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Abstract

:

Ag-decorated TiO2 nanostructured materials are promising photocatalysts. We used non-standard cryo-lyophilization and ArF laser ablation methods to produce TiO2 nanosheets and TiO2 nanostructured thin films decorated with Ag nanoparticles. Both methods have a common advantage in that they provide a single multiply twinned Ag(0) characterized by {111} twin boundaries. Advanced microscopy techniques and electron diffraction patterns revealed the formation of multiply twinned Ag(0) structures at elevated temperatures (500 °C and 800 °C). The photocatalytic activity was demonstrated by the efficient degradation of 4-chlorophenol and Total Organic Carbon removal using Ag-TiO2 nanosheets, because the multiply twinned Ag(0) served as an immobilized photocatalytically active center. Ag-TiO2 nanostructured thin films decorated with multiply twinned Ag(0) achieved improved photoelectrochemical water splitting due to the additional induction of a plasmonic effect. The photocatalytic properties of TiO2 nanosheets and TiO2 nanostructured thin films were correlated with the presence of defect-twinned structures formed from Ag(0) nanoparticles with a narrow size distribution, tuned to between 10 and 20 nm. This work opens up new possibilities for understanding the defects generated in Ag-TiO2 nanostructured materials and paves the way for connecting their morphology with their photocatalytic activity.






Keywords:


anatase; Ag(0) NPs; twinned defects; nanosheets; thin films; photocatalytic activity












1. Introduction


In 2016, the World Health Organization (WHO) reported that air pollution occupied the sixth position among all factors leading to death globally [1]. Heterogeneous photocatalysis based on titania (TiO2) and modified titania is believed to be an appropriate approach with a great capacity for improving both air and water quality, and generally refining human health. TiO2 is accepted as one of the most effective photo-induced catalysts used to destroy pollutants in our environment due to its strong redox ability and photostability. TiO2 is known to be a non-expensive, nontoxic material that exists in three polymorphic structures—anatase, rutile, and brookite. Among these three polymorphs, anatase has attracted the greatest interest in photocatalysis. It is commonly accepted that its photocatalytic activity is affected by light absorption, charge creation, charge mobility, and charge recombination rate, as well as surface reactivity. On the other hand, the direct wide bandgap (Ebg) of anatase (3.2 eV) remains a major obstacle, limiting its solar energy utilization to about 4% [2]. In this context, significant efforts have been directed toward improving the catalytic activity of TiO2 by modifying its Ebg. Generally, nanostructured photocatalysts [3] have been demonstrated to show significant promise, and provide better performance in catalyzing reactions due to their distinct physicochemical properties (melting point, wettability, electrical and thermal conductivity, light absorption, and scattering). These advantages are mainly a result of their nanoscale size (according to the EU Commission, this is defined as particles with external dimensions in the size range between 1 and 100 nm) [4] and structure-dependent properties that are distinct from their bulk counterparts [5]. In the last two decades, hundreds of novel nanostructured TiO2 materials have been developed. The classification scheme includes zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) TiO2 nanomaterials. The number and variety of TiO2 belonging to the 2D family are far lower than for 0D and 1D morphologies. 2D TiO2 assemblies such as nanosheets usually do not grow except under special and controlled conditions; these can typically be categorized as either surfactant-assisted synthesis or the assembly of simpler 1D NCs [6]. It has been widely reported that surface modification of TiO2 with noble metal nanoparticles (NPs), such as from Pt, Pd, Cu, Ag, and Au, could improve its photocatalytic activity [7,8,9,10]. Special attention has been devoted to Ag-modified TiO2 because of the capability of Ag NPs to prevent the recombination of electron/hole (e−/h+) pairs due to the formation of the Schottky barrier at the interfaces with TiO2 and to act as a trapping center for photoexcited electrons. Thus, the role of Ag NPs as electron scavengers is vital in suppressing (e−/h+) recombination and achieving successful improvement of Ag-TiO2 photocatalytic performance. A review from 2021 with the title “Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors” reported more than 500 papers focused on the physicochemical properties of Ag-TiO2 nanoscale materials [11]. Several distinct routes have been applied for Ag-TiO2 synthesis: for instance, sol-gel [12,13], co-precipitation [14], and hydrothermal methods [15,16], leading to bulk polycrystalline powders, as well as deposition/reduction techniques [17,18], resulting in thin layered films. Each preparation technique has been used to obtain an efficient, stable, and scalable photocatalyst. However, there are only a few reports focusing on the 2D TiO2 nanosheets decorated with Ag NPs obtained from cryo-lyophilized precursors [19,20]. The cryo-lyophilization technique (CLT) was first developed from wet shaping techniques, in line with the global scientific and technological interest in developing cleaner and more efficient “green” methods of synthesis. The CLT uses little other than water, which is an environmentally friendly, nontoxic dispersing medium and costs very little as a tool, and represents huge savings compared to the sol-gel method [7]. To date, few efforts have been directed towards the growth of metal-decorated TiO2 nanosheets using CTL, which can be attributed to the preferential application of this technique in bio/pharmaceutical and food industries instead of in material sciences [21,22]. Herein, the CLT and laser ablation deposition techniques [23,24] were used to produce Ag_TiO2 nanosheets and Ag_TiO2 nanostructured thin films (NSTFs), respectively. The synthesis efficiency was compared in terms of morphology and photocatalytic activity. The CLT of a frozen aqueous mixture of TiOSO4 and Ag(NO)3 led to amorphous peroxo-polytitanic Ti(IV) acid (PPTA) precursor, which transformed into an Ag(0)_TiO2 (anatase) with a stacked nanosheet morphology after annealing at temperatures between 500 and 950 °C. In addition, the CLT conditions (freezing time, freezing temperature, and freezing rate) resulted in differently shaped nanocavities in the Ti-O layers due to the removal of ice/water through sublimation. Likewise, the laser ablation techniques yielded TiO2 (anatase) NSTF decorated with Ag(0) NPs after 1 h heat treatment of the as-deposited film at a temperature of up to 500 °C. Additionally, the photocatalytic activity of Ag(0)_TiO2 nanosheets was tested under UV light in terms of its ability to degrade 4-chlorophenol (4-CP) and perform total organic carbon (TOC) removal. The photoelectrochemical (PEC) properties of Ag(0)_TiO2 NSTFs were examined under visible light irradiation. The photocatalytic activity of Ag(0)_TiO2 materials, even prepared via completely different techniques, was found to be correlated with the multiply twinned structure formed in Ag(0) NPs with diameters in the 10–20 nm range. We evaluated the catalytic activities of the Ag(0)_TiO2 materials against the commercial TiO2 and standard TiO2_P25 catalysts.




2. Experimental Procedure


2.1. Materials


Titanium (IV) oxysulfate (titanyl sulfate, TiOSO4, Sigma-Aldrich spol. s.r.o., Prague, Czech Republic) was used as a TiO2 precursor. Silver nitrate, AgNO3 ≥ 99%, Sigma-Aldrich spol. s.r.o., Prague, Czech Republic, served as the Ag dopant source. During material synthesis, an aqueous solution of ammonia (NH3, solution p.a., 25–29%, Fisher Scientific, spol. s.r.o., Pardubice, Czech Republic) was used for precipitation of the precursor and hydrogen peroxide (H2O2, solution p.a., 30%, Fisher Scientific, spol. s.r.o., Pardubice, Czech Republic) for pH reduction. 4-chlorophenol (4-CP, purity ≥ 99.9 %, Sigma-Aldrich, Prague, Czech Republic) and AEROXIDE TiO2-P25 (Evonik, Prague, Czech Republic) were used for the photocatalytic experiments.




2.2. Sample Preparation


2.2.1. Ag_TiO2 Nanosheets


In a typical experiment (see Scheme 1 and Figure S1), 4.80 g of titanyl sulfate (TiOSO4) was dissolved in 150 mL of distilled water at 35 °C (step 1). Then, 0.05 g of AgNO3 solution was added, yielding a calculated value of 3 wt. % of silver to give a colorless solution. This solution was cooled for approximately 1 h in the freezer, and thereafter the precipitation was carried out at ~0 °C in aqueous ammonia until the pH reached 8. The precipitate was filtered and washed several times to remove sulfate anions formed during the reaction. The precipitate as obtained was transferred into a beaker and resuspended into 350 mL of distilled water. The pH of the resulting suspension was reduced by adding 20 mL of 30% hydrogen peroxide (H2O2), and it was stirred at ambient temperature until the solution turned from turbid yellowish to transparent yellow. The PPTA solution was added dropwise into Petri dishes immersed in liquid nitrogen (LN2) (step 5). Frozen droplets were immediately lyophilized at 10 mTorr, at −54 °C for 48 h by using VirTis Benchtop K, Core Palmer UK lyophilizer (step 6). After lyophilization, a yellowish lyophilized precursor (lyophilized foam-like cake) was isolated (step 7) [25,26,27,28]. The lyophilized precursor labeled Ti_Ag_LYO was further heat-treated under air at 500, 650, 800 and 950 °C for 1 h in each case (with rate 3 °C/min), and four new samples denoted as Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800 and Ag_TiO_LYO/950 were isolated (see Figure S1/Scheme 1).




