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Abstract: This investigation addresses the challenges in the development of efficient nanostructured
Mn3O4 cathodes for supercapacitors. A high areal capacitance and the ability to avoid a time-
consuming activation procedure for electrodes with high active mass loading of 40 mg cm−2 are
reported. This facilitates practical applications of Mn3O4 based electrodes. The highest capacitance
of 6.11 F cm−2 (153 F g−1) is obtained from cyclic voltammetry at a scan rate of 2 mV s−1 and
6.07 F cm−2 (151.9 F g−1) from the chronopotentiometry at a current density of 3 mA cm−2 in a
potential window of 0.9 V in a neutral Na2SO4 electrolyte. The new approach is based on the
application of rhamnolipids (RL) as a capping agent for the synthesis of Mn3O4 particles and a
co-dispersant for Mn3O4 and carbon nanotubes, which are used as conductive additives. The size
and shape of the Mn3O4 particles are influenced by RL. The enhanced performance of the electrodes
is linked to the chemical structure and properties of RL molecules, which exert influence on Mn3O4

particle size and shape during synthesis, reduce agglomeration, facilitate RL adsorption on Mn3O4

and carbon nanotubes, and influence their co-dispersion and mixing at the nanometric scale.

Keywords: manganese; oxide; supercapacitor; nanotube; rhamnolipid; dispersant; nanocomposite;
activation; cycling

1. Introduction

Colloidal methods are widely used for the fabrication of advanced nanomaterials and
nanocomposites [1–3]. The use of surfactants for colloidal nanofabrication allows efficient
control of particle size and prevention of their agglomeration [4–7]. Of particular interest is
the use of surfactants for the fabrication of nanocomposite electrodes for energy storage in
supercapacitors. It was found that surfactants facilitate the fabrication of nanoparticles of
inorganic charge storage materials with small particle size and prevent their agglomera-
tion [8]. Significant interest has been generated in co-dispersants for efficient mixing of the
charge storage materials with conductive additives [8]. The use of such co-dispersants for
colloidal fabrication allowed for significant improvement of electrochemical performance
of supercapacitors and batteries for practical applications [8,9]. Electrode porosity is an
important factor controlling electrochemical performance [10–12]. High porosity facili-
tates good electrolyte access to the active material. Significant attention focused on the
development of electrodes with hierarchical porosity [13,14], which allows for superior
electrode performance. Advanced techniques were developed for the fabrication of acti-
vated carbon, graphene, carbon fiber, MXene, metal oxide and hydroxide electrodes with
high porosity [15–19].

This research was motivated by the need in efficient capping agents and dispersants
for the fabrication of advanced electrodes for supercapacitors. It has previously been
shown that nanocomposites, based on Mn3O4 are promising materials for cathodes of
asymmetric supercapacitors [8]. However, challenges in Mn3O4 applications are related to
the development of efficient electrodes with commercially important high active mass [8].
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The specific capacitance decreased with increasing of the active mass [8]. Moreover, the
application of Mn3O4 electrodes with high active mass requires time-consuming activation
procedures [20–22], which must be avoided for practical applications. It was found that first
charge-discharge cycles of Mn3O4 electrodes showed low capacitance and activation cycling
procedure was necessary in order to activate material and achieve high capacitance. Such
activation procedures resulted in significant capacitance increase [20,22–24]. Several XPS
studies revealed oxidation of Mn2+ and Mn3+ ions on the Mn3O4 particle surface during
cycling and linked this process to the increasing capacitance [20–22,25]. The challenges
related to Mn3O4 applications can be addressed using advanced capping agents for the
Mn3O4 synthesis and co-dispersants for Mn3O4 and conductive additives.

