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Abstract: This work demonstrates hydrazine electro-oxidation and sensing using an ultrathin copper
oxide nanosheet (CuO-NS) architecture prepared via a versatile foam-surfactant dual template
(FSDT) approach. CuO-NS was synthesised by chemical deposition of the hexagonal surfactant
Brij®58 liquid crystal template containing dissolved copper ions using hydrogen foam that was
concurrently generated by a sodium borohydride reducing agent. The physical characterisations of
the CuO-NS showed the formation of a two-dimensional (2D) ultrathin nanosheet architecture of
crystalline CuO with a specific surface area of ~39 m2/g. The electrochemical CuO-NS oxidation
and sensing performance for hydrazine oxidation revealed that the CuO nanosheets had a superior
oxidation performance compared with bare-CuO, and the reported state-of-the-art catalysts had a
high hydrazine sensitivity of 1.47 mA/cm2 mM, a low detection limit of 15 µM (S/N = 3), and a
linear concentration range of up to 45 mM. Moreover, CuO-NS shows considerable potential for the
practical use of hydrazine detection in tap and bottled water samples with a good recovery achieved.
Furthermore, the foam-surfactant dual template (FSDT) one-pot synthesis approach could be used to
produce a wide range of nanomaterials with various compositions and nanoarchitectures at ambient
conditions for boosting the electrochemical catalytic reactions.

Keywords: surfactant; foam; dual templates; copper oxide; nanosheets; hydrazine sensing

1. Introduction

According to recent reports, the global production of hydrazine (diamine, N2H4) and
its derivatives reaches up to 200,000 metric tons a year [1], and it is widely used in explo-
sives and fuels [2], particularly rocket fuel [3]. Moreover, recently, hydrazine has been used
in an enormous range of industrial applications, such as corrosion inhibitors [4], reducing
agents [5], photographic chemicals [6], drug production [7,8], antioxidants [9], and herbi-
cides [10]. However, the spread of hydrazine usage has increased environmental pollution
because it is classified as a highly toxic substance [11]. It has been declared carcinogenic
as it can damage the brain, liver, and eyes when absorbed from the metabolized drug or
the environment [12,13]. In addition, it has been classified as a B2 group environmental
pollutant by the Environmental Protection Agency (EPA) and World Health Organisation
(WHO) [14]. Therefore, it is necessary to measure the hydrazine concentration in different
types of samples, particularly in aqueous systems.

Several analytical methods, such as chromatography [15], fluorescence methods [16],
chemiluminescence [17], and electrochemical methods [18], have been used for the detec-
tion of hydrazine in various types of samples. Among these methods, electrochemical
techniques are considered to be the best because of their simplicity, low-cost fabrication pro-
cess, and fast detection response, and because they possess a relatively high sensitivity and
selectivity [19–21]. However, electrochemical methods with conventional substrates usually
show a lower sensitivity and selectivity for sample analysis than electrochemical methods
based on a modified electrode [22,23]. Therefore, it is necessary to develop more efficient
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modified electrodes to achieve the detection of low limits, eliminate interferences, and
improve the electrochemical sensing results. Hence, transition-metal oxides and hydroxide
nanomaterials of cobalt, nickel, and copper have attracted extensive research attention in
recent years for the development of an electrochemical hydrazine sensing platform because
of advantages such as a high catalytic activity, low cost, environment friendliness, good
stability, and ease of manufacturing and developing electrochemical sensors [24,25].

In particular, among the transition metal oxide nanostructures, copper oxide (CuO)
is one of the known p-type semiconductor materials with a narrow band gap of 1.2 eV; it
offers interesting photovoltaic, photoconductive, and electrocatalytic properties [26–30].
Many new CuO-based nanoarchitectures with a high specific surface area and mesoporos-
ity, various morphologies, and compositions have shown a significant enhancement in
sensor [31–33] and electrochemical energy reaction [34,35] applications. For example, CuO
nanoparticles [36], nanowires [37], nanoflakes [38], nanoflowers [39], nanosheets, and mi-
crospheres [25,40] have been developed for catalysing hydrazine sensing and have shown
unique advantages over traditional sensors. In particular, two-dimensional (2D) copper
oxide nanosheet architectures have shown a significant hydrazine oxidation activity be-
cause of their shortened ion and electron diffusion pathways, an abundance of mesoporous
channels and active sites for catalysts, excellent mechanical properties, and improved
structural stability [40–42].

