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Abstract: Inspired by the advantages of bi-atom catalysts and recent exciting progresses of nanozymes,
by means of density functional theory (DFT) computations, we explored the potential of metal dimers
embedded in phthalocyanine monolayers (M2-Pc), which mimics the binuclear centers of methane
monooxygenase, as catalysts for methane conversion using H2O2 as an oxidant. In total, 26 transition
metal (from group IB to VIIIB) and four main group metal (M = Al, Ga, Sn and Bi) dimers were
considered, and two methane conversion routes, namely *O-assisted and *OH-assisted mechanisms
were systematically studied. The results show that methane conversion proceeds via an *OH-assisted
mechanism on the Ti2-Pc, Zr2-Pc and Ta2-Pc, a combination of *O- and *OH-assisted mechanism on
the surface of Sc2-Pc, respectively. Our theoretical work may provide impetus to developing new
catalysts for methane conversion and help stimulate further studies on metal dimer catalysts for other
catalytic reactions.

Keywords: metal dimers; nanozymes; methane conversion; density functional theory

1. Introduction

Global warming is gaining increasing concern worldwide. Greenhouse gases include
carbon dioxide, methane, nitrous oxides, and other gases. According to EPA, carbon dioxide
accounted for ca. 80% of all greenhouse gas emissions from human activities in the USA in
2019. Though methane has a lower emission (10%), it is also a major greenhouse gas since
its greenhouse effect is 21 to 23 times that of carbon dioxide [1]. Therefore, the effective
conversion of methane into value-added chemicals (instead of direct burning) is of both
environmental and commercial importance [2–4].

The direct conversion of methane mainly associates with the high C−H bond strength
(~434 kJ/mol) in the non-polar and highly symmetric methane [5–8]. In traditional in-
dustries, methane is first converted into syngas, then transferred to liquid hydrocarbons
by Fischer–Tropsch process, which not only causes waste of resources, but also requires
a high equipment maintenance cost [9–14]. Biological enzyme catalysis may be a good
alternative since it has the advantages of high product selectivity and mild reaction condi-
tions: compared with the current industrial process, the direct conversion of methane to
methanol that occurs in the methane monooxygenase (MMO) from Methylococcus capsulatus
is much more efficient [15–18]. Due to their high catalytic efficiency, biological enzymes
can greatly increase the rate of chemical reactions, saving time and cost. Unfortunately,
structural instability and sensitivity to the environment greatly limit their performance
in industrial applications. A promising way to conquer such challenges is to mimic the
MMO with the binuclear active sites [19–21]. Zeolites such as ZSM-5 are able to form stable
binuclear centers (diiron or dicopper) in similar enzymes, and exhibit unprecedented high
performance in methane conversion, but their catalytic mechanism and structure–property
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relationship remain unclear. The direct conversion of methane at room-temperature and
atmospheric pressure is still an unsolved but high-rewarding challenge [22,23].

Nanozymes are a class of nanomaterials with unique enzyme-like properties, which
have very similar active sites and catalytic mechanisms to biological enzymes. The first
nanozymes were discovered in 2007, since then more than 300 nanomaterials have been
found to have enzymatic activity [24–26]. Since “single-atom catalysis” was proposed in
2011, the concept of single-atom nanozymes (SAzymes) has also emerged as a research
hotspot [27–30]. Compared with single-atom catalysts, bi-atom catalysts may possess
improved catalytic performance [31,32]. For example, Yan et al. showed that Pt dimers
embedded in graphene have 17-fold and 45-fold higher catalytic activity for the hydrolytic
dehydrogenation of ammonia borane than its corresponding single-atom and nanoparticle
counterparts [33]. Li et al. demonstrated that Cu dimers supported on C2N layers exhibited
superior performance for CO oxidation compared to Cu1@C2N [34], and showed excellent
performance with a small confinement potential of −0.23 V for electrochemical CO2 reduc-
tion [35]. However, to date, few studies have been reported on the catalytic performance of
supported metal dimers for methane conversion. Inspired by the advantages of nanozymes
and bi-atom catalysts, we designed a series of supported metal dimer catalysts for methane
conversion by mimicking the binuclear centers in biological enzymes based on density
functional theory computations.