The search for advanced dispersants for colloidal nanotechnology of energy storage
materials has generated our interest in rhamnolipids (RL). RL are natural biosurfactants,
which offer many benefits since their critical micelle concentration is 10–100 times lower
than that of traditional chemical surfactants [26]. RL can solubilize highly hydrophobic
organic molecules in aqueous solutions [27]. RL are biocompatible, chemically stable and
low cost biosurfactants [26], which have many applications in environmental field, food
industry, and biotechnology [28–30]. RL are used for prevention of marine oil pollution,
removing oil from sand [31] and various applications in agriculture [32,33], laundry prod-
ucts and medicine [26]. RL exhibit valuable antimicrobial and anticancer properties [33,34].
Significant interest has been generated in applications of RL as dispersants for BaTiO3 [35],
alumina [36,37], zirconia [38], and hematite [39] particles in aqueous suspensions. RL were
used as capping agents for synthesis of ZnS [40], NiO [41], and Ag [42] nanoparticles.

The goal of this investigation was the fabrication of Mn3O4-carbon nanotube compos-
ites for cathodes of asymmetric supercapacitors. The use of carbon nanotubes as conductive
additives was critically important due to the low electronic conductivity of Mn3O4 [8,43].
For the first time we report the application of RL as a capping agent for the synthesis of
Mn3O4 nanoparticles. The results presented below indicated that the shape and size of the
synthesized Mn3O4 particles is influenced by RL. Moreover, RL prevent agglomeration
of Mn3O4 particles during synthesis. Another important finding was good co-dispersion
of Mn3O4 and carbon nanotubes by RL, which adsorbed on both materials and facilitated
their electrostatic dispersion. It is in this regard that various commercial surfactants are
efficient in dispersion of only one type of material, such as inorganic particles or carbon
materials [44,45]. The ability of efficient co-dispersion of Mn3O4 and carbon nanotubes
by RL allowed for their efficient mixing and facilitated the fabrication of nanocomposite
electrodes with high capacitance. Moreover, the time-consuming activation procedure
for the fabrication of Mn3O4 electrodes can be avoided. The results of this investigation
indicated that Mn3O4-carbon nanotube composites are promising for practical applications
for energy storage in cathodes of asymmetric supercapacitors.

2. Materials and Methods

RL, ethanol, Mn(NO3)2·4H2O, NaOH, Na2SO4, poly(vinyl butyral-co-vinyl alcohol-
co-vinyl acetate) (PVB, MilliporeSigma, Oakville, ON, Canada), and multiwalled carbon
nanotubes (MWCNT, ID 4 nm, OD 13 nm, length 1–2 µm, Bayer, Leverkusen, Germany)
were used as starting materials. The as-received MWCNT formed large agglomerates with
a typical diameter of 0.5 mm. PVB is advanced co-polymer binder [46,47] designed for
colloidal processing of inorganic particles. Polyvinyl alcohol functional groups facilitate
PVB adsorption on inorganic particles by formation of hydrogen bonds with hydroxyl
groups on the particle surface [46,47]. Butyral segments are directed toward the organic
solvent, providing steric stabilization [46,47].

Mn3O4 nanoparticles were prepared by a modified chemical precipitation method [23]
and mixed with MWCNT. In method 1, a solution of 330 mg of Mn(NO3)2·4H2O in 20 mL
of DI water was prepared and then the pH of the solution was increased to pH = 10 with
aqueous NaOH for the Mn3O4 synthesis. The synthesis was performed without the use of
RL. In this method, RL were used as co-dispersants for Mn3O4 and MWCNT. As-prepared
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Mn3O4 was mixed in the aqueous phase with MWCNT and then RL were added. The mass
ratio of Mn3O4:CNT:RL was 4:1:1.

In method 2, RL were used as a capping agent for Mn3O4 synthesis and a co-dispersant
for Mn3O4 and MWCNT. A solution of 330 mg of Mn(NO3)2·4H2O in DI water was
prepared and RL were added as a capping agent for the synthesis of Mn3O4 nanoparticles
to achieve Mn3O4:RL ratio of 4:2. The pH of the solution was increased to pH = 10 with
aqueous NaOH for the Mn3O4 synthesis and then MWCNT were added to Mn3O4 in the
aqueous phase. The mass ratio of Mn3O4:CNT:RL was 4:1:2. Additional experiments were
performed for mass ratio of Mn3O4:CNT:RL = 4:1:1 (Figures S1–S4). The mixtures of Mn3O4
with MWCNT, containing RL and prepared by both methods were ultrasonicated for
achieving improved dispersion and mixing, and then washed and dried. In both methods
the Mn(NO3)2 solutions were stirred for 30 min before adding NaOH. The amount of added
NaOH was the same in both methods. Obtained powders were used for the fabrication of
electrodes using slurries of Mn3O4 and MWCNT in ethanol, containing PVB as a binder.
The PVB binder content was 3% of the total mass of Mn3O4 and MWCNT. The slurries
were used for impregnation of commercial Ni foam (Vale, Toronto, ON, Canada) current
collectors. The total mass of impregnated material after drying was 40 mg cm−2.