2.2.2. Ag_TiO2 Nanostructured Thin Films (NSTFs)


The samples were prepared by ArF laser ablation (wavelength 193 nm, 100 mJ/pulse) of TiO2 and elemental Ag targets. The ablation of the sintered TiO2 was carried out in a turbomolecular vacuum (10−3 Pa) using a focused laser beam (9 min, 10 Hz) to prepare a thin film. Subsequently, the thin film was covered by Ag NPs, prepared by laser ablation under argon (4 Pa). The deposits were grown on NaCl, quartz and Cu substrates, and FTO glass. The samples were annealed at 500 °C/1 h under air to crystallize the TiO2 thin film and to form Ag NPs on the surface. The two samples (1) labeled Ag_TiO2_AP, as prepared before annealing, and (2) annealed at 500 °C—Labeled Ag_TiO2_500 were the subjects for further characterization.





2.3. Characterization Methods


Powder diffraction patterns of samples Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 were collected using a PANalytical X’ıPertPRO diffractometer equipped with a conventional X-ray tube (CuK _40 kV, 30 mA, line focus) in transmission mode. An elliptic focusing mirror, a divergence slit of 0.5°, an anti-scatter slit of 0.5°, and a Sollerslit of 0.02 rad were used in the primary beam. A fast-linear position-sensitive detector PIXcel with an anti-scatter shield and a Soller slit of 0.02 rad was used in the diffracted beam. All patterns were collected in the range of 18–88 2theta with a step size of 0.013 and 400 s/step, producing a scan of about 2.5 h. Qualitative analysis was performed with the HighScorePlus software package (PANalytical, Almelo, The Netherlands, version 3.0e) and the DiffracPlus software package (Bruker AXS, Karlsruhe, Germany, version 8.0) [29]. For quantitative phase analysis, we used DiffracPlus Topas (Bruker AXS, Karlsruhe, Germany, version 4.2) [30]. The estimation of the size of crystallites was performed based on the Scherrer formula [31] (Equation (1)).


  D =   K λ   β cos θ    



(1)




where K stands for Scherrer’s constant, λ corresponds to the X-ray wavelength irradiation, β is the half-width of the diffraction peak and θ corresponds to the scattering angle. The model was derived from anatase TiO2 structure with Ti atoms replaced by 1 at. % Ag.



Transmission electron microscopy (TEM) of Ag_TiO2 nanosheets was carried out on an FEI Tecnai TF20 X-twin microscope operated at 200 kV (FEG, 1.9Å point resolution) equipped with an EDAX Energy Dispersive X-ray (EDX) detector (FEI company, Hillsboro, OR, USA). The microscope was used in scanning mode (STEM) with High-Angle Annular Dark Field Detector (HAADF). TEM images were recorded on a Gatan CCD camera with a resolution of 2048 × 2048 pixels using the Digital Micrograph software package. Selected area electron diffraction (SAED) patterns were evaluated using the Process Diffraction software package [32]. For the TEM, the thin film deposits were prepared on NaCl substrates (at the same experiment with the other substrates) to facilitate the sample preparation which was simply done by dissolving the substrate and placing the thin film deposit on a copper grid.



High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images of Ag_TiO2 NSTFs were acquired using cold-field-emission double aberration-corrected JEOL JEM-ARM200CF microscope operated at 200 kV. The inner-collection semi-angle of the HAADF detector was set to 90 mrad, and the probe convergence semi-angle was 22 mrad. X-ray energy dispersive spectroscopy (EDS) mappings were acquired using 0.98-steradian solid-angle windowless silicon drift-detector JED-2300 (JEOL, Tokyo, Japan) mounted in the STEM instrument. For the atomic-resolution EDS, the probe current was set to 200 pA, 0.1–0.2 msec pixel dwell time. Wiener filtering and sample drift correction was applied, 5–6 sweeps were accumulated for the atomic-resolution EDS images.



The surface composition of the samples, chemical states, and electronic states of the elements was inspected by XPS using Kratos ESCA 3400 furnished with a polychromatic Mg X-ray source of Mg Kα radiation (energy: 1253.4 eV). The base pressure was kept at 5.0 × 10−7 Pa. The spectra were fitted using a Gaussian–Lorentzian line shape, Shirley background subtraction, and a damped non-linear least square procedure. Spectra were taken over Ti 2p, O 1 s, C 1 s, and Ag 3d regions. The samples were sputtered with Ar+ ions at 1 kV with a current of 10 µA for 60 s to remove superficial layers. Spectra were calibrated to C 1 s line centered at 284.8 eV.



The surface nanostructure of the synthesized Ag_TiO2 nanosheets was analyzed by atomic force microscopy (AFM) using NTEGRA AFM system (NT-MDT). The ex-situ AFM measurements were carried out in tapping mode under ambient conditions (room temperature, air environment, normal atmospheric pressure). Atomic Force Microscopy (AFM) measurements of Ag_TiO2 NSTFs were carried out at room temperature on an ambient AFM (Bruker, Dimension Icon, Ettlingen, Germany) in Peak Force Tapping mode with ScanAsyst Air tips (Bruker; k = 0.4 N/m; nominal tip radius 2 nm). The measured topographies had a resolution of 512 × 512 points2.



UV-Vis spectroscopy was carried out using a Shimadzu spectrophotometer UV 1800 (Kyoto, Japan). The sample was dispersed in distilled water in a quartz cell (10 mm optical path) in an ultrasound bath for 2 min. The spectra were recorded in the range 190–800 nm. Diffusion reflectance spectra of the powders were measured after fixing the samples on double-sided carbon tape. The thin films were measured as prepared and annealed on quartz substrates.



Pin-hole Small-Angle Neutron Scattering (SANS) measurements of the samples Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800 and Ag_TiO_LYO/950 were conducted using a conventional SANS V4 instrument (Helmholtz-Zentrum Berlin für Materialien und Energie. (2016). V4: The Small Angle Scattering Instrument (SANS) at BER II [33] located at BER-II reactor of Helmholtz-Zentrum Berlin). Neutron scattering curves were measured using a collimated neutron beam with a wavelength of 0.5 nm (±10%) at distances from the sample to the detector of 15.78 m, 6.8 m, and 2 m. The data were treated using a standard procedure using “empty cell” and “cadmium background” measurements. The samples were installed for the SANS measurements in quartz cells with a flight path of 1 mm.




2.4. Photocatalytic Degradation of 4-CP


The prepared photocatalysts (0.15 g L−1) were added in an aqueous 4-chlorophenol solution (4-CP, 1.0 × 10−4 mol L−1). The reactant mixtures were irradiated under identical conditions in a photoreactor equipped with 10 lamps (Sylvania Blacklight 8 watt, λmax = 368 nm, intensity 6.24 mW cm−2). The volume of the reactant mixture was 175 mL. The photocatalytic activity of the samples was monitored by measuring the concentration of 4-CP in water (HPLC, Agilent Technologies 1200 Series, column LiChrospher RP-18, 5 μm, mobile phase mixture of methanol and water, UV-Vis absorption detection) as well as the total organic carbon (TOC-LCPH, Shimadzu, Kyoto, Japan). The instrumental method employs the incineration of the sample at 680 °C, resulting in the formation of CO2. Inorganic carbon presented as carbonate is transformed with 0.1% HCl to CO2. Formed CO2 was detected by implementing IR absorption spectroscopy. Water samples (20 mL) were taken periodically at 60, 120, and 240 min of irradiation.



The reaction rate of 4-CP reduction was fitted to the pseudo-first-order kinetic model (Equation (2)):


  ln   (  C   C 0    ) = − k t    



(2)




where C and C0 are the summed 4-CP concentrations at the time (t) and t = 0, respectively, and k is the pseudo-first-order kinetic rate constant [34]. The method of UV-Vis diffuse reflectance spectroscopy was employed to estimate band-gap energies of the prepared Ag decorated TiO2 nanosheets. Diffuse reflectance UV-Vis spectra were recorded in the diffuse reflectance mode (R) and transformed to a magnitude proportional to the extinction coefficient (K) through the Kubelka–Munk function. A PerkinElmer Lambda 35 spectrometer equipped with a Labsphere RSA-PE-20 integration sphere using BaSO4 was used as a standard. The band-gap energy Ebg [35] was calculated by the extrapolation of the linear part according to Equation (3)


λbg = 1240/Ebg (eV)



(3)








2.5. Photoelectrochemical Measurements


The photocatalytic activity for water splitting was tested by cyclic voltammetry on samples deposited on the FTO glass substrates. Cyclic voltammetry (CV) was carried out under irradiation by a visible light sun simulator (100 W, Oriel LCS 100). CV was performed using a scan rate of 20 mV/s at potentials −0.5 and +1.5 V with Pt counter electrode, Ag/AgCl reference electrode in 0.5 M H2SO4 as an electrolyte. To demonstrate water splitting performance, the samples were studied by linear sweep voltammetry (LSV) between −0.2 and +1.2 V by applying 10 s light/10 s dark cycles at 1 mV/s scan rate.