The two-dimensional (2D) phthalocyanine-based (Pc) catalysts have a high surface
area to volume ratio, abundant binding sites for anchoring metal atoms and the ability
to prevent these metal atoms from aggregating into clusters. In 2011, Abel et al. [36] suc-
cessfully prepared FePc complex and characterized the samples using scanning tunneling
microscope (STM) at room temperature. Later on, Matsushita et al. [37] synthesized a
rectangular phthalocyanine with two adjacent transition metal sites. Since Pc and transi-
tion metals are of low-cost, environmentally benign, more readily available than precious
metals, the Pc-supported transition metal catalysts can be produced in a low-cost man-
ner. Note that DFT calculations have been widely used to provide guidance in conver-
sion/bonding/adsorption of molecules/clusters and reactions [38,39]. Here, first-principles
calculations were conducted to explore the potential of all the 3d, 4d, and 5d non-toxic
transition metals and the four main group metal (M = Al, Ga, Sn and Bi) dimers supported
on the Pc (M2-Pc) for methane conversion.

2. Computational Methods

All the computations were carried out by spin-polarized density functional theory
(DFT) calculations including van der Waals (vdW) corrections (DFT-D2) [40], as imple-
mented in Vienna Ab initio Simulation Package (VASP) using the projector augmented
wave (PAW) method [41]. The generalized gradient approximation (GGA) with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional was adopted [42]. The energy
cutoff for the plane-wave basis set was chosen as 550 eV, the systemic energy tolerance and
the remaining total force were set as 1 × 10−5 eV and 0.01 eV Å−1, respectively. The Bril-
louin zone was sampled with a 5 × 5 × 1 k-points grid of the Monkhorst–Pack scheme [43]
for geometry optimization, and a denser k-mesh of 15 × 15 × 1 for electronic structure
computations. To avoid interactions between periodic images, a vacuum space of 15 Å
was used in the perpendicular direction of the 2D layer. The reaction energy barriers were
estimated using the climbing-image nudged elastic band (CI-NEB) method [44,45], and the
transition states were obtained by relaxing the force below 0.05 eV/Å. The entropic effects
were not included in estimating reaction barriers. The binding energy (Eb) of a metal atom
was computed from the following equation.

Eb = (Etot − Esub − 2 ∗ EM)/2

where Etot, Esub, and EM represent the total energy of the complex of substrate and metal
atoms, the energy of the substrate, and the energy of a free M atom, respectively. According
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to this definition, a more negative Eb value indicates a higher thermodynamic stability. The
adsorption energy (Eads) of an adsorbate was computed according to the following equation:

Eads = Etot − Ecat − Eadsorbate

where the Etot is the total energy of an adsorbate adsorbed on the catalyst, Ecat and Eadsorbate
represent the energies of the catalyst and a free adsorbate, respectively. The reaction energy
(Erea) and activity energy barrier (Eact) were calculated using the following expressions:

Erec = EFS − EIS

Eact = ETS − EIS

in which EFS, EIS, and ETS denote the energies of the final, initial, and transition states,
respectively. The reaction mechanism can also be effectively modeled by ab initio molecular
dynamics (AIMD) simulations at specific temperatures [46].

3. Results and Discussion

This work describes our efforts to study the catalytic activity of M2-Pc on the conver-
sion of methane. In this paper, we use H2O2 as the oxidant, because its reaction by-product
is only water, which is a green catalyst [47]. Moreover, H2O2 has been widely used as an
oxidant to study the conversion of methane [48–52]. The CH4 oxidation with H2O2 via
both *OH- and *O-assisted mechanisms was investigated in detail [48].

3.1. Geometric Structure and Stability of M2-Pc

First, the geometric structure of the Pc monolayer was optimized, and the lattice
parameters a and b in the Pc monolayer of 14.13 Å were used. As shown in Figure S1a,
the unique cavity structure of Pc can provide ideal anchoring sites for the metal atoms
to be connected, to four isoindole rings, preventing their migrating and aggregating.
The computed energy band gap of Pc sheet is 0.94 eV (in Figure S1b,c). The geometric
structures and related information of the optimized M2-Pc are shown in Figure S2 and
Table S1. Obviously, due to the different radii of the metal atoms, the structures of M2-Pc
are slightly different. The anchored metal atoms with smaller atomic radii form an in-plane
configuration in the Pc cavity (Al, Mn, Fe, Co, Ni, Cu, Ga, Ru, Rh, Re, Os, and Ir), while
others with larger atomic radii are pulled out of the Pc plane and lead to a buckled structure.