Microstructure investigations were performed using transmission electron microscopy
(TEM, Talos 200X microscope, Thermo Scientific, Waltham, MA, USA) and scanning electron
microscopy (SEM, JEOL, JSM-7000F microscope, Tokyo, Japan) methods. X-ray diffraction
(XRD) analysis (diffractometer Bruker D8, Coventry, UK) was performed using Cu-Kα

radiation at the rate of 0.01 degrees per second. Fourier Transform Infrared Spectroscopy
(FTIR) studies were performed using a Bruker Vertex 70 spectrometer (Billerica, MA, USA).
XPS analysis was performed using Quantera II Scanning XPS instrument (PHI, Chanhassen,
MN, USA). Electrochemical studies were performed in aqueous 0.5 M Na2SO4 electrolyte
using PARSTAT 2273 potentiostat (AMETEK, Berwyn, PA, USA) for cyclic voltammetry
(CV) and electrochemical impedance spectroscopy (EIS). A BioLogic VMP 300 potentiostat
was used for galvanostatic charge-discharge (GCD) investigations (BioLogic, Claix, France).
Testing was performed using a 3-electrode electrochemical cell containing a working elec-
trode (impregnated Ni foam), counter-electrode (Pt mesh), and a reference electrode (SCE,
saturated calomel electrode). The capacitive properties of electrode material were presented
in gravimetric (Cm, F g−1) and areal (CS, F cm−2) capacitance forms. Capacitances Cm and
CS were calculated from the CV, EIS and GCD data as it was described in reference [8].
The capacitances calculated from the CV and GCD data represented integral capacitances
measured in a potential window of 0–0.9 V versus SCE. The capacitances calculated from
the EIS data represented differential capacitances measured at an open circuit potential at
voltage amplitude of 5 mV. CV testing procedures (TP) involved obtaining CV at scan rates
of 2, 5, 10, 20, 50 and 100 mV s−1. EIS measurements were performed after each TP. GCD
measurements were performed after the last TP.

3. Results and Discussion

Figure 1A shows X-ray diffraction patterns of Mn3O4-MWCNT composites prepared
by methods 1 and 2. The diffraction patterns show major peaks of Mn3O4, corresponding
to the JCPDS file 001-1127 and peaks of MWCNT, corresponding to the JCPDS file 058-1638.
The X-ray diffraction pattern of the material prepared by method 1 showed a very small
peak of MnO2, corresponding to the JCPDS file 083-6090. The relative intensity of this peak
was higher for the material prepared by method 2. In this investigation, Mn2+ salt was
used for the synthesis of manganese oxide. However, Mn2+O and Mn2+(OH)2 are unstable
and converted to oxides with higher oxidation state in air [20–22,48].
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Figure 1. (A) X-ray diffraction patterns for Mn3O4-MWCNT materials prepared by (a) method 1
and (b) method 2, Miller indexes are presented for Mn3O4 phase, JCPDS file 001-1127, •—(002) peak
of MWCNT, JCPDS file 058-1638,H—(111) peak of MnO2, JCPDS file 083-6090, (B–D) XPS data for
Mn3O4-MWCNT materials prepared by (B(a) and C) method 1 and (B(b) and D) method 2.