3. Results and Discussions


3.1. Microstructure and Surface Characterization of Ag_TiO2 Nanosheets


X-ray powder diffraction analysis and Rietveld refinement were used for characterization of the microstructure and evaluation of TiO2 phase transition. The characteristic parts of XRD patterns of precursor Ag_TiO_LYO and post-synthesis annealing products Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 are shown in Figure S2. XRD pattern of the lyophilized precursor Ag_TiO_LYO indicated amorphous material. The XRD patterns of samples Ag_TiO_LYO/500, Ag_TiO_LYO/650, and Ag_TiO_LYO/800 revealed anatase phase only; the positions of diffraction peaks and distribution of intensities correspond to anatase TiO2 (ICDD PDF No 21-1272) [28]. Increasing the temperature resulted in more refined reflection peaks i.e., reflections became narrower as the crystallites grew from 35.37 nm at 500 °C to 78.41 nm at 800 °C (Table 1) [36]. It is evident that the Ag_TiO_LYO/950 sample already contains 66.53% of rutile (JCPDS PDF No. 21-1276) [28] and a small fraction (0.7 %) of cubic (Ag0) with JCPDS PDF No. 04-783 [37]. The difference in the crystal structure in our 2D TiO2 materials with different anatase/rutile ratios is due to thermal treatment and spontaneous transformation from metastable anatase to stable rutile [38]. XRD results confirmed that the metallic (Ag0) form of silver stabilized the anatase phase up to 800 °C and retarded phase transformation in comparison with pristine TiO2 nanosheets prepared by using the same method [39,40].



It was found that the lattice parameter a was not changed, whereas the lattice parameter c increased linearly with an increase in temperature. The visible extension along the c-axis and the resulting lattice expansion could be dependent on the nanoparticle size and thermal treatment. A considerable increase in the anatase crystallite size was observed after annealing at an overall temperature interval of 500–950 °C. The crystallite size of sample Ag_TiO_LYO/950, as determined from the XRD, was 238.7 (anatase) vs. 251.1 (rutile), since the transformation of anatase to rutile is usually accompanied by crystal growth through the coalescence process [41].



The presence of metallic (Ag0) silver was evidenced by the high-resolution XPS spectra, as depicted in Figure 1.



Two well-defined peaks centered at 368.0 and 374.0 V were observed in the Ag 3d region of all samples. The bands were narrow (FWHM = 1.2 eV), which means that silver was present in one chemical state. Both bands had an asymmetric shape, which is typical for the metallic (Ag0) form of silver. Loss features usually observed due to the higher binding energy side of each spin-orbit component were not visible due to low surface concentrations of elemental Ag(0) silver. Ag-O bonds, which could be expected as a result of exposure of the samples to ambient air, were not visible in either the prepared or sputtered samples. Ag-O bands had binding energy about 0.5 eV lower than elemental Ag(0), and therefore they were observed as a broadened feature on the lower-binding-energy side of the Ag 3d bands.



The Ti 2p region showed broad bands and a Ti 2p3/2 band separated into three contributions, with the highest content typical for Ti4+ in TiO2 (458.8 eV). Lower energy bands were ascribed to Ti3+ valence states in titanium suboxides. Titanium represents an element with a constant surface concentration, and the intensity of the Ag 3d peaks shows that the silver concentration changed significantly with annealing temperature. The surface concentration of silver was lowest at 500 °C (1.7% relative to Ti), while heating to 650 and 800 °C led to an increase in Ag(0) surface concentration (1.8 and 6.9%, respectively, to Ti). Heating to 950 °C again resulted in lower Ag(0) surface concentration, probably due to the evaporation of elemental silver at the highest temperature. The O 1 s spectra of the sample were deconvoluted into three peaks. The most intense one, centered at 530.2 eV, is typical for metal oxides. The higher binding energy contributions were assigned to hydroxide and carbonate (531.6 eV) and adsorbed water (533.2 eV).



The morphology of annealed precursor Ag_TiO_LYO was observed by SEM, and the results for Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 are presented in Figure 2a–d. The annealing process led to the formation of network-like joined nanosheets, which are distinguishable by their shape and size [36]. SEM observation shows that crystallization took place only in the 2D direction, and 2D nanosheets with different degrees of crystallinity were acquired. Even at 950 °C, when the anatase–rutile transformation took place, the 2D nanosheet morphology did not collapse, and its morphology was preserved (Figure 2d).



In-depth morphology evaluation was performed by HAADF-STEM monitoring. Figure 3a verifies the nanosheet morphology of the precursor Ag_TiO_LYO.



The Z-contrast HAADF-STEM image (Figure 3b) and STEM-EDS mapping (Figure 3c) show that Ag is segregated on the edge of the nanosheet. After annealing at 500 and 650 °C for 1 h, it can be seen that the microstructure and roughness of the Ag_TiO_LYO were significantly changed. Low-magnification TEM of the Ag_TiO_LYO/500 sample is presented in Figure 4a. The high-resolution images in Figure 4b–c, taken from the yellow boxed area in Figure 4a, show spheroidal-shaped NPs, with a diameter around 20 nm, attached to the surface of nanosheets. HRTEM analysis (from the yellow marked area in Figure 4c) suggested a single Ag(0)NP with the cubic Fm-3m space group. The calculated d-spacing of 0.235 nm corresponds to the (111) plane of Ag(0) NP (JCPDS PDF No. 04-783) when oriented in the [103] zone axis (Figure 4c1).



It is worth noting that the cubic Ag(0) NP structure was preserved; indeed, there was an evolution in particle shape from a spheroid to a spherical morphology during annealing at 650 °C. Ag(0) NPs oriented along their five-fold decahedral symmetry with five merged subunits (Figure 4e) were tightly attached on the surface of well-crystallized TiO2 (Figure 4e). Indeed, the measured d(101) = 0.358 nm was attributed to tetragonal anatase with space group I41/amd (see Figure 4f) and PDF JCPDS 21-1272. Figure 4f1 shows the HRTEM image obtained by DigitalMicrograph analysis (provided from the area highlighted in yellow in Figure 4f), suggesting a lattice spacing of 0.202 nm, corresponding to the (101) lattice planes of cubic Ag(0). Additionally, the uniform d-spacing along different 〈100〉 directions is consistent with the face-centered cubic (fcc) phase of metallic Ag(0) NPs, confirming that our observations are in line with the statement that the fivefold twinning phenomenon is very common for metal Ag [42,43,44]. Additionally, the HRTEM findings corroborated the observed XRD patterns of Ag_TiO_LYO/500 and Ag_TiO_LYO/650 (see Table 1 and Figure S2).



Figure 5 shows the aberration-corrected bright-field (BF) and HAADF STEM micrographs of Ag_TiO_LYO/800 acquired at different magnifications. Two regions can be distinguished in the HAADF-STEM images in Figure 5a–b: a matrix with lower intensity, and well-crystallized spherical NPs that present higher intensity. This contrast is associated with the atomic weight dependence of the constituted elements. Because the brightness of an individual atomic column in a HAADF-STEM image (Figure 5b) is approximately proportional to the square of average atomic number, the contrast of Ag (Z = 47) appears brighter than that of Ti (Z = 22) in the HAADF electron scattering regime. Therefore, the spherical NPs that were brighter, in contrast, indicated enrichment of Ag(0). As a result of increasing temperature, the size of Ag(0) NPs changed, appearing as smaller, evenly distributed Ag(0) NPs on the surface of the matrix (TiO2 nanosheets), coexisting with a small number of larger Ag(0)NPs segregated at the grain boundaries between two adjacent (TiO2) matrix grains. Indeed, the zoomed BF STEM image in Figure 5c taken from the yellow boxed area in Figure 5a comprises an atomic-resolution image of the matrix, verifying the well-crystallized nanograins (NGs) with an interlayer spacing of 0.35 nm between the (101) planes proposed for anatase TiO2. In Figure 5d, we present the BF STEM view of a ⟨110⟩-oriented Ag(0) NP with the characteristic five-fold twinned nanostructure. Five subunits, labeled T1−T5, are joined together, sharing their {111} planes. In regular fcc metal Ag(0) with five ideal single-crystalline grains joined in a fivefold twinned nanostructure without distortion, the angle between two (111) faces is known to be 70.53° [45]. However, by applying CrytalMaker software [46], we found that the angle along the [110] zone axis was 74.5. Therefore, a significant angular mismatch between T1−T5 occurred in the Ag_TiO_LYO/800 sample upon annealing at 800 °C. Such angle subtending should be compensated by simultaneously adjusting the bond lengths and the introduction of lattice defects such as dislocations and stacking faults (SF) in Ag(0)NPs [43]. If we accepted the model that any T1−T5subunits can be regarded as a single sub-crystal merged in a pentagonal bipyramidal geometry, we could suggest that lattice strain and distortion may be generated from the matching adjacent {111} twin boundaries (TBs) upon annealing. From Figure 5c, it appears that the atomic arrangement of the TiO2 grains with d(101) = 0.35 nm is preserved, whereas the atomic arrangement of Ag(0) NPs at the surface is highly distorted (Figure 5f).



