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1. Experimental details
Preparation of Pt/C
Prior to the synthesis, NFs were sonicated in 3 M HCI, ethanol and ultrapure water
for 15min to clean the surface. 1.2mg Pt/C was dispersed into a solution of water, ethanol
and Nafion with a volume ratio of 60/120/15 via sonication. Coat a third of the total well-

dispersed solution to the cleaned NF surface.
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Figure S1. The SEM of CoFeCr LDH electrode. The results show that the electrode has

obvious array structure, which is beneficial to mass transfer in the catalytic process.
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Figure S2. The HRTEM and corresponding fast-Fourier-transform (FFT) of the
as-obtained CoFeCr LDH electrode. The results show that the sample is polycrystalline in
nature.
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Figure S3. The energy-dispersive X-ray (EDX) of CoFeCr LDH electrode.
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Figure S4. The chronopotentiometry measurement of CoFeCr LDH electrode. The current
density used for the chronopotentiometry measurement is 10 mA cm. The electrolyte used

for the test is 1.0 M KOH.
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Figure S5. The SEM images of CoFeCr LDH electrode after long-time stability test.
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Figure S6. The energy-dispersive X-ray (EDX) of CoFeCr LDH electrode after long-time

stability test.



Figure S7. The HRTEM image of CoFeCr LDH electrode after long- time stability test.
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Figure S8. High-resolution XPS (a) Co 2p, (b) Fe 2p and (c) Cr 2p spectra of CoFeCr LDH

electrode before and after long-time stability test.
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Figure S9. The electron paramagnetic resonance (EPR ) spectra of CoFeCr LDH electrode

before and after long time stability test.
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Figure S10. (a)the polarization curves of the electrode before and after 500 cycles.
(b) the multi-potential steps and (c¢) the multi-current steps results.
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Figure S11. The comparison of the corresponding overpotentials at 10 mA cm™ and 50 mA
cm? current outputs based on different deposition time electrodes.
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Figure S12. The comparison of the corresponding overpotentials at 10 mA cm™ and 50 mA
cm? current outputs based on different doping concentrations electrodes.
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Figure.S13 The high-resolution (a) Co 2p and (b) Fe 2p spectra of CoFe LDH electrode and
CoFe LDH powder. CoFe LDH powder sample was prepared according to our previously
published article!'®!,
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3. Supplementary Tables

Table S1. Summary of parameters for sample preparation.

Doping concentration Cr(NOs);-9H20 FeClz2-4H20 Co(NOs)2:6H20
(mmol) (mmol) (mmol)

0 0 1.25
5% 0.1875 1.0625
10% 0.375 0.875

2.5

15% 0.5625 0.6875
20% 0.75 0.5
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Table S2. Comparison of the HER performance of CoFeCr LDH catalyst with other reported

OER catalysts
Catalyst Tafel slope | Overpotential | Electrolyte Reference
(mV dec™) (n/mV) Vs.
10mA cm?2
Cr-CoFe LDH 105 201 1 M KOH This work
Co/CoP 73.8 253 1M KOH Advanced Energy
Materials, 2017, 7,
1602355.
Mesoporous Thin-Film N/A 250 1 M KOH ACS Catalysis, 2020,
NiS2 10, 156114-15122.
NiFe-LDH/NF 58.9 210 1 M KOH Science, 2014, 345,
1593—-1596.
1T-MoS:2 56 270 Int. J. Hydrogen
Energy, 2021,46,
8377-8390
Zn1xFex—LDH/NF 110 221 1 M KOH Small, 2018, 14,
1803638.
EG/Coo0.85Se/NiFe-LDH 160 265 1 M KOH Energy Environ. Sci.,
2016, 9, 478-483.
CoeSs@NOSC 105 320 1M KOH Advanced Science,
2018, 5, 1700464
Ni1-xFex-LDH 110 242 1 M KOH | ACS Applied Materials
& Interfaces, 2018, 10,
42453-42468.
NdBaMn20s 5 87 290 1 M KOH ACS Catalysis, 2017,
8, 364-371.
CoMoV LDH/NF 182 270 1M KOH Chemical
Communications,
2019, 55, 3521- 3524.
NiFe-LDH NS/DG10 210 300 1 M KOH Advanced Materials,
2017, 29, 1700017.
CoP@BCN 52 215 1M KOH Advanced Science,
2018, 5, 1700464.
CoFe LDH-F 95 255 1M KOH ACS Applied Materials
& Interfaces, 2016, 8,
34474-34481.
CoFeNiIMo@NCNT 67.4 209.9 0.5M Applied Catalysis B:
H>S04 Environmental, 2021,
280, 119421.
NiFe-LDH/FeCoS2/CFC 157 308 1 M KOH Journal of Materials
Science, 2020,
55, 16625-16640.
Ni/NiS 123.3 230 1 M KOH Advanced Functional

Materials, 2016, 26,
3314-3323.
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