Several synthesis methods such as hydrothermal routes [43,44], chemical bath deposi-
tion methods (CBD) [45], spray pyrolysis [46], microwave irradiation [47], and sol–gel [48]
have been reported for the preparation of CuO-NS and their application as sensing elec-
trodes. Considerable focus has been on chemical methods that allow one to control the
morphology and particle size, as there is evidence that particle size and morphology directly
affect the properties of the catalysts [49,50]. This has been accomplished by considering
several synthesis factors such as the type of surfactant template, solvents, temperature,
and reactant concentration [40,51]. Recently, the soft-template approach as the chemical
method has been widely exploited because of its one-step route that produces high-surface-
area mesoporous nanostructured compounds [52–54]. Using this approach, our research
group reported a foam-surfactant dual template (FSDT) approach to produce mesoporous
Ni/Ni(OH)2 2D nanoarchitecture (nanoflakes) via chemical deposition from a hexago-
nal lyotropic surfactant template using a sodium borohydride reducing agent [55]. The
Ni/Ni(OH)2 nanoflake catalyst has shown substantial enhancement of the electrochem-
ical nature of methanol and urea oxidation and glucose sensing reactions [51]. Naikoo
et al. successfully synthesised macro/mesostructured porous copper oxide via a facile
and environmentally benign soft template method by controlling the parameters of shape,
dimensionality, and crystallinity. The obtained results revealed that mesoporous copper
oxide materials have an excellent catalytic activity towards the oxidation of phenol because
of their unique porous nature [56].

To improve the synthesis of CuO nanostructures and further explore their unique
properties, the present work, for the first time, demonstrates a novel chemical deposition of
2D CuO nanosheet architecture at room temperature using the versatile foam-surfactant
dual templates (FSDT) of self-assembled Brij®58 surfactant liquid crystal template and
in situ hydrogen foam exfoliation produced by a sodium borohydride (NaBH4) reducing
agent. A thin layer of Brij®58 surfactant mixed with a copper nitrate solution was firstly
self-assembled in a Petri dish and an excess of NaBH4 solution addition was followed.
The copper ions confined in the aqueous domain of the template were reduced by NaBH4
and the in situ foam of hydrogen bubbles concurrently exfoliated the deposited CuO
nano-layers. The physicochemical characterisation of the CuO nanosheet crystal structure
and nanostructured morphology were performed using X-ray diffraction, N2 adsorption-
desorption isotherms, X-ray photoelectron spectroscopy, and scanning and transmission
electron microscopy. The electrochemical hydrazine oxidation and sensing performance
at the CuO nanosheet electrode in an alkaline solution was examined by electrochemical
and impedance techniques, and evaluated against that of the bare-CuO that was deposited
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without the surfactant and was compared with the state-of-the-art copper-based-catalysts
reported thus far.

2. Materials and Methods
2.1. Materials and Chemicals

Copper (II) nitrate trihydrate Cu(NO3)2·3H2O, the (Brij®58) polyethylene glycol oc-
tadecyl ether, hydrazine 80%, uric acid (UA), sodium chloride (NaCl), cysteine, sodium
borohydride, NaBH4, and Nafion (5% in a mixture of water and lower aliphatic alcohols),
were purchased from Sigma Aldrich (Dorset, UK). Isopropanol (>99%) was procured from
WINLAB (Leicester, UK) and potassium hydroxide (KOH, 85%, pellets) was bought from
LOBA Chemie (Mumbai, India). All of the solutions in the experiment were prepared
using deionized water obtained from a Milli-Q ultrapure water purification system. Real
samples were obtained from Nova Company (Riyadh, KSA) and using tap water from
the laboratory.

2.2. Synthesis of CuO Nanosheets (CuO-NS)

The CuO nanosheet catalyst was prepared at room temperature (25 ◦C) using the
approach of the foam-surfactant dual template (FSDT) employing the reducing agent of
sodium borohydride (NaBH4). In the FSDT approach, the copper ions confined in the
intestinal aqueous domain of the Brij@58 hexagonal LCT are chemically reduced by the
NaBH4, which concurrently produces foam of hydrogen bubbles that simultaneously
exfoliate and scale off the deposited catalyst layers [51,55]. In brief, as shown in Scheme 1,
the copper liquid crystal template (Cu-LCT) mixture was prepared by physically adding
5.0 g of a 0.5 M copper (II) nitrate solution, 2.0 g of the melted non-ionic Brij®58 surfactant,
and 5.0 g of distilled water in a glass beaker. Using an ultrasonic probe, the template
mixture was sonicated until a homogenous solution was obtained (15.0 min) and then
transferred to a Petri dish. Then, the surfactant to water ratio was adjusted at 40% via
evaporation of the excess water in an open atmosphere at 25 ◦C to form a thin layer of
hexagonal liquid crystal copper template. Then, the gel template in the Petri dish was
sprayed with an excess of sodium borohydride (1.0 M) reducing agent. After a few seconds,
as shown in Scheme 1, excessive hydrogen bubble effervescence and foam were formed,
and the copper template mixture changed to black, indicating the reduction of copper ions
confined in the liquid crystal template.