Detailed examination of Ag–Ag bond lengths by CrystalMaker demonstrates the presence of distortion within the exanimated pentagonal bipyramidal core (highlighted by the red circle in Figure 5f). It was observed that Ag–Ag bonds are longer (0.291 nm) than standard 0.287 nm for bulk Ag(0). The analysis suggested that the geometric distortion in the decahedral core was compensated by concomitant distortions along with the fivefold T1–T5 axis. Twinning by a mirror plane, where the twinned Ag(0) lattice is obtained by a homogeneous simple shear of the original cubic lattice, is well visible in subunit T2 (Figure 5f). The two mirror regions are referred to as twin domains 1 and 2, respectively. Therefore, the Ag(0) NPs showed a strong tendency to form multiply twinned face-centered cubic superlattices with decahedral symmetry when their size was reduced to 10 nm (Figure 5f) [47,48].



Figure 5f also includes subunit T5, where the SF implies the dislocation lines, observed as a result of TB interaction. The HAADF-STEM examination confirmed that higher temperature was able to facilitate the progressive coalescence of two Ag(0)NPs into one larger Ag(0)NP with a fivefold twinned structure [49]. Additionally, we could suggest that the perfect anatase TiO2(101) may provide nucleation sites for the growth of Ag(0)NPs with a pentagonal bipyramidal structure (Figure 5c), which, unlike Ag(0)NPs with a planar (flat) geometry in Ag_TiO_LYO)/500 (Figure 5a–c), could support the improvement of the properties of Ag_TiO_LYO)/800 as a photocatalyst [50]. The STEM image of Ag_TiO_LYO/950 with corresponding SAED (Figure S3) confirms single rutile nanocrystals with a size larger than 200 nm, which is in line with the XRD results (Table 1).



Figure S4 presents a visualization of the surface topology of the annealed Ag_TiO_LYO/800 material using the AFM technique. Taking into account the geometrical similarities of the NPs, it is reasonable to also expect their identical chemical origin. Careful analysis of the nanostructure allowed us to distinguish the formation of the 2D nanosheets between the NPs, suggesting the formation of a new phase, which is likely to be different from the phase of the NPs (see Figure S4b). Therefore, the performed analysis evidences the formation of two different phases. Figure S5 presents the quantitive analysis of Ag_TiO_LYO/800 using surface profile plots. An NP height of 100 nm was estimated.



SANS analysis was further performed in order to examine the NP size of the Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 samples. The obtained results show a prominent local increase in intensity at Q~0.2 ÷ 0.35 nm−1 (see Figure 6).



The data were fitted using a model of spherical particles with a log-normal distribution of radius as follows:


  N  r  =  1  σ   2 π     e x p   −  1 2        r −  r 0   σ     2     



(4)







The fitted size parameters were r0 = 2.3 nm and r0 = 1.92 nm for the Ag_TiO_LYO/500 and Ag_TiO_LYO/650 samples, respectively. The calculated size distributions were quite wide (σ = 0.7 ÷ 0.8), showing the high polydispersity of the scattering objects. In contrast to this outcome, the SANS data for the samples treated at higher temperatures—Ag_TiO_LYO/800 and Ag_TiO_LYO/950—did not show any deviation from the Porod scattering [39] (Figure 6b), and nanosized objects were not detected by SANS. This observation is in agreement with the XPS experiment, confirming that heating to 800 °C leads to increasing of Ag surface concentration with 6.9% suggesting that Ag NPs, with their increased surface free energy during annealing, can subsequently promote sintering and agglomeration of Ag(0) on the surface of 2D TiO2 nanosheets [41].



Our detailed HAADF-STEM analysis further demonstrated that the geometric non-ideal decahedral Ag(0) core and defected T1-T5 sub-NCs progressively coalesce into one larger Ag(0) NP with a fivefold twinned structure in order to minimize the total potential energy of Ag(0) NPs.



The (UV-Vis) light absorption spectra (Figure 7) revealed that the loading of Ag could enhance the light absorption of the TiO2 nanosheets. The UV-Vis spectra of the Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 samples were measured in distilled water, having no absorption.



All samples were highly homogeneous, and repeated measurements afforded reproducible spectra. Samples annealed at 500 and 650 °C show the most intense bands in the UV region, with maxima at 296 nm and 322 nm, respectively. Both samples are grey. The sample annealed at 800 °C with dark grey color shows a broad absorption band at 350 nm, with pronounced absorption in the visible region. The last sample, annealed at the highest temperature, exhibited absorption only in the visible region beginning at 395 nm. The differences observed are caused by structural changes in TiO2 and both structural and concentration changes in metallic Ag(0) NPs. Diffuse reflectance spectra of the samples (Figure 7) were measured against PTFE, showing a reflectance greater than 99% throughout the measured range (220–700 nm). The spectra of the samples evidenced a major drop in the reflection in the interval 350–420 nm, which is connected to structural changes due to thermal treatment.



The diffuse reflectance spectra of samples annealed at 650–900 °C consist of a flat, highly reflective region at long wavelengths that abruptly transforms into a steeply falling reflectance edge at shorter wavelengths. On the other hand, the sample annealed at 500 °C exhibited reflection spectra with two maxima, due to its low crystallinity, numerous defects, and the presence of carbon impurities. The diffuse reflectance spectra were transformed to a Tauc plot (Figure 7, inset), proving an indirect allowed transition in the prepared materials annealed at temperatures 650 °C and higher. Samples Ag_TiO_LYO/650 and 800 possessed band gaps at 3.23 eV, which is typical for an anatase structure, but the higher-temperature sample (Ag_TiO_LYO/800) had a much higher silver surface concentration, which explains it’s having the highest photocatalytic activity. A bandgap of about 3.01 eV was observed in the Ag_TiO_LYO/950 sample due to transformation to rutile, known for lower photocatalytic activity.




3.2. Photocatalytic Decomposition of 4-CP and TOC


HPLC and TOC measurements were applied to obtain a better understanding of the photocatalytic performance of 4-CP under UV irradiation. We observed that the highest 4-CP removal was obtained in the presence of the Ag_TiO_LYO/800 photocatalysts, followed by Ag_TiO_LYO/650 and Ag_TiO_LYO/500, and Ag_TiO_LYO/950 (Figure 8).



The calculated degradation rate constants k (s−1) are shown in Table 1. The obtained Eg values (Figure S6) were correlated based on UV-Vis analysis (Figure 7) and the Kubelka–Munk function.



The best performance in 4-CP photocatalytic decomposition was achieved with the Ag_TiO_LYO/800 material, which had the lowest Ebg and redshift of optical absorption (Figure S6). The Eg value of Ag_TiO_LYO/800 was lower than that of the reference anatase sample (Eg = 3.24 eV), and pristine 2D TiO2 nanosheets obtained by the same method were reported in our previous article [39]. Briefly, the Eg values for the pristine samples were estimated as TiO_LYO (3.19 eV), TiO_LYO/500 (3.24 eV), TiO_LYO/650 (3.24 eV), TiO_LYO/800 (3.24 eV), and TiO_LYO/950 (3.23 eV). The higher photocatalytic efficiency of the Ag_TiO_LYO/800 catalyst can be explained by the even distribution of Ag(0) on the TiO2 (anatase) nanosheet surface, with an average size of 5–10 nm, as well as fivefold twinned Ag(0), which has a clear positive effect on the photocatalytic activity under UV light irradiation [51,52]. Additionally, at a temperature of 800 °C, the Ag(0) NPs stabilized the anatase structure, decreasing the size of the crystallites compared to pristine TiO2 nanosheets. Further annealing at 950 °C leads to a decrease in photocatalytic efficiency of the Ag_TiO_LYO/950 material under UV light. The differences in the particle shape affect the redistribution of the Ag(0) NPs on the Ag_TiO_LYO/950 surface, resulting in its lower photo efficiency. Annealing at a temperature of 950 °C resulted in a full conversion from anatase to rutile and a change in all microstructural characteristics and photocatalytic activity. Herein, we used the TOC removal as an inexpensive test to evaluate the Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 materials. The TOC removal over time is illustrated in Figure 9.



Degradation of 4-CP in the presence of Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 photocatalysts is rapid in the first 120 min of treatment but decreases thereafter. TOC removal in the range of 2.7 to 12% was achieved in the measured samples after 240 min of photocatalytic treatment. The highest degree of mineralization (12% TOC removal) was obtained in the presence of the Ag_TiO_LYO/650 photocatalyst.




3.3. Structural Analysis and Surface Characterization of Ag_TiO2_AP and Ag_TiO2_500 NSTFs


Nanostructured thin films (NSTF) prepared by laser ablation have extremely high adhesion to all substrates. The as-prepared (Ag_TiO2_AP) deposit was greyish, but after annealing at 500 °C (Ag_TiO2_500), it changed color and the samples became pink with a metallic luster.