To confirm the stability of metal dimers embedded in the Pc sheet, the binding energy
(Eb) was calculated. Meanwhile, the corresponding metal bulk cohesive energy (Ebulk) were
compared (Table S1), which are less negative than Eb, indicating that the interaction between
the metal atoms and Pc monolayer is very strong, i.e., the anchoring of metal dimers on
the Pc has strong coupling and good stability. We also performed AIMD simulations of
the Ag2-Pc monolayer, whose binding energy is the least favorable (−4.13 eV) among the
considered systems (−13.47~−4.13 eV), and found that the monolayer structure was well
kept during 5 ps’s annealing at 300, 800, 1000, 1300, and 1500 K, respectively, and bond
breakage occurred at 1500 K (Figure S3). Therefore, all the models in our work have high
thermal stability, and in the next section, we will study the catalytic mechanism for methane
conversion on these M2-Pc catalysts.

3.2. Decomposition of H2O2 on M2-Pc

Since the adsorption and dissociation of oxidants are important in methane oxidation,
we considered both side-on and end-on configurations of the H2O2 adsorption (Figure S4)
on the examined 30 M2-Pc, including 26 transition metals from IB to group VIIIB and four
main group metals (M = Al, Ga, Sn and Bi).

Upon adsorption, H2O2 will spontaneously decompose on the surface of the nine
M2-Pc (M = Sc, Ti, V, Y, Zr, Nb, Hf, Ta, and W), all of which are highly exothermic (as shown
in Table S2). As shown in Figure 1, H2O2 can be dissociated when the electronic state of
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the embedded atoms is a semi-occupied state. Among them, a H2O2 is spontaneously
decompose into a H2O and an adsorbed oxygen ( H2O2 → ∗O + ∗H2O ) on the Nb2-Pc with
the energy release of −6.08 eV, and into two adsorbed hydroxy groups ( H2O2 → 2 ∗OH )
on the five M2-Pc (M = Ti, V, Y, Hf, and Ta with the exothermic energy of −7.51, −6.70,
−5.03, −8.71, and −9.04 eV, respectively), while into either a water molecule and an atomic
oxygen (by releasing the heat of −3.75, −6.29, and −4.78 eV, respectively), or two OH
species (by releasing the heat of −5.19, −8.16, and −7.41 eV, respectively) on the Sc2-Pc,
Zr2-Pc, and W2-Pc. All the surface-adsorbed oxo species (*O) occupy the bridge position
of the metal dimers. We also examined the magnetic moments and Bader charges on the
metal atoms of these nine M2-Pc monolayers (M = Sc, Ti, V, Y, Zr, Nb, Hf, Ta, W) (Table S3),
among which the Sc2-Pc, Ta2-Pc, Y2-Pc, and W2-Pc have spin states in singlet, the Nb2-Pc,
Ti2-Pc, Zr2-Pc, and Hf2-Pc are triplet, while V2-Pc is in quintet spin state. According to the
dissociation structure and energy, H2O2 dissociation on these nine catalysts (Figure S5 and
Table S2) are much more exothermic than the previously reported dissociation reaction
of H2O2 on Pd(111) and Au/Pd(111) surfaces (−1.76 and −1.58 eV for two adsorbed
hydroxy groups, and −2.27 and −2.06 eV for absorbed oxygen) [53]. Therefore, it is
believed that the decomposition of H2O2 on these nine catalysts is likely to occur under
environmental conditions. Unexpectedly, Fe2 and Cu2 metal centers, very common active
center in biological systems and some biomimetic compounds [54], cannot decompose
H2O2 to form reactive intermediates on Pc sheet.
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Figure 1. (a) Top view of M2-Pc sheet. (b) The metals examined in this work. The poisonous
metals were indicated in gray; the metals assist H2O2 decomposition into 2*OH or *O and H2O are
highlighted in yellow and orange, respectively; the metals could decompose H2O2 into either 2*OH
or *O and H2O are represented in blue; metals in white cannot spontaneously decompose H2O2.

3.3. Catalytic Conversion of Methane on the M2-Pc

Previous theoretical studies by Yoo et al. [53] showed that when *OH and *O species
exist on the surface, the activation energy barrier of the C−H bond on the precious metal
will be decreased [48,55,56]. Based on the spontaneous decomposition of H2O2 on M2-Pc,
two mechanisms of CH4 conversion will be examined: the *OH-assisted mechanism on
Sc2-Pc, Ti2-Pc, V2-Pc, Y2-Pc, Zr2-Pc, Hf2-Pc, Ta2-Pc, and W2-Pc, the *O-assisted mechanism
on Nb2-Pc, Sc2-Pc, Zr2-Pc, and W2-Pc.

