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Electrochemical Test 

To prepare the working electrode, 3.5 mg of MnO/PC nanohybrid mixed with 1.5 mg 

Cabot Vulcan XC-72 carbon (Vc-72) were dispersed in a solution containing 500 μL of 

mixed solution (2-propanol mixed with water (VC3H8O:VH2O = 1:1) and 0.5 wt % Nafion 

solution). The suspension was ultrasonically dispersed to form a homogeneous ink. 

After that, the ink was pipetted onto the GC electrode and then was naturally drying to 

form a thin catalyst layer on the GC electrode. The tests were conducted on a computer-

controlled potentionstat/galvanostat workstation at room temperature. The supporting 

electrolyte was 0.1 M KOH aqueous solution, which was purged with N2 or O2 (purity 

99.995%) for at least 30 min prior to testing and maintained under N2 or O2 atmosphere 

during the test. Cyclic voltammograms were recorded from 0.2 to -0.8 V versus 

Ag/AgCl in N2 (or) O2-staurated 0.1 M KOH electrolyte solutions with a scan rate of 

20 mV s-1. All potentials were reported with reference to the reversible hydrogen 

electrode (RHE) potential scale. In 0.1 mol L-1 KOH solution, the potential of Ag/AgCl 

was calibrated as +0.965 V with respect to RHE. 
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Figure S1. (A, B) SEM images of porous carbon with different magnifications. (C) XRD patterns 

of porous carbon. 
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Figure S2. Raman spectra of MnO/PC nanohybrid. 
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Figure S3. High-resolution O1s XPS spectra of MnO/PC nanohybrid. 
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Figure S4. SEM images MnO/PC nanohybrid obtained at 700 °C with different magnifications. 
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Figure S5. Typical UV-vis spectra of the oxidation of ABTS by MnO/PC nanohybrid obtained at 

700 and 800 °C. 
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Figure S6. The influence of pH (A) and temperature (B) on the relative activity of the MnO/PC 

nanohybrid.  
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Figure S7. LSV curves of PC and MnO/PC nanohybrid at 1600 rpm in O2-saturated 0.1 M KOH. 
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Figure S8. (A) Chronoamperometric curves of MnO/PC nanohybrid and Pt/C in O2-saturated 0.1M 

KOH with a constant potential 0.65 V (vs. RHE). (B) Chronoamperometric curves of MnO/PC 

nanohybrid by adding of 3 M methanol after 330 s in O2-saturated 0.1 M KOH with a constant 

potential 0.65 V (vs. RHE). 
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Figure S9. Effect of different phenols and ions on HQ sensing with adding the equal amount of 

phenols and 10-fold other compounds. 
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Table S1. Comparison of the ORR electrochemical performances of MnO/PC nanohybrid with the 

reported catalysts and Pt/C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst Eonset  

(V vs. RHE) 

Electron transfer 

number 

Limiting current 

density (mA cm-2) 

Reference 

MnO -- 2.18 1.1 1 

MnO/NG 0.89 3.70 4.17 2 

MnO 0.70 -- 1.1 3 

3D-N-RGO/MnO 0.83 3.03 1.62 3 

MnO -- 2.94-3.14 1.0 4 

MnO/RGO -- 3.98-4.02 4.72 4 

MnO/NC-2 0.987 4 5.4 5 

CNTs@MnO - 3.8–4.0 1.6 6 

CNTs@MnOx - 3.2–3.4 1.4 6 

Laccase-mimicking 

Cu−DPA 

0.78 3.7 -- 7 

MnOx/C -- 3.54 -- 8 

Pt/C-20% 0.93 3.9 5.96 This work 

MnO/PC nanohybrid 0.83 3.9 5.87 This work 



13 

 

Table S2. Determination of HQ in real sample using the present colorimetrical method (n= 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Added (μM) Found (μM) Recovery (%) RSD (n = 3, %) 

Tap water 15.0 15.0 100.0 4.0 

 30.0 28.8  96.0  3.0 

Lake water 15.0 14.5 96.7 2.7 

 30.0 31.9 106.3 4.6 
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