Nanomaterials 2023, 13, 129 3 of 19 
 

 

desorption isotherms, X-ray photoelectron spectroscopy, and scanning and transmission 

electron microscopy. The electrochemical hydrazine oxidation and sensing performance 

at the CuO nanosheet electrode in an alkaline solution was examined by electrochemical 

and impedance techniques, and evaluated against that of the bare-CuO that was deposited 

without the surfactant and was compared with the state-of-the-art copper-based-catalysts 

reported thus far. 

2. Materials and Methods 

2.1. Materials and Chemicals 

Copper (II) nitrate trihydrate Cu(NO3)2·3H2O, the (Brij® 58) polyethylene glycol octa-

decyl ether, hydrazine 80%, uric acid (UA), sodium chloride (NaCl), cysteine, sodium bo-

rohydride, NaBH4, and Nafion (5% in a mixture of water and lower aliphatic alcohols), 

were purchased from Sigma Aldrich (Dorset, UK). Isopropanol (>99%) was procured from 

WINLAB (Leicester, UK) and potassium hydroxide (KOH, 85%, pellets) was bought from 

LOBA Chemie (Mumbai, India). All of the solutions in the experiment were prepared us-

ing deionized water obtained from a Milli-Q ultrapure water purification system. Real 

samples were obtained from Nova Company (Riyadh, KSA) and using tap water from the 

laboratory. 

2.2. Synthesis of CuO Nanosheets (CuO-NS) 

The CuO nanosheet catalyst was prepared at room temperature (25 °C) using the 

approach of the foam-surfactant dual template (FSDT) employing the reducing agent of 

sodium borohydride (NaBH4). In the FSDT approach, the copper ions confined in the in-

testinal aqueous domain of the Brij@58 hexagonal LCT are chemically reduced by the 

NaBH4, which concurrently produces foam of hydrogen bubbles that simultaneously ex-

foliate and scale off the deposited catalyst layers [51,55]. In brief, as shown in Scheme 1, 

the copper liquid crystal template (Cu-LCT) mixture was prepared by physically adding 

5.0 g of a 0.5 M copper (II) nitrate solution, 2.0 g of the melted non-ionic Brij® 58 surfactant, 

and 5.0 g of distilled water in a glass beaker. Using an ultrasonic probe, the template mix-

ture was sonicated until a homogenous solution was obtained (15.0 min) and then trans-

ferred to a Petri dish. Then, the surfactant to water ratio was adjusted at 40% via evapo-

ration of the excess water in an open atmosphere at 25 °C to form a thin layer of hexagonal 

liquid crystal copper template. Then, the gel template in the Petri dish was sprayed with 

an excess of sodium borohydride (1.0 M) reducing agent. After a few seconds, as shown 

in Scheme 1, excessive hydrogen bubble effervescence and foam were formed, and the 

copper template mixture changed to black, indicating the reduction of copper ions con-

fined in the liquid crystal template. 

 

Scheme 1. The foam-surfactant dual template synthesis (FSDT) synthesis approach of CuO-NNs 

using a sodium borohydride (NaBH4) reducing agent. 

  

                                    

 

 

   

NaBH4 spray 

Foam- surfactant synthesis Double templates (FSDT) with 

CuO-NSs 

Copper liquid crystal template  

Scheme 1. The foam-surfactant dual template synthesis (FSDT) synthesis approach of CuO-NNs
using a sodium borohydride (NaBH4) reducing agent.

2.3. Characterisation of CuO Nanosheets

The crystal structure and the surface composition of the as-synthesised CuO nanosheets
and bare-CuO were analysed by X-ray diffraction (XRD, D2 Phaser Bruker (Berlin, Germany)
fitted with Cu Kα radiation (λ = 1.5418 Å), and an X-ray photoemission spectroscopy anal-
ysis was conducted with an Escalab 250 spectrometer (XPS) from Thermo Fisher Scientific
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(Oxford, UK). The CuO nanosheets’ and bare-CuO catalysts’ morphology and nanoar-
chitecture were analysed using a scanning (SEM, JSM-7600F; JEOL, Tokyo, Japan) and
transmission electron microscope integrated with an electron diffraction (SAED) analysis
unit (TEM, JEM 2100F-JEOL, Tokyo, Japan), separately. The specific surface area and the
porosity of the CuO nanosheets were determined with a V-Sorb 2800 Porosimetry Analyser
(Microtrac Retsch, Haan, Germany) using the Brunauer–Emmett–Teller (BET) technique.