3.3.1. OH-Assisted Methane Conversion

We first examined the methane conversion over Sc2-Pc, Ti2-Pc, V2-Pc, Y2-Pc, Zr2-Pc, Hf2-Pc,
Ta2-Pc, and W2-Pc via *OH-assisted mechanism. The two quenching reactions of *OH, namely
the disproportionation of two OH groups to H2O and O (2(∗OH)→ ∗O + ∗H2O ) [57] and
the self-reaction of H2O2 (H2O2 + 2(∗OH)→ O2 + 2H2O ) [58], will result in a low reaction
efficiency, thus the quenching reactions were investigated before the calculation.

The disproportionation of two *OH groups to H2O and *O on the Ti2-Pc, V2-Pc, Y2-Pc,
Hf2-Pc, and Ta2-Pc were firstly evaluated. As shown in Table S4, the reaction on Y2-Pc,
Hf2-Pc, and Ta2-Pc are difficult (Gibbs free energies are 1.83, 1.72, and 1.63 eV, respectively),
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in comparison, the free energy change on Ti2-Pc and V2-Pc are both less than 1 eV. However,
the energy barriers on Ti2-Pc and V2-Pc are as high as 1.95 and 2.59 eV, respectively
(Figure S6), indicating that the reaction is also difficult to proceed on these two catalysts.
Though on Sc2-Pc, Zr2-Pc, and W2-Pc catalysts, the decomposition of H2O2 into a H2O and
an adsorbed oxygen are more energy-efficient than the splitting into two *OH, considering
that the splitting into two *OH on these three catalysts is spontaneous, we also calculated
the methane conversion via *OH-assisted mechanism on these three catalyst surfaces.

The formation of O2 is also a competitive reaction, which means that H2O2 may
become its own scavengers. The energy parameters for the self-reaction on the six M2-Pc
(M = Ti, V, Zr, Sc, Y, and Hf) are given in Table S5, the rather high Gibbs free energies for the
reaction on the Ti2-Pc, V2-Pc, and Zr2-Pc (2.61, 2.69, and 3.08 eV, respectively) indicate that
the self-reaction on these three catalysts is not thermodynamically favorable. No matter
what initial structure is built on the Ta2-Pc and W2-Pc, they will become two adsorbed
hydroxy groups after relaxation, i.e., the reaction will not proceed on either Ta2-Pc or W2-Pc.
The calculated reaction energies over the Sc2-Pc, Y2-Pc, and Hf2-Pc are 0.54, 0.65, and
−0.18 eV, respectively; however, the activation energy barriers are 2.27, 1.66, and 1.36 eV,
respectively (Figure S7), which means that the *OH is also difficult to quench on these
three catalysts.

The above results showed that *OH will not be quenched on the eight catalysts
examined in this section. Based on this finding, we investigated the methane conversion
reaction via *OH-assisted mechanism.

First, CH4 is weakly adsorbed on the catalyst covered by OH, and the C−M bond
lengths are 2.59, 2.42, 2.37, 2.81, 2.51, 2.45, 2.64, and 2.42 Å on the Sc2-Pc, Ti2-Pc, V2-Pc,
Y2-Pc, Zr2-Pc, Ta2-Pc, W2-Pc, and Hf2-Pc, respectively. The adsorption energies are −0.15,
−0.53, −0.52, −0.41, −0.49, −0.61, 0.28, and−0.22 eV, respectively. The reaction energies of
surface *OH groups attracting H from CH4 are 0.76, 0.81, 0.59, 0.95, −0.14, 0.58, and 0.83 eV
on Sc2-Pc, Ti2-Pc, V2-Pc, Y2-Pc, Zr2-Pc, Ta2-Pc, and Hf2-Pc, respectively; the corresponding
activation energy barriers are 1.09, 0.85, 1.41, 1.35, 0.86, 0.62, and 1.22 eV. The reaction of
extracting H from CH4 on the W2-Pc is not considered because its repulsiveness to CH4
(Figure S8). These analyses suggested that Ti2-Pc, Zr2-Pc, and Ta2-Pc can catalyze the
C-H breakage due to favorable reaction energies and relatively mall activation barriers
(0.85, 0.86 and 0.62 eV). Note that though the activation barrier on Sc2-Pc is slightly high
(1.09 eV), considering that the O-assisted methane conversion on this catalyst benefits
from the assistance of *OH (see Section 3.3.2), we also investigated the the *OH-assisted
mechanism on Sc2-Pc. Thus, four catalysts which are feasible to break the C-H bonds,
namely, Sc2-Pc, Ti2-Pc, Zr2-Pc, and Ta2-Pc, will be further investigated.

