and nano scale. Hydrophilic films with a water contact angle of about 46◦ can be
obtained for IR PLD. In the case of PLD, at lower wavelengths it leads to water contact
angles of around 98◦.

For kaolinite films, surface energy and its components (polar and dispersive) were
calculated by measuring the contact angle with water and methylene iodide. The surface
energy and the contribution of polar and dispersive component are shown in the graph
from Figure 9b. For the films deposited by MAPLE method, the polar components of
surface energy are around 30 mN/m. The surface energy of the kaolinite films deposited
by PLD was approximately 30.86 mN/m for wavelengths of 193 nm, 42.9 mN/m for
355 nm and 44.14 mN/m for 532 nm. The most important contribution is due to the
dispersive components. For wavelength of 1064 nm, the surface energy of kaolinite film
was 62.97 mN/m, polar component having the value of 18.16 mN/m.

From the results presented in this paper it is observed that the kaolinite films deposited
by MAPLE technique have a higher affinity for water while the films deposited by PLD at
lower wavelengths show a moderately water-repellent character. Kaolinite films deposited
by IR PLD show moderate hydrophilicity.

These wetting behaviors are important and make them suitable for various applica-
tions in which these kaolinite films deposited by PLD and MAPLE can be used as active
surfaces by functionalization or grafting with hydrophilic groups, as a support for use such
as a sensor for protein detection, or as composite materials for temperature sensor and food
packaging including.

The structural transformation and the reactivity of kaolinite involve dehydroxylation
reactions [42]. In order to survey the effect of laser interaction on the molecular structure
and in particular on the potential degradation of the hydroxyl groups in kaolinite we
compared the DRIFT spectra of the PLD films deposited at 193 nm, 532 nm and 1064 nm,
respectively. In the OH stretching region has four infrared active modes centered at 3695,
3670, 3650 and 3620 cm−1. According to Farmer [43] the band at 3695 cm−1 is due to the
in-phase inner surface hydroxyl stretching vibration, the two at 3670 and 3650 cm−1 to
the out-of–phase vibrations of the inner surface hydroxyl and the band at 3620 cm−1 is
the hydroxyl stretching vibration of the inner hydroxyl. The inner surface hydroxyls are
also called outer hydroxyl groups and are situated in the outer upper, unshared plane,
whereas the inner hydroxyl groups are located in the plane share with the apical oxygens
of the tetrahedral sheet [44]. The resolution and the intensity of these bands depend on the
defects in the kaolinite. However, the assignment of the hydroxyl stretching bands was and
still is under constant review [45–47]. Thus, the information gained through such systems
as c-oriented kaolinite films will add more knowledge on kaolinites and their behavior as
functional material in prospects of future applications. The DRIFT spectra of the hydroxyl
stretching region of the films deposited via PLD are presented in Figure 10. The spectrum of
the film deposited at 193 nm was multiplied by 10 in order to be visualized. As in can be see
the 3620 cm−1 peak corresponding to the inner hydroxyl groups are almost not shifted for
the 532 nm and 1064 nm films (positioned at 3616 cm−1 for 532 nm film and at 3617cm−1 for
1064 nm film, respectively). The band is shifted to 3609 nm for 193 nm film signing structural
alteration. Similarly, the in-phase inner-surface band at 3695 nm appears at 3693 cm−1

for 1064 cm−1 and at 3694 cm for 532 nm film while its position for the film deposited at
193 nm is seriously shifted towards 3730 cm−1. The two bands corresponding the readily
accessible out-of-phase outer hydroxyl groups are not so discernable and almost vanish
for the 193 nm film, marking for this film a partial dexydroxylation accompanied by its
structural deterioration. The spectra allure are similar to those of high-defect kaolinites [48],
to kaolinites subject to mechanochemical activation via grinding which will decrease their
crystallites sizes [48–50] or/and subjected to thermal treatments [42]. That means that all
that the vibration of the inner surface hydroxyl groups are free and the OH groups are
more readily accessible for exchange increasing their potentiality for functionalization. The
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DRIFT data are consistent with the XRD results indicating the 1064 nm as the conducting
to the most “crystalline” film while the film deposited at 193 nm is amorphous to XRD.
For all these films deposited via PLD no band around 3555 cm−1 ascribed to water [51] is
observable. The result is consistent with hydrophobicity of the PLD films of the as revealed
by contact angle measurements. It is to be mentioned that the 1064 nm film exhibit a lower
hydrophobicity probably due to its high roughness.
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Figure 10. DRIFT spectra of the hydroxyl stretching region of the films deposited via PLD at 193 nm,
532 nm and 1064 nm.

4. Conclusions

We have successfully synthesized crystalline thin films of kaolinite using laser tech-
niques, PLD and MAPLE, preserving the structure and chemical composition of the initial
raw kaolinite. All the films are highly oriented along the c-axis. The 1064 nm wavelength
for PLD secures the production of a thick and highly textured film while at λ = 193 nm
an extremely thin and amorphous to XRD film is obtained. MAPLE proves to be effective
for the deposition of highly oriented kaolinite films even at 5 wt.%. kaolinite in the target.
It is a suitable technique for the deposition of clay films with pronounced hydrophilic
character. To conclude our results, kaolinite thin films can be further used as active surfaces
in electrochemical sensing.
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