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Abstract: A porous ball-flower-like Co3O4/Fe2O3 heterostructural photocatalyst was synthesized
via a facile metal–organic-framework-templated method, and showed an excellent degradation
performance in the model molecule rhodamine B under visible light irradiation. This enhanced
photocatalytic activity can be attributed to abundant photo-generated holes and hydroxyl radi-
cals, and the combined effects involving a porous structure, strong visible-light absorption, and
improved interfacial charge separation. It is notable that the ecotoxicity of the treated reaction solu-
tion was also evaluated, confirming that an as-synthesized Co3O4/Fe2O3 catalyst could afford the
sunlight-driven long-term recyclable degradation of dye-contaminated wastewater into non-toxic
and colorless wastewater.

Keywords: MOF derivative; cobalt oxide; iron oxide; hierarchical heterostructure; photocatalysis

1. Introduction

Various pollutants in water environments can directly cause serious harm to the lives
and health of human beings, animals and plants. Organic dyes, for example rhodamine
B (RhB), methylene blue and methyl orange, as one of the most common industrial pollu-
tion sources at present, have attracted tremendous attention because of their geno- and
ecotoxicity [1–6]. Therefore, the development of water treatment technologies regarding
dye degradation has become a top priority. Among various methods, photocatalysis is
recognized as one green and efficient alternative for organic pollutant degradation, where
its key issue lies in the facile preparation of highly active and stable photocatalysts [7–10].

As one of the most promising multi-functional materials, metal–organic frameworks
(MOFs) are often considered to be novel photocatalysts due to their abundant and editable
active sites and large surface area. However, some of their defects, such as poor light
absorption and metal ion leaching due to an unstable structure, may seriously limit their
practical applications [11–13]. In order to solve these problems, in this study, a flower-like
cobalt 2,5-thiophenedicarboxylic coordination polymer (Co-TDC) was used as a template
to synthesize a novel Co3O4/Fe2O3 heterostructural photocatalyst with improved light
harvesting and photocatalytic performance. The facile preparation, structural versatility,
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and superior dye degradation performance of this Co3O4/Fe2O3 heterostructure provides
new inspirations for the development of higher-performance photocatalysts towards water
environment remediation.

2. Materials and Methods
2.1. Synthesis of Ball-Flower-like Porous Co3O4/Fe2O3 Heterostructure

Briefly, 0.1 g of Co-TDC (Sinopharm Group Co., Ltd., Shanghai, China) and 0.0482 g
of FeCl3·6H2O (Sinopharm Group Co., Ltd., Shanghai, China) were added into 5 mL of
deionized water. After 30 min of ultrasonic treatment, the mixture was dried at 60 ◦C
for 12 h. Afterwards, the obtained powder was calcined at 550 ◦C for 2 h. The final
Co3O4/Fe2O3 product is denoted as CF in this work for convenience.

2.2. Characterization

The chemical composition and phase structure of samples were analyzed by X-ray
powder diffraction (XRD, SmartLab® by Rigaku, Tokyo, Japan). The morphology was
recorded using field-emission scanning electron microscopy (SEM, JSM-7800F by JEOL,
Japan) and transmission electron microscopy (TEM, JEM-2100F by JEOL, Japan). X-ray
photoelectron spectroscopy (XPS, EscaLab 250Xi by Thermo Fisher Scientific, Waltham, MA,
USA) was performed to investigate element distribution and valence states. The magnetism
and optical properties of samples were studied using vibrating sample magnetometer
(VSM, LakeShore7404 by Quantum Design, San Diego, CA, USA) and diffuse-reflection
spectroscopy (DRS, Cary-5000 by Agilent, Santa Clara, CA, USA).

2.3. Photocatalysis Measurements

The adsorption and photocatalysis processes of as-prepared catalysts were evaluated
by the degradation of RhB in an aqueous solution under visible light irradiation at room
temperature (ca. 25 ◦C). A 500 W xenon lamp with a cut-off filter (λ > 420 nm) was used
to generate visible light. Amounts of 0.1 g of catalyst powder and 50 mL RhB aqueous
solution (initial solution pH ≈ 4) were added to a 100 mL quartz tube and continuously
stirred during the degradation experiment. Before irradiation, the reaction solution was
magnetically stirred in the dark for 30 min to reach complete adsorption/desorption
equilibrium. During the photocatalytic experiment, 5 mL reaction solution was extracted
every 10 min, and the concentration of residual RhB was determined by measuring its
absorbance at 590 nm on a UV-visible spectrometer (UV-3600i Plus by Shimadzu, Kyoto,
Japan). The 5 mL solution was added back into the reaction solution after measurement.

