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ENUMERATING QUANTUM PATHWAYS USING FEYNMAN DIAGRAMS

An nth-order nonlinear optical process consists of n + 1 field-matter interactions. In such a perturbative picture,
the response function is determined by a sequence of n nested commutators:

S(n)(tn, tn−1, . . . t1) ∝ Tr [μ(tn + tn−1 + . . . t1), [μ(tn−1 + tn−2 + . . . t1), [. . . [μ(0), ρ(t = 0)] . . . ]]] (S1)

where μ(t) = e+
i
�
H0tμe−

i
�
H0t is the transition dipole operator in the interaction picture and H0 is the unperturbed

system Hamiltonian. The argument of the trace operation may be intuitively thought of as propagation of the initial
density matrix ρ(t = 0), which lends itself to a diagrammatic representation as discussed below. The nonlinear
polarization in response to an applied field E(t) is then:

P (n)(t) =

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

S(n)(tn, tn−1, . . . t1)E(t− t3)E(t− t3 − t2) . . . E(t− t3 − t2 · · · − t1)dt1 . . . dtn−1dtn (S2)

It can be shown straightforwardly that for impulsive excitation by delta function pulses, each polarization term P (n)

becomes identical to its respective optical response function S(n) with the appropriate time-arguments.
The n nested commutators in equation (S1) result in multiple distinct terms, or quantum pathways, which comprise

the nth-order optical response function. However, the number and complexity of these quantum pathways increases
with rapidly with n and the number of resonant transitions. This motivates the use of so-called double-sided Feynman
diagrams to enumerate quantum pathways in a given spectroscopic experiment.

Constructing Feynman Diagrams

We begin by briefly defining terminology. Each spectroscopic technique that probes an nth-order response function
may be reduced to measurement of a signal emitted in a phase-matching direction ksig = ±k1 ± k2 · · · ± kn, where
ki is the wavevector of each respective excitation field. The (negative)positive sign preceding each wavevector in the
equation for ksig denotes each field as (non-)conjugated.

The rules for constructing Feynman diagrams for all possible quantum pathways are then simply:

1. Time runs vertically upwards, with the initial system density matrix ρ(t = 0) at the bottom.

2. Each field-matter interaction is represented by an arrow which points (right)left for a (non-)conjugated field.

3. Arrows may be located either on the right or left side of the density matrix elements, which effect a change in
either the Bra or Ket respectively. An arrow pointing (out)inward corresponds to (de-)excitation of the element.
Diagrams that break this rule vanish via the rotating-wave approximation.
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4. The sign of each diagram is given by (−1)m, where m is the number of interactions involving the Bra element
on the right side.

5. Each diagram must end in a population state.

We now demonstrate examples of linear and third-order Feynman diagrams constructed from these rules.

Linear Optical Response

Consider the level system in Figure S1a consisting of ground and excited states |g〉 and |e〉 as well as a doubly-excited 
state |d〉. In anticipation of two-photon absorption, we also include an intermediate virtual state |v〉 in the middle of the 
energy gap. For weak excitation fields, the linear polarization P (1)(t) (underlying one-photon absorption and 
fluorescence) dominates the optical response. From a time-domain perspective, one may begin from interaction of the 
system with a single excitation laser pulse as shown in Figure S1b. Subsequent optical absorption is represented by the 
Feynman diagram in Figure S2c, in which the light-matter converts the initial equilibrium ground state |g〉 〈g| into a 
coherence |e〉 〈g|. After propagating for a time t, a second interaction with the pulse converts this coherence into a final 
excited population state |e〉 〈e|. Fourier transforming the coherence dynamics along t then generates the usual 
absorption spectrum. The Feynman diagram representing fluorescence is then shown in Figure S1d, which is simply the 
inverse process of absorption. As there is no excitation field however, the physical origin of the light-matter interaction 
in fluorescence may, in the current semi-classical picture, be informally connected to perturbation by the vacuum field.

(a) |d〉|d〉|d〉

|e〉|e〉|e〉

|g〉|g〉|g〉
|v〉|v〉|v〉

(b)

t

ELinear

S(1)

1PA
(c)

|e〉|e〉|e〉〈e|〈e|〈e|
|e〉|e〉|e〉〈g|〈g|〈g|
|g〉|g〉|g〉〈g|〈g|〈g|

t

Fluorescence
(d)

|g〉|g〉|g〉〈g|〈g|〈g|
|e〉|e〉|e〉〈g|〈g|〈g|
|e〉|e〉|e〉〈e|〈e|〈e|

t

Figure S1: (a) Three-level system consisting of a ground (|g〉), singly-excited (|e〉), and doubly-excited (|d〉) state. A mid-gap 
virtual state (|v〉) is also shown which is accessed in two-photon absorption. (b) Single pulse excitation of a material which 
generates a time-dependent linear optical response. (c,d) Feynman diagrams of linear (c) one-photon absorption and (d) 
fluorescence.

Third-Order Optical Response

We now examine the third-order optical response which generates a four-wave mixing signal. Before the general case 
of three excitation pulses in Figure S2a we consider two-photon absorption, a third-order analogue to linear one-photon 
absorption. The Feynman diagram representing two-photon absorption is shown in Figure S2b, which consists of four 
excitation processes that traverse an intermediate virtual state population |v〉 〈v| and culminate in a final excited state 
population |e〉 〈e|. This Feynman diagram representation may be related to the traditional transition diagrams used to 
visualize the process [1]. Next, the ground state bleach (GSB), excited state emission (ESE), and excited state 
absorption (ESA) diagrams discussed in the main text are plotted in Figure S2c-d respectively for the pulse sequence 
shown in Figure S2a. Note that according to rule 4 stated above, the GSB and ESE diagrams have positive signs while 
the ESA diagram has a negative sign, which reflects its absorptive nature.
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Figure S2: (a) Three-pulse excitation sequence that generates a four-wave mixing signal. (b-e) Feynman diagrams representing 
(b) two-photon absorption, (c) ground state bleach, (d) excited state emission, and (e) excited state absorption processes.

