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Table S1. Atomic lattice images of laminates obtained with the contact-mode AFM in air. 
 Group Lattice Post-processing Notes Reference 
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Graphite, 

MoS2 
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UHV chamber 
N2 environment 

[1] 

2 Graphite N 
W tip, 

Homebuilt AFM 
[2] 

3 Graphite  CNT tip [3] 

4 Graphite  
W tip, 

Homebuilt STM/AFM 
[4,5] 

5 TaS2 N Super-sharp tip [6] 

6 MoS2 N 
Symmetric design (Avoid drift, Cypher 

AFM)  
[7] 

7 Graphene, hBN  
Symmetric design (Avoid drift, Cypher 

AFM) 
[8] 

8 MoS2, WS2  
Symmetric design (Avoid drift, Cypher 

AFM) 
[9] 

9 Graphene, N 
Symmetric design (Avoid drift, Cypher 

AFM) 
[10] 

 10 Mica (> 0.5 nm) Y Small scanner [11] 
 11 Graphite, Mica, MoS2 N Sample cleaving critical [12] 
 12 Graphite N Sample cleaving critical [13] 
 13 NbSe2 N Sample cleaving critical [14] 
 

14 
Graphene, Multilayer G N  [15] 

 Graphene Y  [16] 
 

15 Graphene 
N 
Y 

 
[17] 
[18] 

 16 Graphene   [19] 
 17 Graphene, hBN Y Small scanner [20] 
Excluding atomic images obtained via electrical signals using AFM techniques that require conductive substrate (ex. Pie-
zoresponse Force Microscopy). Excluding exemplary images advertised by commercial AFM companies. For a group that 
has published multiple papers, only the representative papers are referenced. 
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Atomic-lattice images of 2D materials acquired using the contact-mode AFM in air 
have been provided by only a few groups worldwide (Table S1). Most atomic images 
taken in the ambient environment have been obtained by AFM experts using special 
homebuilt STM-AFM, functionalized tips, carbon nanotube tips, or symmetrically-de-
signed Cypher AFM (exceptionally low noise floor < 15 pm [21]); but their uptake is lim-
ited. No systematic investigations or careful protocol have been provided so far. 

Miscellaneous 
Tip Characterization 

Interestingly, we found that sharp tips are not critical for obtaining atomic lattice im-
ages during imaging following the proposed protocol. Atomic lattice images were ac-
quired repeatedly at low loads (< 10 nN) even after the tip was pressed to ~30 nN to obtain 
Figure 6c. Although the sharpness of the tip is considered important [22-24], it is reported 
that regular periodicity of the sample can be obtained even with a tip with multiple con-
tacts[6].  

The shape of the NSC36C AFM tip used for imaging dozens of times is shown in 
Figure S1. We use the NT-MDT TGT1 silicon calibration grating consisting of an array of 
silicon spikes with heights of 0.3 μm or more and tip curvature radii smaller than 10 nm. 
A contact mode height image is presented in Figure S1a. The cross-sectional profile along 
the line shows an apex diameter of ~92.2 5 nm (Figures S1b and S1c). Taking the convo-
lution effect into account, by subtracting the nominal diameter of the spike (~20 nm), we 
find that this tip has an apparent diameter of ~72.2 5 nm.  

 
Figure S1. Tip characterization. (a) Contact mode height image of TGT01 grating; (b) Cross-sectional 
profile of a calibration Si spike obtained using an AFM tip; (c) Magnified cross-sectional profile. 

Determination of the Contact Stiffness  
The contact stiffness between a medium sharp Si tip (1.43 Nm-1) and the reference Si 

substrate at the load of 10.3 nN is deduced in dry atmosphere (~23±2 RH%) from the Hertz 
model[25,26]. The tip-sample system can be modeled as a sphere pressing a flat surface. 
In this case, the contact stiffness (kcontact) is directly proportional to the contact radius a.  𝑘 8𝐺∗𝑎 (1)

where 𝐺∗ 2 𝜈 𝐺 2 𝜈 𝐺 , 𝑎 3𝑅𝐿 4𝐸∗ / , 𝐺𝐸 2 1 𝜈 , 𝐸∗ 1 𝜈 𝐸 1 𝜈 𝐸 ; 𝐺  and 𝐺 : the 
shear moduli (𝐸 𝐸 130 GPa, Si (100)[27]); 𝜈  and 𝜈 : the Poisson’s ratios 
(𝜈 𝜈 0.28); 𝑅: the radius of curvature (72.2 nm); 𝐿: the load (10.3 nN). 

Using the values above, we estimate the contact radius, a, to be 2.04 nm and kcontact to 
be 240.9 N/m. 
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Color Range Adjustment 
After adjusting the color range of the image, the atomic lattice structure appears 

sharper. 

 
Figure S2. Before and after color range adjustment. LFM trace images of a MoS2 monolayer before 
and after color range adjustment (calibrated scale bar: 2 nm, scan rate: 21 Hz). 

Effect of speed on image sharpness 

 
Figure S3. Effect of scanning speed on image sharpness. (a) LFM raw images of MoSe2 consecu-
tively obtained in air at 61, 172, and 392 nms-1 (calibrated scale bar: 1 nm); (b) Cross-sectional pro-
files along the blue, black, and red lines. The saw-tooth amplitude (jump height) is similar at 20 mV 
in all three cases. 
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Protocol 

 
Figure S4. AFM protocol for accurate atomic lattice imaging. The protocol allows one to obtain ac-
curate atomic lattice images in air using any commercial AFM. 

Additional Application-Atomic Structures of Torn Edges 
The torn edges resulting from mechanical exfoliation of highly ordered pyrolytic 

graphite (HOPG) were investigated. Most of the straight edges were armchair or zigzag 
edges (Figure S5). The consistency between our and previous studies supports the relia-
bility of the proposed protocol. 
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Figure S5. Graphene torn-edge analysis. An LFM image of mechanically-exfoliated graphene. The 
inset shows an inverse FFT image obtained from a nearby region. The white-dotted (red-dotted) 
lines correspond to the edges ripped along the armchair (zigzag) direction. 
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