3. Results and Discussion

The chemical composition and crystal structure of CF were analyzed by XRD. As
shown in Figure 1a, the characteristic diffraction peaks located at 19.1◦, 31.2◦, 36.8◦, 44.7◦,
59.1◦, and 65.1◦ could be attributed to Co3O4 (PDF#42-1467), while the other peaks at
35.6◦ and 62.9◦ could be assigned to Fe2O3 (PDF#39-1346), indicating that the as-prepared
sample was composed of Co3O4 and Fe2O3. The chemical states of the sample surface
were further analyzed by XPS. Considering the sample preparation method, only cobalt
element was studied emphatically. In Co 2p spectra (Figure 1b), the asymmetric peaks at
around 780.7 eV and 796.8 eV, and shake-up type satellite peaks at 785.8 eV and 802.3 eV of
Co-TDC, could be well-indexed to Co2+, implying that cobalt in Co-TDC was only in the
form of Co (II). On the other hand, for CF, two new peaks could be identified at around
779.4 eV and 794.3 eV, which were both ascribed to Co3+ [14–18]. This revealed that Co2+ in
Co-TDC was partially oxidized to Co3+ during calcination, and thus Co3O4 was obtained
as a result. Meanwhile, Fe 2p spectrum of CF was also recorded, as shown in Figure S1. It
was revealed that Fe3+ ions were still dominant, which corresponded to the Fe2O3 phase.
However, the minor peak at around 732.2 eV suggests that a little Fe3+ was reduced to Fe2+

along with the oxidation of Co2+ to Co3+ [19–23].
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Figure 1. XRD pattern (a) and Co 2p XPS spectra (b) of as-synthesized CF catalyst.

SEM images of the CF heterostructure are shown in Figure 2a–c. It can be observed
from Figure 2a,b that CF has a regular ball-flower-like morphology with a spherical size
ranged at 10–20 µm, which was retained from the Co-TDC template, as shown in Figure S2
of the Supplementary Materials. It is worth noting that the sheet-like fundamental units of
Co3O4 in CF became much more porous after calcination, with large numbers of ~200 nm
Fe2O3 nanoparticles (Figure S3) embedded within the pores, as indicated by the yellow
arrows in Figure 2c, which facilitate the adsorption and degradation of dye molecules on
the surface. Moreover, the elemental mapping profiles in Figure S4 also help to verify that
the distribution of Fe2O3 within highly porous Co3O4 is uniform while it is random. In
order to further determine the chemical composition of the synthesized catalyst, HRTEM
image was also recorded, as shown in Figure 2d. The identified two lattice fringes with an
interval of 0.25 and 0.20 nm could be indexed to the (311) facet of Fe2O3 and (400) facet of
Co3O4, respectively, which is in good agreement with the XRD result.

The degradation efficiencies of different samples for RhB are displayed in Figure 3a.
When the catalyst was not present in the solution, RhB could hardly undergo self-degradation
under visible light (i.e., black plots). The reaction solution was first stirred in the dark
for 30 min for the catalyst–RhB interface to reach the adsorption/desorption equilibrium.
Typically, the contribution of RhB removal by adsorption is lower than 20%, which is in
proportion to the surface area of the catalyst. In photocatalysis systems, CF demonstrated a
superior performance than Co-TDC and Fe2O3, indicating that CF possesses the highest
photocatalytic activity. This could be explained by the following aspects: (i) The highly
porous structure of CF provided abundant active sites, as revealed in Figure 2b,c [24–26];
(ii) The p-n heterojunction that formed between Fe2O3 and Co3O4 could promote the
separation of photo-generated electron and hole pairs [27–30]. The promoted charge
separation, and thus the inhibited charge recombination, was witnessed by the significantly
decreased photoluminescence (PL) intensity of CF composites compared to pristine Fe2O3
particles, as displayed in Figure S5 of the Supplementary Materials [31–38]. The variation
in the RhB degradation efficiency of CF in different pH conditions is presented in Figure 3b,
suggesting that the catalyst could maintain a superior photocatalytic degradation activity
in the pH range of 4–10, despite the fact that the degradation rate decreased to a certain
extent in a strong acid environment (pH ≤ 2). This may be due to the dissolving of oxides
by strong acid, resulting in a loss of active material in the CF catalyst for the degradation of
RhB. However, considering that the actual surface water or groundwater is mostly weakly
acidic or weakly alkaline, the CF catalyst is still applicable to the oxidative degradation of
organic pollutants in natural water bodies.
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The service life of a catalyst is an important technical indicator for evaluating its
potential for practical usage. After the reaction, the catalyst in the solution could be easily
and quickly separated due to its magnetism, as revealed in Figure 3c. Then, the recycled
CF catalyst was rinsed with ethanol solution to remove the residual organics on the surface.
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Afterwards, it could be reused for RhB removal under the same conditions, as presented in
Figure 3d. An excellent degradation efficiency of >86% was achieved after the CF catalyst
was recycled and reused for five cycles, which maintained about 97% efficiency of the initial
cycle (i.e., ~89.1%), confirming the recyclability of CF for long-term dye degradation in
practical wastewater treatment.