ANALYTICAL FORM OF THE OPTICAL RESPONSE FUNCTIONS

The Feynman diagrams shown above may be easily translated to analytical expressions for their corresponding 
optical response functions. We consider only the ESE diagram here, but the expressions for the GSB and ESA 
diagrams may be obtained in an identical fashion and are described elsewhere [2, 3].
The ESE diagram is reproduced in Figure S3 along with its corresponding contribution to the optical response function.
Each time delay is highlighted in a specific color, and gives rise to specific components of the response function R(3)

ESE

which are highlighted in matching colors:

1. Time delay τ (red): The dynamics along delay τ are of the density matrix element |g〉 〈e|, which corresponds to
coherence oscillation of the form e−iωegτ . Assuming Markovian dephasing [3], the coherence will also experience
dephasing of the form e−iΓegτ , where Γeg is the dephasing rate.

2. Time delay T (green): The dynamics along delay T are of the density matrix element |e〉 〈e|, which corresponds
to population relaxation of the form e−iΓeeT , where Γee is the population relaxation rate. Note that in the case
of additional ground or excited state levels, intraband coherence oscillation may also occur along this time delay.

3. Time delay t (blue): The dynamics along delay t are of the density matrix element |e〉 〈g|, which corresponds
to coherence oscillation of the form e+iωegτ . Note that due to the mirror density matrix element the coherence
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ESE

|g〉|g〉|g〉〈g|〈g|〈g|
|e〉|e〉|e〉〈g|〈g|〈g|
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R
(3)
ESE =

(
i
�

)3 [
e−iωegτe+iωegte−Γegτe−ΓeeT e−Γegt

][
e−iωegτe+iωegte−Γegτe−ΓeeT e−Γegt

]

Figure S3: Excited state emission Feynman diagram and corresponding analytical expression for its contribution to the 
optical response function. The highlighted colors connect each component of the optical response function to its 
corresponding time delay, along which the dynamics evolve.

oscillation is of opposite sign. Again, dephasing occurs of the form e−iΓegt, where Γeg is the dephasing rate.

THEORY OF ROTATIONAL-AVERAGING

In the notation of Andrews and Thirunamachandran [4], a general spectroscopic observable may be written in the
form:

C =
∑

i1...in

Ai1...inPi1...in (S3)

where Ai1...in and Pi1...in are nth-rank tensors representing the excitation polarization(s) and the transition strength(s)
of a system. Both tensors are expressed in a space-fixed experimental reference frame indexed by im. Of course, the
transition strength tensor of a nanocrystal is more naturally expressed in the nanocrystal reference frame and may
be transformed as:

Pi1...in =
∑

λ1...λn

Li1λ1
. . . Linλn

Pλ1...λn
(S4)

where λm indexes the nanocrystal reference frame and Limλm
is the direction cosine between the two axes im and

λm. The optical response of an ensemble may thus be written:

〈C〉 =
∑

i1...in,λ1...λn

Ai1...in 〈Li1λ1
. . . Linλn

〉Pλ1...λn

=
∑

i1...in,λ1...λn

Ai1...inI
(n)
i1...in,λ1...λn

Pλ1...λn
(S5)

where the brackets 〈. . .〉 denote a rotational average over all possible orientations and the elements of the coordinate
interface tensor I(n) may be systematically evaluated [4]. Here we will consider linear and third-order spectroscopies,
which require the elements of I(2) and I(4) respectively:

I
(2)
i1i2;λ1λ2

=
1

3
δi1i2δλ1λ2

(S6)

I
(4)
i1i2i3i4;λ1λ2λ3λ4

=
1

30

⎛
⎝δi1i2δi3i4
δi1i3δi2i4
δi1i4δi2i3

⎞
⎠

T ⎛
⎝ 4 −1 −1
−1 4 −1
−1 −1 4

⎞
⎠

⎛
⎝δλ1λ2δλ3λ4

δλ1λ3δλ2λ4

δλ1λ4δλ2λ3

⎞
⎠ (S7)
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We next construct the the polarization tensor Ai1...in . Defining the propagation direction of our excitation beams as
ẑ, we can write the possible linear and circular polarization vectors as follows:

pX =

⎛
⎝1
0
0

⎞
⎠, pY =

⎛
⎝0
1
0

⎞
⎠ (S8)

pR =
1√
2

⎛
⎝ 1
−i
0

⎞
⎠, pL =

1√
2

⎛
⎝ 1
+i
0

⎞
⎠ (S9)

The polarization tensor Ai1...in is then constructed by the tensor product of n polarization vectors corresponding to
n experimental light-matter interactions:

Ai1...in = pi1 ⊗ pi2 · · · ⊗ pin (S10)

Likewise, the transition strength tensor is constructed by the tensor product of n transition moment vectors:

Pλ1...λn = μλ1 ⊗ μλ2 · · · ⊗ μλn (S11)

Here, we take each μλm
to be a unit vector in order for 〈C〉 to act as a weighting factor ranging from zero to unity.
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