The XPS data for the materials prepared by methods 1 and 2 is presented in Figure 1C,D.
It should be noted that literature XPS data [49–51] for Mn3O4 showed co-existence of Mn2+,
Mn3+, and Mn4+. The peaks corresponding to the 2p3/2–2p1/2 doublet shifted to higher
energies for electrodes, prepared by method 2, compared to the electrodes, prepared by
method 1 (Figure 1B). Such shift indicated larger Mn4+ content [51,52] in the samples
prepared by method 2. A similar shift was observed in Mn3O4-MnO2 hetero-nanorods [52].
Deconvoluted XPS spectra confirmed enlarged MnO2 surface content in the samples,
prepared by method 2 (Figure 1C,D).

In this investigation RL were used as a capping agent for the synthesis of Mn3O4 in
method 2 and a co-dispersing agent for Mn3O4 and MWCNT in methods 1 and 2. RL
biosurfactants are amphiphilic glycolipids, produced by Pseudomonas aeruginosa [26].
As received RL was a mixture of mono-RL and di-RL. Figure 2 shows chemical structures
of RL. The structures contain rhamnose and fatty acid moieties [26]. The amphiphilic
structure of RL and electric charge of their carboxylic groups in solutions are important
factors, which make RL promising dispersants for electrostatic dispersion of materials.
For the investigation of dispersion properties of RL, Mn3O4 particles were prepared by
method 1 without MWCNT, washed, dried, and redispersed in water in the presence of
RL with Mn3O4:RL mass ratio 4:1. MWCNT were dispersed in water in the presence of
RL with MWCNT:RL mass ratio of 1:1. Sedimentation tests showed colloidal stability of
the obtained suspensions for more than one week. It should be noted that metal oxide
nanoparticles often form agglomerates due to their high surface energy. The condensation
of surface OH groups also promotes agglomeration. The as-received MWCNT used in this
investigation consisted of large agglomerates with a typical size of 0.5 mm [53]. The ability
to co-disperse Mn3O4 and MWCNT using a RL as a co-dispersant is important for their
efficient mixing. It is suggested that RL adsorbed on Mn3O4 and MWCNT and allowed for
their electrostatic dispersion. The adsorption of RL on MWCNT resulted from hydrophobic
interactions of fatty acid moieties of RL with carbon nanotubes [54]. It is known that RL
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forms complexes with Mn [55,56]. Therefore, the complexation Mn atoms on the Mn3O4
particle surface with RL can explain the RL adsorption on Mn3O4.
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Figure 3. TEM images at different magnifications of Mn3O4 prepared by method 1 (A,B) and method
2 (C,D).

The TEM images of Mn3O4 prepared by method 1 without a capping agent contained
large agglomerates of particles of irregular shape (Figure 3A,B). The morphology of Mn3O4
particles prepared using RL as a capping agent in method 2 was different (Figure 3C,D). The
primary particles were larger and showed crystalline faces. The typical size of the particles
was about 50 nm. The particles prepared in the presence of RL as a capping agent showed
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reduced agglomeration (Figure 3C,D). Therefore, the results of TEM studies showed that
the morphology of the synthesized Mn3O4 was influenced by RL.

FTIR studies were performed to analyze the RL adsorption. The FTIR spectrum of
as-received RL (Figure 4a) showed absorptions at 2853, 2923 and 2958 cm−1, which can
be attributed to the asymmetric and symmetric stretching vibrations of the CH2 and CH3
groups [57] of RL. Such absorptions were not observed in the spectrum of Mn3O4 prepared
by method 1 without RL (Figure 4b).
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For comparison, the Mn3O4 particles prepared by method 1 were dispersed in the
presence of RL. The obtained suspensions were filtered, washed and dried. The FTIR
spectrum of obtained powders (Figure 4c) showed absorption peaks, similar to those
observed in the spectrum of RL (Figure 4a). Similar absorptions were observed in the
spectrum of Mn3O4 prepared by method 2 (Figure 4d). Therefore, the results of FTIR
studies showed that RL absorbed on the Mn3O4 particles during or after synthesis.