Figure 4a displays the optical absorption of samples. It is observed that the absorption
of Co-TDC is far lower than CF in the visible-light band. The CF catalyst maintains a
superior absorption in the range of 550–750 nm, suggesting its capability for a visible-light-
driven photocatalytic reaction. In addition, the threshold wavelengths of Co-TDC and
CF are determined to be 619 nm and 685 nm, respectively. The corresponding bandgap
and conduction band (CB)/valence band (VB) position can be calculated according to the
following formulas [39–41]:

Eg = 1240/λg, (1)

χ(S) = N
√

χn
1 χs

2 . . . χ
p
n−1χ

q
n, (2)

ECB = χ(S)− Ee − 1
2

Eg, (3)

EVB = ECB + Eg, (4)

where Eg, λg, Ee, ECB, and EVB represent the bandgap, threshold wavelength, energy of free
electrons on the hydrogen scale (~4.5 eV), and the CB and VB position, respectively. The
values χ, n, and N represent the electronegativity of the constituent atom, number of species,
and total number of atoms in the compound, respectively. The calculated Eg of Co-TDC and
CF are 1.72 eV and 1.57 eV, indicating that the CF hybrid possesses a narrower bandgap,
and thus requires less excitation energy. Thereby, Figure 4b depicts the photocatalytic
mechanism of CF under visible light illumination. The photo-generated electrons in
CB cannot reduce O2 to ·O2

− because the ECB of Co3O4 and Fe2O3 are more positive
than E(O2/·O2

−) (−0.33 V vs. NHE), while the photo-generated holes are capable of
oxidizing OH− to hydroxyl radicals (·OH) as the EVB of Co3O4 and Fe2O3 are more negative
than E(·OH/OH−) (1.97 V vs. NHE) [42–44]. In order to further verify this perception,
quenching experiments were carried out using tert-butyl alcohol (TBA), ammonium oxalate
(AO) and L-ascorbic acid (L-AA) to quench the ·OH, photo-generated holes and ·O2

−,
respectively [45,46]. It can be observed from Figure S6 that the degradation efficiency of
RhB clearly decreases in presence of TBA and AO. Therefore, it can be deduced that the
main reactive species involved in the photocatalytic reaction are photo-generated holes and
hydroxyl radicals (·OH), which consequently degrade RhB molecules to colorless small
molecules.
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In order to evaluate the ecological toxicity of the RhB solution before and after treat-
ment, Chlorella vulgaris (FACHB-8) was used as the model aquatic organism being tested,
and the toxicity of the residual RhB after the photocatalytic reaction was assessed according
to its growth inhibition rate to C. vulgaris. A detailed experimental method for algae density
measurement is presented in the Supplementary Materials, which could be referred to as
the standard GBT 21805-2008 [47]. As exhibited in Figure 5, the growth of C. vulgaris was
significantly suppressed in the original RhB solution, and the inhibition rate doubled as
time increases. In contrast, C. vulgaris could grow normally in the solution after reaction,
and the remaining intermediate and final products showed a neglectable influence within
24 h. Even when the incubation time was extended to 96 h, the growth inhibition rate was
still about 1%, which is only 15.6% of the original RhB solution. This demonstrates that
the CF catalyst can effectively degrade and mineralize RhB molecules to nearly non-toxic
products.
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4. Conclusions

In summary, a highly active and stable Co3O4/Fe2O3 heterostructural photocatalyst
was prepared by a facile MOF-templated method, with its structure, morphology and
optical properties verified by XRD, XPS, SEM and UV-visible DRS methodology. The
results indicate that the CF catalyst showed a strong visible-light absorption and high
photocatalytic activity towards RhB degradation. By calculating the CB and VB position,
it could be inferred that hydroxyl radicals and photo-generated holes were the dominant
active species in the reaction. Furthermore, the 96 h growth inhibition rate of C. vulgaris
by the treated RhB solution was 84.4% lower than the original solution, confirming the
potential of the CF photocatalyst for the sunlight-driven long-term degradation of dye
molecules into non-toxic and colorless ones.
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different magnifications, Figure S4: Elemental mapping profiles of as-synthesized CF catalyst: (a) O
Kα1, (b) Co Kα1, (c) Fe Kα1, Figure S5: PL spectra of CF catalyst comparing with pure Fe2O3 at
excitation wavelength of 355 nm, Figure S6: Photocatalytic degradation efficiency of RhB with and
without quenching agent, Figure S7: Photocatalytic degradation efficiency of RhB by as-synthesized
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