Then, we calculated the subsequent reactions over Sc2-Pc, Ti2-Pc, Zr2-Pc, and Ta2-Pc.
Figure 2a–d summarizes the corresponding potential energy profile and the optimized
geometries along the reaction path on these four M2-Pc. After the cleavage of the C−H
bond, CH3 and H2O are adsorbed on the four catalyst surfaces. Next, the desorption of
*CH3, the desorption of *H2O, and the reaction with OH in the solution to generate CH3OH
were considered, respectively. The best path for all these four catalysts is to react with OH in
the solution. Note that *CH3 will react with ·OH in the solution to form CH3OH on Sc2-Pc
and Ti2-Pc, the reaction proceeds spontaneously on Sc2-Pc, and the energy barrier on Ti2-Pc
is only 0.08 eV. While on Zr2-Pc and Ta2-Pc, OH will combine with the H atom of *OH to
generate H2O instead of reacting with *CH3 (this process occurs spontaneously on both
catalysts). After desorbing H2O, *CH3, and *OH will remain on the surface. Unexpectedly,
on both Zr2-Pc and Ta2-Pc catalysts, *CH3 will not combine with *OH on the surface to
form CH3OH, but will combine with ·OH in the solution to generate CH3OH (the energy
barriers are 0.84 and 0.08 eV, respectively, as shown in Figure 2c,d).
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To summarize, we identified that four catalysts, namely, Sc2-Pc, Ti2-Pc, Zr2-Pc, and
Ta2-Pc, show high CH4 conversion activity with the assistance of *OH. The rate-limiting
steps of Sc2-Pc, Ti2-Pc, and Zr2-Pc are the cleavage of the first C−H bond, with energy
barriers of 1.09, 0.85, and 0.86 eV, respectively. The rate-limiting steps of Ta2-Pc is the
extraction of ·OH in the solution, with energy barriers of 1.11 eV.

3.3.2. O-Assisted Methane Conversion

Then we examined *O-assisted methane conversion on the Nb2-Pc, W2-Pc, Zr2- Pc, and
Sc2-Pc catalysts. The adsorption energies of *H2O on these four M2-Pc are 0.27, 0.13, 0.21,
and 0.31 eV, respectively, indicating the feasibility to desorb *H2O from these slabs to form
O-adsorbed catalysts. According to previous studies, the C−H bond cleavage may occur
via either a surface-stabilized (∗O + CH4 → ∗OH + ∗CH3 ) or a radical-like mechanism
(∗O + CH4 → ∗OH + ·CH3 ) [59,60]. Figure S9 shows the energy diagram of methane
conversion on these four *O-adsorbed catalysts following the surface-stabilized or radical-
like mechanism, and the competition reaction pathway of the *CH3 dehydrogenation is also
considered (∗CH3 + ∗OH → ∗CH2 + ∗H2O ). In contrast to the quintet state of Fe(IV)(oxo)
in Fe(IV)O/MOF-74 [61], the M-O-M moiety (M = Sc, Zr, Nb, W) is singlet in the ground
state, since the magnetic moment on either M or O is zero. Accordingly, the oxidation state
of O and Sc/Zr/Nb/W could be assigned as −2 and +3/+4/+4/+4, respectively, which is
quantitatively in line with our Bader charge analysis (Table S6). Notably, the spin state of
Nb2-Pc and Zr2-Pc switches from the triplet to the singlet when forming M-O-M moiety,
agreeing well with our recent theoretical observations in metal dimer-related catalysis [62].
The partial density of states (PDOS) of CH4 adsorption on M-O-M moiety (Figure S10)
shows that there is orbital hybridization between M-O-M and CH4.