Figure 5 shows SEM images of composite electrodes, which were fabricated using
Mn3O4-MWCNT composites, prepared by methods 1 and 2. The SEM image of electrodes
prepared by method 1 showed that the size of primary Mn3O4 particles was below 100 nm.
However, the Mn3O4 particles formed agglomerates. This resulted in the areas with larger
contents of Mn3O4 or MWCNT and indicated poor mixing of the components. In contrast,
such areas were not observed in the SEM images of the electrodes prepared by method
2, which facilitated improved mixing of Mn3O4 or MWCNT. CV studies of the electrodes
prepared by method 1 showed nearly rectangular CVs for TP 1 (Figure 6A). However,
CV areas increased during cycling. Figure 6B presents CVs for TPs 1–5 at a scan rate of
10 mV s−1. Significant increase in CV areas indicates increase in capacitance during cycling.
This agrees with previous investigations [20–22], which showed that time consuming
activation is required for Mn3O4 electrodes with high active mass. Such a time-consuming
activation procedure must be avoided for practical applications. Activation of the electrodes
prepared by method 1 required 5 TPs and each TP involved testing a scan rates of 2, 5, 10,
20, 50 and 100 mV s−1. The electrodes prepared by method 2 showed significantly higher
currents for TP 1 (Figure 6C), compared to electrodes prepared by method 1 (Figure 6A).
The higher currents indicated higher capacitance. The electrodes prepared by method 2
showed reduced variations in CV areas during cycling. Figure 6D presents CVs at a scan
rate of 10 mV s−1. Very small variations in CV were observed for TPs 1–3. The CV obtained
at TP 3 showed slightly improved rectangular shape, compared to the CV for TP 1.
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electrodes prepared by method 2.
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Figure 6. (A) CVs at scan rates of (a) 2, (b) 10, (c) 20 and (d) 50 mV s−1 for TP1 and (B) CVs at a scan
rate of 10 mV s−1 for (a) TP1, (b) TP2, (c) TP3, (d) TP4 and (e) TP5 for electrode prepared by method
1; (C) CVs at scan rates of (a) 2, (b) 10, (c) 20 and (d) 50 mV s−1 for TP1 and (D) CVs at a scan rate of
10 mV s−1 for (a) TP1, (b) TP2, and (c) TP3 for electrode prepared by method 2. Each TP involved
testing at scan rates of 2, 5, 10, 20, 50, and 100 mV s−1. The CVs for scan rate of 10 mV s−1 for each
TP were selected and presented in (B,D).

Figure 7A shows capacitances calculated from the CV data for electrodes prepared by
method 1 for TPs 1–5. The capacitance of supercapacitor electrodes usually decreases with
increasing scan rate [58] due to the diffusion limitations in pores. However, capacitances
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for TP 1 and TP 2 showed maxima at a scan rate of 20 mV s−1. This can be attributed to
electrode activation during initial cycling at low scan rates. Numerous XPS studies showed
that the activation process results in oxidation of Mn2+ and Mn3+ ions on the Mn3O4
particle surface during cycling in the positive potential range and linked this process to
the capacitance increase [20–22,25]. The oxidation process was influenced by the duration
of the application of a positive potential. Therefore, it is not surprising that the activation
process was enhanced at low scan rates.

Capacitance increased and impedance decreased with increasing number of TP
(Figure 7A,B). The highest capacitance at a scan rate of 2 mV s−1 was found to be
4.14 F cm−2 (104.4 F g−1) for TP 5 in the method 1. Testing results indicated that acti-
vation process is necessary for achieving high capacitance and reducing impedance of
electrodes prepared by method 1. As pointed out above, such time-consuming activation
process must be avoided for practical applications.