To evaluate the microstructure and phase composition of Ag_TiO2_AP and Ag_TiO2_500 NSTFs, the samples were studied using various TEM techniques: imaging (including HRTEM), SAED, STEM-HAADF, and EDX mapping. In addition, the surface and thickness of the deposits were investigated using AFM.



Figure 10 shows TEM observations of Ag _TiO2_AP and Ag_TiO2_500 NSTFs acquired at low magnification, displaying the different morphologies of the nanoparticles on the surfaces of the NSFTs. Ag_TiO2_AP contains nanoparticles with irregular shapes with sizes within a wide range from 10 to 100 nm. In contrast, the annealed sample contained spherical nanoparticles with sizes within the narrower range of 20–40 nm, homogeneously distributed on the TiO2 surface. The corresponding SAED diffraction patterns were used to determine the presence of Ag and TiO2 and their structural form. The SAED examination of Ag _TiO2_AP (Figure 10b) confirmed the mixture of two phases: a broad halo coexisting with several sharp concentric diffraction rings. The disordered phase belonged to the amorphous TiO2 (matrix), whereas the diffraction rings corresponded to polycrystalline Ag(0) with a cubic structure in the Fm-3m space group and JCPDS PDF No. 87-0718 (Figure 10c). The SAED pattern of the annealed Ag_TiO2_500 sample (Figure 10e) also confirmed the mixture of two phases; however, these were slightly different from Ag _TiO2_AP. The diffraction rings corresponding to polycrystalline Ag (Figure 10f) were still present, but the broad halo of the amorphous TiO2 was replaced by intense spots corresponding to the single-crystal orientation of anatase viewed down [110]. In addition, the TiO2 film had crystallized into large single-crystal anatase grains that were slightly bent, as evidenced by the bending contours in Figure 10d. Therefore, it can be inferred that microstructural evolution took place during the annealing process; the Ag_TiO2_500 NSTFs consisted of well-crystallized anatase TiO2 (after the transition from amorphous TiO2) and uniformly dispersed Ag(0) NPs.



The TEM results were further corroborated by the STEM/HAADF images and STEM/EDX mapping of Ag_TiO2_AP and Ag_TiO2_500 NSTFs (Figure 11). The white contrast in the HAADF images indicates the heavy Ag on the light support of TiO2, displayed in dark grey or black. Moreover, the EDX maps show the Ag, Ti, and O elemental distribution over the film in detail. It can be seen from the maps of Ti and O that both elements become interwoven and distributed all over the film, whereas the Ag map suggests that Ag is not interconnected with either Ti or O. This observation indicates that Ag forms a separate phase, which was also evidenced by the SAED observations (Figure 10).



A detailed understanding of the Ag_TiO2_500 NSTF growth and morphology was further investigated by HRTEM analysis (Figure 12). The high-magnification HRTEM image in Figure 12b corresponds to Ag _TiO2_AP, in which Ag single-crystal NPs with quasi-spherical shape and an average particle size close to 20 nm can be easily recognized. Figure 12d–f shows the results for Ag_TiO2_500. Upon annealing at 500 °C, the original Ag NPs were completely rearranged into spherical NPs. In addition, these spherical NPs were very often composed of the intergrowth of multiple individuals with twinning planes {111}. The most common was the well-known pentagonal intergrowth, with a common zone axis [110] for all the individuals [42,43,44]. The formation of such NPs could be the result of the “dissolution–recrystallization” process of Ag agglomerates formed by the gathering of smaller quasi-spherical Ag NPs upon annealing. This is further supported by the determination of particle size redistribution by the ImageJ software (Figure S7). The obtained results indicate that annealing at 500 °C yielded significantly different particle size distributions for Ag_TiO2_500 than for Ag_TiO2_AP. These different particle sizes may represent the mass balance between the constituent element (crystallization of anatase from amorphous TiO2), and the formation of smaller, more stable spherical Ag NPs. Therefore, it can be concluded that the annealing process can modify the entire morphology of Ag _TiO2_AP.



The surface topography of Ag_TiO2_AP and Ag_TiO2_500 NSTFs was studied by AFM (Figure 13). It was observed that continuous and uniform films were produced without a visible change in topography. From the surface profile plots measured along the horizontal lines in the AFM images, it can be seen that annealing led to an increase in roughness and to a small increase in thickness from 40 to 43 nm in Ag_TiO2_500 (Figure 13c,f). The different color of the NPs reflects their different height, suggesting the formation of agglomerates upon annealing. Analysis of the magnified images reveals the size distribution of the NPs, with a lateral size of 18–19 nm for the Ag_TiO2_AP NSTF. Larger agglomerates with sizes of 26–27 nm appeared on the Ag_TiO2_500 NSTFs surface. The thickness was measured at the sharp edge of the film, which was produced by applying a mask on the substrate during the deposition. The thickness was about 40 and 43 nm for Ag_TiO2_AP and Ag_TiO2_500 NSTFs, respectively. The higher spatial density of the agglomerations in Ag_TiO2_500 NSTF and the shift of the size distribution towards a larger NP size were further supported by ImageJ software estimation (Figure S6).



Ag_TiO2_AP and Ag_TiO2_500 NSTFs have distinct microstructures and phase compositions. Ag_TiO2_AP is composed of amorphous TiO2 decorated with cubic Ag particles with irregular shapes with the size in the range 10–100 nm. In contrast, Ag_TiO2_500 is composed of crystalline TiO2 (anatase) thin-film decorated with spherical Ag nanoparticles with sizes in the range 20–40 nm, which are homogeneously distributed on the TiO2 surface (Figure 11). These particles very often exhibit multiple twinning on {111} planes (Figure 12). The film thickness was 40 nm for the Ag_TiO2_AP sample and 43 nm for the Ag_TiO2_500 NSTFs, as observed by AFM (Figure 13). The maximum height above the TiO2 film of the nanoparticles is was 16 nm for the as-prepared sample and 26 nm for the annealed sample. Thus, it can be concluded that the annealing process not only leads to phase transformation of TiO2 from amorphous to crystalline anatase and redistribution of Ag into spherical nanoparticles with more homogeneous distribution in size as well as spatial distribution on the surface of the thin film, but also an increase in the overall thickness of the Ag_TiO2_500 NSTFs.



The UV-Vis spectra of the Ag_TiO2_AP (Figure 14a) and Ag_TiO2_500 (Figure 14b) TNSFs were measured on the quartz substrates using the transmission technique in a range of 190–1100 nm. The undoped TiO₂ layer showed high absorption at 330 nm. The film with deposited Ag(0)NPs showed a shoulder at 320 nm that can be regarded as interfacial charge transfer absorption and a very broad bump above 350 nm. The broad feature had a flat maximum centered at about 850 nm, which can be attributed to localized plasmon resonance (LSPR) absorption. As the LSPR is tunable and strongly dependent on the morphology (shape and size), composition, and interaction between Ag(0) NPs and the substrate, the broad feature was regarded to be a result of size distribution. Both of these absorptions could be considered to have the potential to improve the photocatalytic properties of the Ag_TiO2 NSTFs. Indeed, in Ag_TiO2_AP TNSF, the TiO2 layer showed an intensity maximum in the UV spectrum due to partial crystallization, while Ag_TiO2_500 TNSF demonstrated intense LSPR at about 730 nm. The absorption band was narrowed because annealed NPs are spherical and have a narrow diameter distribution, as proved by STEM and ImageJ analysis (Figure S6). The band, connected to interfacial charge transfer, observed in Ag_TiO2_AP vanished due to the small contact area between Ag NPs and anatase TiO2.



Bulk stoichiometry measured by EDS revealed that the atomic ratio [Ti]/[Ag] = 12.6. The XPS spectrum showed prevailing Ag in the superficial layer of the Ag_TiO2_AP, as demonstrated by the calculation of the elemental composition based on the Ti 2p and Ag 3d regions. The atomic ratio was [Ti]/[Ag] = 0.22 for the Ag_TiO2_AP. Silver was present in the elemental Ag(0) form (Ag 3d5/2 BE = 368.1 eV), but corresponding Ag 3d bands were broadened due to the nanosize effect (FWHM = 1.21 eV). The shape of the elemental Ag 3d bands was asymmetrical, as seen in Figure 15.



Photoelectrochemical measurements were conducted with deposits on FTO glass substrates. Cyclic voltammetry was studied between bias potentials of −0.5 and +1.5 V with a Pt counter electrode and an Ag/AgCl reference electrode in 0.5 M H₂SO₄ as an electrolyte. Under irradiation by visible light (100 W solar lamp), hydrogen generation on Pt and oxygen generation on working electrodes were visible, and the gas products were confirmed by mass spectrometry. Above 1.2 V, rapid degradation of the Ag_TiO2 samples was observed, and further LSV measurements were conducted under this potential (Figure 16) with fresh electrodes. The corresponding photocurrent–potential relationships were tested under illumination and in the dark at a low scan rate (1 mV/s). Both as-prepared and annealed samples exhibited an anode current when exposed to light compared to experiments performed in the dark. The photocurrent performance of the Ag_TiO2_500 photoanode started at 0.23 V vs. Ag/AgCl, which corresponded to the water oxidation potential. A much higher photochemical activity was observed in the annealed Ag_TiO2_500 TNSF sample, as was expected due to the intense (LSPR) optical absorption and better crystallinity, which are two important factors in improved PEC performance in TiO2 materials.