Among these examined catalysts, *O-assisted conversion of methane is energeti-
cally more favorable on the Sc2-Pc monolayer through a surface-stabilized mechanism
(Figure S9). This is different from the traditional single-site catalyst, which prefers the
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free radical mechanism [60–65]. The potential energy profile and the reaction path of
*O-assisted methane C−H bond cleavage on the Sc2-Pc surface are illustrated in Figure 3, in
which the C−H bond activation is found as the rate-determining step for the first methanol
formation. The reaction begins with the adsorption of CH4, which is physically adsorbed
on the O-preadsorbed Sc2-Pc through van der Waals interaction as the initial state with
the adsorption energy of −0.09 eV, where the C−H bond length is 1.10 Å, slightly longer
than that in the free CH4 molecule (1.07 Å), and the distance between O and H is 1.84 Å. In
the transition state, the distance between C and H is elongated to 1.47 Å, and the distance
between O and H is shortened to 1.21 Å, both of which are between the initial state and
the final state. In the final state, *OH and *CH3 will form one Sc−C (bond distance of
2.25 Å) and two Sc−O bonds (bond lengths 1.97 and 2.37 Å) on surface. In other words,
the *O-assisted methane activation on the Sc2-Pc catalyst follows the surface-stabilized
mechanism, and the energy barrier for activation of the first C−H bond is 0.63 eV, which is
much lower than the *O-assisted Au (111) surface (1.33 eV) [53].
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Figure 3. Reaction pathway of *O-assisted CH4 decomposition on the Sc2-Pc monolayer. Blue, black,
and red lines represent the three paths of *CH3 reacting with *OH, *CH3 reacting with ·OH in solution,
and the migration of *OH from bridge to top site, respectively.

After the C-H bond cleavage on Sc2-Pc, the position of *O is transferred from the bridge
site of two Sc atoms to the top of one Sc atom, and *CH3 is adsorbed on the other Sc atom.
Unlike single-site active center catalysts, bi-atom active centers increase the adsorption
strength of the intermediates, thereby preventing the combination of *CH3 and *OH, which
can be seen from the very high energy barrier (1.65 eV) in Figure 3.

We also considered that *CH3 reacts with ·OH in the solution to form *CH3OH. This
reaction proceeds spontaneously (the initial state structure and the final state structure
are shown in Figure S11) by releasing energy of 0.54 eV (the blue line in Figure 3). The
desorption of *CH3OH requires 0.13 eV of energy. After desorbing CH3OH, *OH remains
being adsorbed on the surface occupying the bridge position of Sc dimers. Subsequently,
we investigated two reaction paths: *OH moves to the top site of Ta atom, and *OH on the
bridge position continues to activate CH4. As shown in Figure 3, the C−H bond cleavage
assisted by the *OH on the bridge site is endothermic by 0.87 eV, while the migration of
the *OH on the bridge site to the top site is slightly endothermic by 0.23 eV. Therefore, the
*OH prefers moving to the top site, and the subsequent reaction is the same as discussed
in Section 3.3.1. Noted that the active site motif for H2O2-converting methane is M-O-M
(where M is a metal center), different from the biological MMOs containing binuclear Fe
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centers for the oxidation of CH4 to CH3OH by O2, where the reaction involves the formation
of a pair of highly active iron(IV)oxo groups in a “diamond core” arrangement [61].

Note that the DFT self-interaction errors can have significant effects on the reactivity of
high-valent Fe species during the oxidation of methane in metal-organic frameworks [66].
Thus, we tested the reaction of the first C–H bond cleavage using the HSE06 functional [67]
and compared with the PBE result, Ti2-Pc was taken as a representative due to its best
catalytic performance among the catalysts examined in this work. We found that reaction
barriers (0.84 vs 0.85 eV) and reaction energies (0.78 vs 0.81 eV) are very close from the two
methods (Figure S12). Thus, we conjecture that PBE results are reliable for our systems,
and we adopted PBE functional through our calculations.

4. Conclusions

To sum up, we designed low-cost bi-atom (M2-Pc) catalysts for CH4 conversion using
a two-dimensional material Pc to support the metal dimers. Two methane conversion
routes, namely *O-assisted and *OH-assisted mechanisms, over M2-Pc were systematically
studied by means of density functional theory computations. Our computations identified
four high-performance catalysts for methane conversion: the Sc2-Pc surface following a
combined *O-assisted and *OH-assisted mechanism with the C−H bond breaking energy
barrier of 0.63 eV, and Ti2-Pc, Zr2-Pc, and Ta2-Pc following *OH-assisted mechanism with
energy barriers of 0.85, 0.86, and 1.11 eV, respectively, all these activation barriers are
lower than that on the Au(111) surface (1.33 eV) [53]. This work clearly demonstrated that
the M2-Pc monolayers can serve as low-cost and efficient bi-atom catalysts for methane
conversion, which not only enrich the family of bi-atom catalysts, but also provides new
strategy to design effective bi-atom catalysts for methane conversion and related reactions.