Electrodes, prepared by method 2, did not show significant variations of capacitance
and impedance during cycling. The capacitance obtained for the first cycle of TP 1 at a
scan rate of 2 mV s−1 was 5.67 F cm−2 (141.6 F g−1) for electrodes prepared by method
2. It is higher than the capacitance obtained at the same scan rate for TP5 for electrodes
prepared by method 1. A capacitance of 6.11 F cm−2 (153 F g−1) was obtained at a scan rate
of 2 mV s−1 for TP 3. The real and imaginary parts of impedance for electrode, prepared
by method 2 for TP 1 were lower than the corresponding values for TP 5 for electrode,
prepared by method 1. This indicated lower resistance and higher capacitance of the
electrodes prepared by method 2. The electrodes, prepared by method 2 showed very small
variations in capacitance and impedance for TP 4 and TP 5, compared to TP 3.
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Figure 7. (A) Capacitance versus scan rate and (B) impedance data presented in a Nyquist plot for
(a) TP 1, (b) TP 2, (c) TP 3, (d) TP 4 and (e) TP 5 for electrode prepared by method 1, (C) capacitance
versus scan rate and (D) impedance data presented in a Nyquist plot for (a) TP 1, (b) TP 2, and (c) TP
3 for electrode prepared by method 2.
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CV data indicated that significantly higher capacitance was achieved by method 2
and in this method the time-consuming activation procedure can be avoided. This opens
an avenue for practical applications of Mn3O4 based electrodes with high active mass
loading. It should be noted that small variations in capacitance were observed in method 2.
However, variations in capacitance were also observed for other electrodes, such as MnO2
electrodes during initial cycling [59]. Such capacitance increase of the MnO2 electrodes was
attributed to other factors, such as microstructure changes during initial cycling [59].

Figure 8 shows frequency dependences of real (CS
′) and imaginary (CS”) components

of AC capacitance, derived from the impedance data. In contrast to integral capacitance
measured by CV method in a potential window of 0.9 V, the components of the differential
AC capacitance were measured at voltage amplitude of 5 mV at an open circuit potential.

Figure 8A shows significant increase of low frequency capacitance CS
′ with increasing

TP number for electrodes prepared by method 1. The highest CS
′ of 3.33 F cm−2 was

obtained at a frequency of 10 mHz for TP 5. The analysis of frequency dependences of
CS
′′ showed significant reduction of the relaxation frequency, corresponding to the CS

′′

maximum with increasing TP number (Figure 8B). The electrode prepared by method 2
showed CS

′ of 3.48 F cm−2 at a frequency of 10 mHz (Figure 8C) for TP 1, which is higher
than CS

′ for electrode prepared by method 1 for TP 5. The CS
′ increased for TP 2 and showed

very small variation for TPs 3–5. The relaxation frequency of the electrodes prepared by
method 2 showed very small changes (Figure 8D), especially after TP 2. Therefore, the
behavior of the differential capacitance during TPs 1–5 correlated with behavior of the
integral capacitance, derived from the CV data.
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The results of the GCD testing of electrodes, prepared by methods 1 and 2, after TP 5
are presented in Figure 9. The GCD curves at different currents showed nearly ideal linear
dependences (Figure 9A,C). The electrodes prepared by method 1 and method 2 showed
capacitances of 5.83 F cm−2 (145.8 F g−1) and 6.07 F cm−2 (151.9 F g−1), respectively, at a
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current density of 3 mA cm−2 (Figure 9B,D). The capacitances showed slight decrease with
increasing current density in the range of 3–10 mA cm−2.
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The influence of cycling on capacitive properties of electrodes prepared by methods 1
and 2 was also studied by analyzing CVs at a scan rate of 50 mV s−1. The capacitances for
different cycles were normalized by the capacitance obtained at 2000th cycle and presented
in Figure 10. The normalized capacitance (CN) for electrodes prepared by method 1 was
only 8.3% for the cycle 1.
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The electrodes prepared by method 1 showed significant increase of CN during first
500 cycles and further continuous capacitance increase at a reduced rate. The electrodes,
prepared by method 2 showed CN of 71% for the cycle 1 and CN of 99% for the cycle
7. The CN showed a maximum of 128% for cycle 151 and then decreased. The rate of
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the CN decrease reduced after 1000 cycles. The CV data provided additional evidence of
significantly faster electrode activation in method 2. However, as pointed out above the
activation process is also influenced by the scan rate.

Recent comprehensive review [8] of supercapacitor electrodes with high active mass
loadings provided a summary of capacitances for Mn3O4 and MnO2 based electrodes.
Table 1 shows capacitances of Mn3O4 electrodes with high active mass loading reported in
literature.