3.4. The Key Role of Multiply Twinned Ag(0) NPs on the Photocatalytic Properties of TiO2 Nanosheets and TiO2 NSTFs


It has been well documented that when TiO2 particles are illuminated with UV light, electron/hole (e−/h+) pairs can be easily created. The separation of (e−/h+) is a crucial step, and the low quantum yield of any photocatalytic reactions is due to the high rate of recombination between the (e−/h+) pairs. In the absence of suitable (e−/h+) scavengers, possible recombination can occur within a few nanoseconds. A promising alternative for avoiding (e−/h+) recombination is surface defects, which are capable of trapping surface (e−/h+), and further preventing their recombination. The observed improvement in 4-CP degradation with Ag_TiO_LYO/800 and PEC activity with Ag_TiO2_500 NSTFs was attributed to the crucial role of multiply twinned Ag(0) characterized by a {111} TBs. We propose that the presence of TBs in decahedral Ag(0) leads to an increase in the number of immobilized Ag atoms with dangling bonds on the anatase TiO2 surface [53]. It is generally known that such immobilized atoms are simultaneously highly reactive and highly unstable. After UV-light illumination, a transfer of photoexcited electrons from TiO2 to immobilized Ag could be achieved. The Ag could trap the electrons, and further interplay might (i) avoid (e−/h+) recombination, and (ii) contribute to the generation of •   O 2 −    and •OH radicals. Complementarily, the protonation of •   O 2 −    species would generate H   O 2 •    radicals, resulting in extreme instability over UV-illuminated H2O2, which could also give rise to hydroxyl •OH radicals [54]. The great involvement of active •OH radicals could lead to the easy formation of [OH-mono-chlorophenol]-intermediated species, which have been reported to be a major step in 4-CP photocatalytic degradation [55]. When Ag(0) is incorporated into the TiO2 nanocrystals through the defect twin boundaries, the interaction between oxygen and the electron cloud of the adjacent Ag atoms can positively shift the chemical state of Ag atoms and activate the subsequent oxidation reaction. Therefore, the presence of multiply twinned Ag(0) on the surface of nanostructured TiO2, even when introduced by completely different synthetic routes, can provide a better opportunity for the adsorption and degradation of organic pollutants and can boost PEC activity.





4. Conclusions


In summary, the CLT and laser ablation techniques were used to form Ag_TiO2 nanosheets and Ag_TiO2 nanostructured thin films (NSTFs), respectively. The efficiency of both methods was compared in terms of morphology and photocatalytic activity. A common advantage concerning the morphology is a single multiply twinned Ag(0) characterized by {111} twin boundaries. The Ag_TiO_LYO/800 nanosheets exhibited enhanced photocatalytic activity under UV light in the decomposition of 4CP and TOC followed by Ag_TiO_LYO/650. Ag_TiO_LYO/800 possessing the best photoactivity could be explained by the evenly distributed multiply twinned Ag(0)NPs with pentagonal bipyramidal geometry and the reduced Ebg of 3.07 eV, compared with standard TiO2_P25 and Ag_TiO2 nanosheets annealed at lower temperatures, and pristine 2D TiO2 nanosheets obtained by CLT. The Ag(0) stabilized defect-free anatase (101) TiO2 grains at temperatures of up to 800 °C, which in turn may serve as nucleation sites for the growth of Ag(0)NPs with pentagonal bipyramidal geometries. Ag-TiO2 NSTFs decorated with multiply twinned Ag(0) achieved improved photoelectrochemical water splitting in the visible light region due to an additionally induced plasmonic effect. The CLT and laser ablation technique methods supported the formation of immobilized multiply twinned Ag(0) on the TiO2 surface, which was able to avoid (e−/h+) recombination and contribute to the generation of •   O 2 −    and •OH radicals favoring the photocatalytic activity of Ag_TiO2 materials.








Supplementary Materials


The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/nano12050750/s1, Figure S1: Synthetic route for the preparation of freeze-dried precursor for Ag-modified TiO2 nanosheets. Figure S2: Powder XRD diffraction patterns of Ag modified 2D TiO2 nanosheets. Figure S3: S/TEM images. Figure S4: AFM 3D-images of the Ag_TiO_LYO/800 sample deposited on a glass substrate. Figure S5: Profiling analysis of the 2D AFM image of the Ag_TiO_LYO/800 deposited on a glass substrate. Figure S6: S/TEM image and distribution of nanoparticle size of NSTFs.





Author Contributions


Conceptualization, S.B.; methodology, J.M.; software, E.K. and V.R.; validation, M.K., J.T. and M.C.; formal analysis, R.T.; investigation, Š.M.; resources, S.B.; data curation, H.B.; writing—original draft preparation, S.B. and R.F.; writing—review and editing, S.B., R.H., H.B. and M.K.; visualization, J.M.; supervision, S.B. and Š.M.; project administration, S.B.; funding acquisition, S.B. and R.F. All authors have read and agreed to the published version of the manuscript.




Funding


This research is funded by the Czech Science Foundation under Project No. GACR 18-15613 S.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Informed consent was obtained from all subjects involved in the study.




Data Availability Statement


MDPI Research Data Policies at https://www.mdpi.com/ethics, accessed on 10 January 2022.




Acknowledgments


This work was supported by OP VVV Project “Development of new nano and micro coatings on the surface of selected metallic materials”–NANOTECH ITI II. Reg. No. CZ.02.1.01/0.0/0.0/18_069/0010045. CzechNanoLab project LM2018110 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at the LNSM Research Infrastructure. The (S)TEM work was carried out on the NORTEM infrastructure (NFR 197405) at the TEM Gemini Centre, Trondheim, Norway. Financial support from the Bulgarian Academy of Sciences (Bilateral grant agreement between Bulgarian Academy of Sciences and Czech Academy of Sciences) is also acknowledged. We would like to thank Jitka Bezdickova for performing FTIR and DTA/TG experiments, as well as V. Lavretiev and L. Fekete for AFM measurements. Additionally, we thank John Walmsley and Ragnhild Sæterli for performing the (S)TEM experiments.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO: Geneva, Switzerland, 2016. [Google Scholar]

	



Chong, M.; Jin, B.; Chow, C.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]

	



Boukherrroub, R.; Ogale, S.B.; Robertson, N. Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-817836-2. [Google Scholar] [CrossRef]

	



Potocnik, J. Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Communities Legis. 2011, L275, 38–40. [Google Scholar] [CrossRef]

	



Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]

	



Sagadevan, S. Semiconductor Nanomaterials, Methods and Applications: A Review. Nanosci. Nanotechnol. 2013, 3, 62–74. [Google Scholar] [CrossRef]

	



Kowalska, E.; Remita, H.; Colbeau-Justin, C.; Hupka, J.; Belloni, J. Modification of Titanium Dioxide with Platinum Ions and Clusters, Application in Photocatalysis. J. Phys. Chem. C 2008, 112, 1124–1131. [Google Scholar] [CrossRef]

	



Alaoui, O.T.; Herissan, A.; Le Quoc, C.; Zekri, M.; Sorgues, S.; Remita, H.; Colbeau-Justin, C. Elaboration Charge-Carrier Lifetimes and Activity of Pd-TiO2 Obtained by Gamma Radiolysis. J. Photochem. Photobiol. A 2012, 242, 34–43. [Google Scholar] [CrossRef]

	



Grabowska, E.; Zaleska, A.; Sorgues, S.; Kunst, M.; Etcheberry, A.; Colbeau-Justin, C.; Remita, H. Modification of Titanium(IV) Dioxide with Small Silver Nanoparticles: Application in Photocatalysis. J. Phys. Chem. C 2013, 117, 1955–1962. [Google Scholar] [CrossRef]

	



Štengl, V.; Bakardjieva, S.; Murafa, N. Preparation and photocatalytic activity of rare-earth doped TiO2 nanoparticles. Mater. Chem. Phys. 2009, 114, 217–226. [Google Scholar] [CrossRef]

	



Chakhtouna, H.; Benzeid, H.; Zari, N.; Qaiss, A.; Bouhfid, R. Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors. Environ. Sci. Pollut. Res. Int. 2021, 2, 1–29. [Google Scholar] [CrossRef]

	



Zhao, B.; Chen, Y.-W. Ag/TiO2 sol prepared by sol-gel methods and its photocatalytic activity. J. Phys. Chem. Solid 2011, 72, 1312–1318. [Google Scholar] [CrossRef]

	