Supplementary Materials: The Supporting Information is available free of charge at https://www.
mdpi.com/article/10.3390/nano12091518/s1. Table S1. The lattice parameters (a/b, in Å) of M2-Pc
catalysts, their corresponding bond lengths (the bond lengths of metal to metal, metal to nitrogen,
dM−M, dM−N, dM−Nc, where Nc represents the N atom adjacent to the C atom, in Å), and the binding
energy (Eb, in eV) of metal dimer anchoring at Pc monolayer, as well as the cohesive energy (Ebulk, in
eV) of metal in bulk, Table S2. (a) The reaction energy for H2O2 dissociation into ∗O + H2O on M2-Pc
(M = Sc, Zr, Nb, W), bond lengths (dM1–O/dM2–O, in Å) (M1 = M2 = M), as well as the H2O binding
energies (Eads (H2O), eV), (b) The reaction energy for H2O2 dissociation into ∗OH + ∗OH on M2-Pc
(M = Sc, Ti, V, Y, Zr, Hf, Ta, W), as well as the bond lengths (dM1–O/dM2–O, dO1–O2, dO1–H/dO2–H, Å)
(M1 = M2 = M), O1 and O2 represent the two O atoms bonded to M1 and M2, respectively, Table S3.
The total magnetic moments and magnetic moment (in µB) of two metal atoms of M2-Pc (M = Sc, Ti,
V, Y, Zr, Nb, Hf, Ta, W) (structures as shown in Figure S2), and the Bader charge (q, in |e|) of the two
atoms. Table S4. The calculated zero-point energy, entropy, and free energy change of the reaction of
the abstraction of a hydrogen from one of the *OH groups to the formation of water and oxo species
(∗OH + ∗OH → ∗O + H2O ) on M2-Pc (M = Ti, V, Y, Hf, Ta), Table S5. The calculated zero-point
energy, entropy, and free energy change of the self-reaction of H2O2 (2∗OH + H2O2 → O2 + 2H2O )
on M2-Pc (M = Sc, Ti, V, Y, Zr, Hf) Table S6. The partial charges of O (O) and M (M1/M2) for M1-O-M2
(in q) (M1 = M2 = Sc, Zr, Nb, W). Values were obtained from Bader charge analysis, Figure S1. Top
and side view of the structure of Pc in a 2 × 2 × 1 supercell (a), and its band structure (b) and
projected density of state (DOS) (c). The Fermi lever is set to zero, Figure S2. Top and side views of
the optimized M2-Pc monolayers, Figure S3. The energy evolution with time progress of the 5 ps MD
simulation of the Ag2-Pc at 300 K, 800, 1000, 1300, and 1500 K, as well as the snapshot of structure
at the end of 5 ps, respectively, Figure S4. Two adsorption configurations of H2O2 on the M2-Pc,
Figure S5. The structures of spontaneously dissociated H2O2 on the M2-Pc monolayers, Figure S6.
Transformation process of *OH + *OH→ *O + H2O on Ti2-Pc (a) and V2-Pc (b) surfaces. The inset
was the atomic structure model of each step, Figure S7. Transformation process of H2O2 + 2(*OH)→
O2 + 2H2O on Sc2-Pc, Y2-Pc and Hf2-Pc surface. The inset was the atomic structure model of each
step, Figure S8. The initial state structure (a) and the final state structure (b) of methane adsorption
on W2-Pc surface, Figure S9. The corresponding energy profile of methane conversion via *O-assisted
mechanism, Figure S10. Partial density of states (PDOS) of CH4 adsorption on M-O-M moiety. The
Fermi level was set to zero, Figure S11. The initial state structure (a) and the final state structure (b) of
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the reaction between *CH3 and OH in solution on Sc2-Pc, Figure S12. Energy diagram of the C−H
bond cleavage on Ti2-Pc surface calculated by PEB and HSE06 functional.
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