Table 1. Literature data on capacitances of Mn3O4 based electrodes, containing conductive additives,
and tested in Na2SO4 electrolyte.

Active Mass (mg cm−2) Areal Capacitance (F cm−2) Reference

28.4 2.8 [21]

30.4 2.63 [60]

33.0 4.2 [22]

35.0 3.5 [20]

36.0 3.1 [57]

36.0 3.79 [61]

40.1 4.3 [62]

40.0 6.11 this work

It is seen that the areal capacitance achieved in this investigation by method 2 is higher,
than that reported in the literature for Mn3O4 based electrodes of high mass. The method
used in this investigation is simple and it is based on the use of a natural co-dispersant.
Moreover, the capacitance of Mn3O4 based electrodes, prepared by method 2 is comparable
with capacitance of advanced MnO2 based electrodes [8]. The time-consuming activation
procedure, which limits the applications of Mn3O4 based electrodes, can be practically
eliminated in method 2. Therefore, Mn3O4 electrodes represent a promising alternative to
the MnO2 based electrodes for the development of asymmetric devices for operation in
enlarged voltage window in a neutral electrolyte. It should be noted that the application
of capping agents, such as RL for the MnO2 synthesis presents difficulties due to the use
of permanganate precursors, which react with organic additives. It can be expected that
Mn3O4 electrodes with advanced particle morphologies, prepared using capping agents,
can outperform MnO2 electrodes. Moreover, in contrast to MnO2, the spinel type Mn3O4
forms a large variety of spinel solid solutions. Such solutions can enhance capacitance,
reduce resistance, and impart other functional properties, such as ferrimagnetic, catalytic
and other properties to the Mn3O4 based electrodes.

4. Conclusions

For the first time RL were used as a capping agent for the synthesis of Mn3O4 nanopar-
ticles and as a dispersant for Mn3O4 and MWCNT. The morphology of the synthesized
Mn3O4 particles and their dispersion were influenced by RL. The chemical structure of RL
facilitated their adsorption on materials of different types, such as Mn3O4 and MWCNT and
allowed for their electrostatic dispersion. The ability to co-disperse Mn3O4 and MWCNT
facilitated their efficient mixing at the nanometric scale and allowed for the fabrication of
advanced cathode materials for asymmetric supercapacitors. The use of RL as a capping
agent resulted in higher capacitance of electrodes prepared by method 2, compared to
method 1. The highest capacitance of 6.11 F cm−2 (153 F g−1) was obtained from CV
data at a scan rate of 2 mV s−1 and 6.07 F cm−2 (151.9 F g−1) at a GCD current density of
3 mA cm−2 in a potential window of 0.9 V in a neutral Na2SO4 electrolyte. The problem
of time-consuming activation of Mn3O4 based electrodes can be avoided in the method
2. This makes Mn3O4 a promising material for practical applications in supercapacitors.
Of particular importance for future research is the ability to form spinel solid solutions,
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based on Mn3O4. The development of such solid solutions can result in the development
of materials with higher capacitance, reduced resistance and multifunctional materials,
combining capacitive, ferrimagnetic, catalytic, and other functional properties.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10.3
390/nano12050803/s1. Figure S1: (A) CVs at scan rates of (a) 2, (b) 10, (c) 20, and (d) 50 mV s−1 for TP
1 and (B) CVs at a scan rate of 10 mV s−1 for (a) TP 1, (b) TP 2, and (c) TP 3 for electrode prepared by
method 2; Figure S2: (A) capacitance versus scan rate and (B) impedance data presented in a Nyquist
plot for (a) TP 1, (b) TP 2, and (c) TP 3 for electrode prepared by method 2; Figure S3: (A) real and (B)
imaginary components of complex capacitance for (a) TP 1, (b) TP 2, (c) TP 3 for electrode prepared by
method 2; Figure S4: GCD data for electrodes prepared by method 2, (A) charge-discharge at current
densities of (a) 3, (b) 5, (c) 7 and (d) 10 mA cm−2, (B) capacitance versus current density dependence.
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