Belet, A.; Wolf, C.; Mahy, J.G.; Poelman, D.; Vreuls, C.; Gillard, N.; Lambert, D. Sol-gel syntheses of photocatalysts for the removal of pharmaceutical products in water. Nanomaterials 2019, 9, 126. [Google Scholar] [CrossRef]

	



Liu, R.; Wu, H.S.; Lee, C.Y.; Hung, Y. Synthesis and bactericidal ability of TiO2 and Ag-TiO2 prepared by coprecipitation method. Int. J. Photoenergy 2012, 2012, 640487. [Google Scholar] [CrossRef]

	



Tang, M.; Xia, Y.; Yang, D.; Liu, J.; Zhu, X.; Tang, R. Effects of Hydrothermal Time on Structure and Photocatalytic Property of Titanium Dioxide for Degradation of Rhodamine B and Tetracycline Hydrochloride. Materials 2021, 14, 5674. [Google Scholar] [CrossRef]

	



Hariharan, D.; Thangamuniyandi, P.; Christy, A.J.; Vasantharaja, R.; Selvakumar, P.; Sagadeven, S.; Pugazhendhi, A.; Nehru, L.C. Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles. J. Photochem. Photobiol. B Biol. 2020, 202, 111636. [Google Scholar] [CrossRef]

	



Sandoval, A.; Aguilar, A.; Louis, C.; Traverse, A.; Zanella, R. Bimetalic Au-Ag/TiO2 catalyst prepared by deposition-precipitation: High activity and stability in CO oxidation. J Catal. 2011, 281, 40–49. [Google Scholar] [CrossRef]

	



Chi Chan, S.; Barteau, M.A. Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir 2005, 21, 5588–5595. [Google Scholar] [CrossRef]

	



Li, W.; Lu, K.; Walz, J.Y. Freeze Casting of Porous Materials: Review of Critical Factors in Microstructure Evolution. Int. Mater. Rev. 2012, 57, 37–60. [Google Scholar] [CrossRef]

	



Chino, Y.; Dunand, D.C. Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 2008, 56, 105–113. [Google Scholar] [CrossRef]

	



Méndez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Bahena, D.; Briois, V.; Colbeau-Justin, C.; Rodríguez-López, J.L.; Remita, H. Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis. J. Phys. Chem. C 2016, 120, 5143–5154. [Google Scholar] [CrossRef]

	



Jiang, B.; Hou, Z.; Tian, C.; Zhou, W.; Zhang, X.; Wu, A.; Tian, G.; Pan, K.; Ren, Z.; Fu, H. A facile and green synthesis route towards twodimensional TiO2@Ag heterojunction structure with enhanced visible-light photocatalytic activity. Cryst. Eng. Comm. 2013, 15, 5821–5827. [Google Scholar] [CrossRef]

	



Krenek, T.; Vala, L.; Kovarik, T.; Medlin, R.; Fajgar, R.; Pola, J.; Jandova, V.; Vavrunkova, V.; Pola, M.; Kostejn, M. Novel perspectives of laser ablation in liquids: The formation of a high-pressure orthorhombic FeS phase and absorption of FeS-derived colloids on a porous surface for solar-light photocatalytic wastewater cleaning. Dalton Trans. 2020, 38, 13262–13275. [Google Scholar] [CrossRef]

	



Liu, C.H.; Hong, M.H.; Zhou, Y.; Chen, G.X. Synthesis and characterization of Ag deposited TiO2 particles by laser ablation in water. Phys. Scr. 2007, T129, 326. [Google Scholar] [CrossRef]

	



Bakardjieva, S.; Subrt, J.; Pulisova, P.; Marikova, M.; Szatmary, L. Photoactivity of Anatase–Rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Titanium Peroxide. Gel. Mater. Res. Soc. Symp. Proc. 2011, 10, 1352. [Google Scholar] [CrossRef]

	



Šubrt, J.; Pulišová, P.; Boháček, J.; Bezdička, P.; Pližingrová, E.; Volfová, L.; Kupčík, J. Highly photoactive 2D titanium dioxide nanostructures prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Mat. Res. Bull. 2014, 49, 405–412. [Google Scholar] [CrossRef]

	



Plizingrova, E.; Klementova, M.; Bezdicka, P.; Bohacek, J.; Barbierikova, Z.; Dvoranova, D.; Krysa, J.; Subrt, J.; Brezova, V. 2D-Titanium dioxide nanosheets modified with Nd, Ag and Au: Preparation, characterization and photocatalytic activity. Catal. Today 2017, 281, 165–180. [Google Scholar] [CrossRef]

	



Bakardjieva, S.; Subrt, J.; Stengl, V.; Dianez, M.J.; Sayagues, M.J. Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B: Environ. 2005, 58, 193–202. [Google Scholar] [CrossRef]

	



JCPDS PDF-2 Release 2001; ICDD: Newtown Square, PA, USA, 2001.

	



ICSD Database; FIZ: Karlsruhe, Germany, 2015.

	



Cullity, B.D. Elements of X-ray Diffraction; Addison–Wesley: Reading, MA, USA, 1978; p. 555. [Google Scholar]

	



Lábár, J.L. Consistent Indexing of a (Set of) SAED Pattern(s) with the ProcessDiffraction Program. Ultramicroscopy 2005, 103, 237–249. [Google Scholar] [CrossRef]

	



Keiderling, U.; Jafta, C. V4: The Small Angle Scattering Instrument (SANS) at BER II. J. Large-Scale Res. Facil. JLSRF 2016, 2, 97. [Google Scholar] [CrossRef]

	



Al-Ekabi and Serpone, N. Kinetic studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solution over TiO2 supported on a glass matrix. J. Phys. Chem. 1988, 92, 5726–5731. [Google Scholar]

	



Gratzel, M.; Serpone, N.; Pelizzetti, E. Photocatalysis, Fundamentals and Applications; Wiley: New York, NY, USA, 1989. [Google Scholar]

	



Bakardjieva, S.; Mares, J.; Fajgar, R.; Zenou, V.Y.; Maleckova, M.; Chatzisymeon, E.; Bibova, H.; Jirkovsky, J. The relationship between microstructure and photocatalytic behavior in lanthanum-modified 2DTiO2 nanosheets upon annealing of a freeze-cast precursor. RSC Adv. 2019, 9, 22988. [Google Scholar] [CrossRef]

	



Mehta, B.K.; Chhajlani, M.; Shrivastava, B.D. Green synthesis of silver nanoparticles and their characterization by XRD. J. Phys Conf. Ser. 2017, 836, 012050. [Google Scholar] [CrossRef]

	



Zenou, V.Y.; Bakardjieva, S. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis. Mater. Charact. 2018, 144, 287–296. [Google Scholar] [CrossRef]

	



Bakardjieva, S.; Jakubec, I.; Koci, E.; Zhigunov, A.; Chatzisymeon, E.; Davididou, K. Photocatalytic Degradation of Bisphenol A Induced by Dense Nanocavities, Inside Aligned 2D-TiO2 Nanostructures. Catal. Today 2019, 328, 189–201. [Google Scholar] [CrossRef]

	



Aadil, M.; Zulfiqar, S.; Agboola, P.O.; Aly Aboud, M.F.; Shakir, I.; Farooq Warsi, M. Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications. Synth. Met. 2021, 272, 116645. [Google Scholar] [CrossRef]

	



Edelson, L.H.; Glaeser, A.M. Role of Particle Substructure in the Sintering of Monosized Titania. J. Am. Ceram. Soc. 1988, 71, 225–235. [Google Scholar] [CrossRef]

	



Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef]

	



Yang, H.; Wang, Y.; Chen, X.; Zhao, X.; Gu, L.; Huang, H.; Yan, J.; Xu, C.; Li, G.; Wu, J.; et al. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun. 2016, 7, 12809. [Google Scholar] [CrossRef]

	



Narayanan, S.; Cheng, G.; Zeng, Z.; Zhu, Y.; Zhu, T. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires. Nano Lett. 2015, 15, 4037–4044. [Google Scholar] [CrossRef]

	



Mukherji, S.; Bharti, S.; Shukla, G. Synthesis and characterization of size- and shape-controlled silver nanoparticles. Phys. Sci. Rev. 2018, 4, 20170082. [Google Scholar]

	



Palmer, D.C. Begbroke; CrystalMaker Software, Ltd.: Oxfordshire, UK, 2014. [Google Scholar]

	



Esparza, R.; Rosas, G.; Valenzuela, E.; Gamboa, S.A.; Pal, U.; Pérez, R. Structural analysis and shape-dependent catalytic activity of Au, Pt and Au/Pt nanoparticles. Rev. Mater. 2008, 13, 579–586. [Google Scholar] [CrossRef]

	



Rupich, S.M.; Shevchenko, E.V.; Bodnarchuk, M.I.; Lee, B.; Talapin, D.V. Size-Dependent Multiple Twinning in Nanocrystal Superlattices. J. Am. Chem. Soc. 2010, 132, 289–296. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, J.; Liu, G.; Sun, J. Grain Boundary Segregation in Nanocrysturtured Metallic Materials; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]

	



Han, Y.; Liu, C.-J.; Ge, Q. Interaction of Pt Clusters with the Anatase TiO2(101) Surface: A First-Principles Study. J. Phys. Chem. B 2006, 110, 7463–7472. [Google Scholar] [CrossRef] [PubMed]

	



Martínez-Chávez, L.A.; Rivera-Muñoz, E.M.; Velázquez-Castillo, R.R.; Escobar-Alarcón, L.; Esquivel, K. Au-Ag/TiO2 Thin Films Preparation by Laser Ablation and SputteringPlasmas for Its Potential Use as Photoanodes in Electrochemical Advanced Oxidation Processes (EAOP). Catalysts 2021, 11, 1406. [Google Scholar] [CrossRef]

	



Malagutti, A.R.; Mourao, H.; Garbin, J.R.; Ribeiro, C. Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal. B Environ. 2009, 90, 205–212. [Google Scholar] [CrossRef]

	



Sun, X.; Jiang, K.; Zhang, N.; Guo, S.; Huang, X. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano. 2015, 9, 7634–7640. [Google Scholar] [CrossRef]

	



Serpone, N.; Al-Ekabi, H.; Patterson, B.; Pelizzetti, E.; Minero, C.; Pramauro, E.; Fox, M.A.; Draper, B. Kinetic studies in heterogeneous photocatalysis. 2. TiO2 mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Lungmuir 1989, 5, 250. [Google Scholar]

	



Al-Sayyed, G.; D’Oliveira, J.C.; Pichat, P. Semiconductor-sensitized photodegradation of 4-chlorophenol in water. J. Photochem. Photobiol A Chem. 1991, 58, 99–114. [Google Scholar] [CrossRef]








[image: Nanomaterials 12 00750 sch001 550] 





Scheme 1. Schematic diagram illustrating the experimental setup for Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 preparation. 
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Figure 1. XPS spectra of Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800 and Ag_TiO_LYO/950 (placed from top to bottom). (a) Ti 2p, (b) O 1 s, and (c) Ag 3d regions. 
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Figure 2. SEM micrographs of post-annealed Ag_TiO_LYO products: (a) Ag_TiO_LYO/500; (b) Ag_TiO_LYO/650; (c) Ag_TiO_LYO/800 and (d) Ag_TiO_LYO/950. 
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Figure 3. STEM images of (a) non-annealed precursor Ag_TiO_LYO and electron diffraction (inset); (b) HAADF Z-contrast image; (c) chemical distribution mapping of Ag and Ti. 
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Figure 4. STEM micrographs: (a) low magnification of sample Ag_TiO_LYO/500; (b) HRTEM images of an individual Ag NP; (c) HRTEM image of two stacked Ag NPs; (c1) illustrates the d-spacing confirmed by line-profile from the region highlighted with yellow square; (d) low magnification of sample Ag_TiO_LYO/650; (e) HRTEM image of Ag nanocluster with five-fold symmetry; (f) HRTEM image of an individual Ag nanocluster incorporated into a TiO2 layer with anatase structure with d(101) = 0.358 nm; (f1) illustrates the d-spacing confirmed by line-profile from the region highlighted with yellow square. 
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Figure 5. STEM study of sample Ag_TiO_LYO)/800: (a,b) TEM micrograph at low magnification; (c) high-resolution TEM image of yellow boxed area in Figure 4a show Ag(0) NPs on the grain boundary of (101) TiO2 NCs; (d,e) HRTEM image of single Ag(0) NPs; (f) shows five subunits, labeled T1−T5, joined together by sharing their {111} planes, and corresponding twinning in T2 (twin domain 1 and 2 with mirror plane, and line defects in T5. 






Figure 5. STEM study of sample Ag_TiO_LYO)/800: (a,b) TEM micrograph at low magnification; (c) high-resolution TEM image of yellow boxed area in Figure 4a show Ag(0) NPs on the grain boundary of (101) TiO2 NCs; (d,e) HRTEM image of single Ag(0) NPs; (f) shows five subunits, labeled T1−T5, joined together by sharing their {111} planes, and corresponding twinning in T2 (twin domain 1 and 2 with mirror plane, and line defects in T5.
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Figure 6. SANS curves with a fitted model for (a) the Ag_TiO_LYO/500 and Ag_TiO_LYO/650 samples, and (b) the Ag_TiO_LYO/800 and Ag_TiO_LYO/950 samples. 
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Figure 7. Diffuse reflectance spectra of the Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 samples, and corresponding Tauc plot (inset). 
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Figure 8. Photocatalytic degradation of 4-CP in the presence of Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800, and Ag_TiO_LYO/950 and TiO2-P25 catalysts. 
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Figure 9. TOC removal during the photocatalytic treatment of 4-CP in the presence of Ag_TiO_LYO/500, Ag_TiO_LYO/650, Ag_TiO_LYO/800 and Ag_TiO_LYO/950 and TiO2-P25 catalysts. 
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Figure 10. TEM observations of NSTFs prepared by laser ablation: (a–c) Ag _TiO2_AP; and (d–f) Ag_TiO2_500. (a) Low—magnification image of Ag _TiO2_AP; (b) SAED pattern of Ag _TiO2_AP; (c) interpretation of (b) showing amorphous TiO2 film decorated with nanoparticles of cubic Ag (green arcs and green marks); (d) low—magnification image of Ag_TiO2_500; (e) SAED pattern of Ag_TiO2_500; (f) interpretation of (e) showing the crystalline anatase film (spots in blue circles and blue marks) decorated with nanoparticles of cubic Ag (green arcs and green marks). 
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Figure 11. STEM/HAADF/EDX observations of NSTFs prepared by laser ablation: (a,b) Ag _TiO2_AP; (c,d) Ag_TiO2_500. (a) Low-magnification image of Ag _TiO2_AP; (b) EDX elemental mapping Ag _TiO2_AP; (c) low-magnification image of Ag_TiO2_500; (d) EDX elemental mapping Ag _TiO2_500. 
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Figure 12. HRTEM observations of NSTFs prepared by laser ablation: (a–c) Ag _TiO2_AP; (d–f) Ag_TiO2_500. (a) Low-magnification image of Ag _TiO2_AP; (b) HRTEM of Ag _TiO2_AP; (c) interpretation of (b) showing a single-crystal nanoparticle of cubic Ag viewed down [110]; (d) low-magnification image of Ag_TiO2_500; (e) HRTEM of Ag_TiO2_500; (f) interpretation of (e) showing fivefold twin nanoparticle of cubic Ag viewed down [110]; in the inset, the corresponding FFTs are shown with the direction [002] highlighted by a yellow line. 
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Figure 13. AFM observations of NSTFs prepared by laser ablation: (a–c) Ag _TiO2_AP; (d–f) Ag_TiO2_500. (a) Surface topography image of Ag _TiO2_AP; (b) surface topography image at higher magnification; (c) surface profile at the edge of the Ag _TiO2_AP film, giving the film thickness of 40 nm; (d) surface topography image of Ag_TiO2_500; (e) surface topography image at higher magnification; (f) surface profile at the edge of the Ag_TiO2_500 film giving a film thickness of 43 nm. 
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Figure 14. UV-Vis spectra of the nanostructured thin films: (a) Ag_TiO2_AP and (b) Ag_TiO2_500 TNSF. The spectra of the undoped TiO₂ layers are also presented (marked with a red line). 
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Figure 15. XPS spectra of the Ag_TiO2_AP (bottom spectra) and Ag_TiO2_500 (upper spectra) TNSFs. 
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Figure 16. Results of PEC water splitting: LSV of Ag_TiO2_AP and Ag_TiO2_500 TNSFs. 
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Table 1. Microstructure and rate constants of Ag_TiO2 nanosheets, Ag0, and standard TiO2-P25.
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Sample

	
Annealing Temperature

(°C)

	
Lattice Parameters

(Å)

	
Anatase by

XRD (%)

	
Rutile

by XRD (%)

	
Anatase

Crystallite Size (nm)

	
Rutile

Crystallite Size (nm)

	
Rate

Constants

k (s−1)




	
a

	
c






	
Ag_TiO_LYO/500

	
500

	
3.7854

	
9.5067

	
100

	
-

	
35.37

	
-

	
1.28 × 10−5




	
Ag_TiO_LYO/650

	
650

	
3.7841

	
9.5103

	
100

	
-

	
42.68

	
-

	
1.24 × 10−5




	
Ag_TiO_LYO/800

	
800

	
3.7848

	
9.5128

	
100

	
-

	
78.41

	
-

	
2.53 × 10−5




	
Ag_TiO_LYO/950

	
950

	
3.7850

	
9.5129

	
32.76

	
66.53

	
238.7

	
251.1

	
3.48 × 10−6




	
Silver (Ag0)

	
950

	
4.0871

	
4.0871

	
-

	
-

	
-

	
-

	
-




	
TiO2_P25

	
-

	
-

	
-

	
83

	
17

	
20.8

	
30.5

	
1.10.10−4
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