The cyclic voltammetry (CV), chronoamperometry (CA), and impedance (EIS) analysis
electrochemical characterisations techniques were performed using the Metrohm Auto-
Lab (PGSTAT302N, Utrecht, Netherlands) Potentiostatic/Galvanostat. A three-electrode
electrochemical cell was used for the electrochemical measurements with a platinum sheet
(0.5 × 0.5 cm2) and Ag/AgCl as a counter and reference electrode, respectively. The work-
ing electrode was made of carbon paper (CP, SIGRACET® GDL 24BC, 1.0 cm × 1.0 cm2)
modified with catalyst ink and the KOH solution as the electrolyte. For the electrochemical
characterisation, the ink of the CuO nanosheets was obtained by sonicating 10 mg of the
CuO-NS or bare-CuO catalyst, 10 µL of Nafion, 0.5 mL of isopropanol, and 0.5 mL of
deionized water in a glass vial for 30 min using an ultrasonication probe.

3. Results and Discussion
3.1. Characterisation of the CuO Nanosheet Structure

The crystal structure and purity of the as-prepared CuO nanosheets were investigated
using X-ray diffraction (Cu-Kα radiation). Figure 1a shows the XRD pattern, which reveals
the orientation and crystalline nature of the copper oxide nanosheets. The peaks located
at 2θ values of 31.90◦, 35.21◦, 38.5◦, 48.53◦, 53.29◦, 58.07◦, 61.25◦, 65.90◦, 67.82◦, 72.17◦,
and 74.87◦ were indexed as the (110), (002), (111), (202), (020), (202), (113), (022), (310),
(311), and (222) planes, respectively. The above-mentioned diffraction peaks were matched
well with the crystalline monoclinic crystal structure of CuO (ICSD:98-006-9757). These
results indicate that the synthesised CuO nanosheets were in their pure form and free of
any impurities. Moreover, the average size of the CuO nanosheets estimated from the XRD
profile and using Debye–Scherrer’s equation was found to be 10.36 nm [27,29]. The XRD of
the bare-CuO in Figure S1 showed similar results, which indicate that the surfactant use did
not affect the CuO crystal structure growth.

Figure 1b shows the N2 adsorption and desorption isotherms, as well as the pore size
distribution curves (inset) of the bare-CuO and CuO-NS catalysts. The adsorption–desorption
isotherm curve of the CuO-NS catalyst revealed typical type IV isotherms with a hysteresis
loop of type H1 in the p/po region of 0.4–1.0, which could be attributed to the N2 gas
capillary condensation within the mesoporous structure and the slit pores in-between the
nanosheets, indicating that the catalysts had a mesoporous architecture [57].

Moreover, the N2 isotherm showed that the bare-CuO exhibited a very narrow hys-
teresis loop with a smaller surface area (20.55 m2/g), while CuO-NS had wider hysteresis
and a higher capillary uptake at a lower pressure and specific surface area (39.42 m2/g),
thus signifying the presence of higher mesoporosity. In addition, as shown in the inset of
Figure 1b, the pore size distribution curve obtained by the BJH method further confirmed
the development of many irregular mesopores within the range of 10–70 nm in the case of
the CuO-NS catalyst.

The composition and surface functionality of the as-prepared CuO-NSs were further
investigated by XPS analysis. The survey spectrum in Figure S1 reveals the main elemental
composition of the O 1s and Cu 2p peaks, in addition to that of the C 1s originating from
the background and/or the surfactant contamination [58,59]. As shown in Figure 1c, the
narrow deconvoluted core spectra of Cu 2p showed that the peaks located at 934.9 eV and
954.3 eV could be assigned to Cu 2p3/2 and Cu 2p1/2, respectively [57,58]. The binding
energy separation between the Cu 2p3/2 and the Cu 2p1/2 peaks was 19.9 eV, which is
characteristic of CuO. Meanwhile, the intense satellite features at 943.2 eV and 963.1 eV
could be ascribed to the Cu 2p3/2 and Cu 2p1/2 in CuO, respectively. The deconvoluted
core spectra of the O 1s displayed in Figure 1d shows two peaks at 531.2 and 530.1 eV. The
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low binding energy peak at 530.1 eV could be attributed to the lattice oxygen within the
metal oxide (CuO = O, 530.1 eV), whereas the high binding energy peak at 531.2 eV might
be assigned to the low coordination surface oxygen species and surface oxygen defects,
which could improve the intrinsic catalytic activity of the CuO catalyst [57,58].
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Figure 1. (a) The XRD pattern and crystalline nature of the copper oxide nanosheets, (b) the N2

adsorption–desorption isotherms and the pore size distribution curves (inset) of the bare-CuO and
CuO-NS catalysts, (c) the narrow XPS deconvoluted core spectra of Cu 2p, and (d) the deconvoluted
XPS core spectra of the O 1s orbital.

The surface morphology of the CuO-NS catalyst was characterised using scanning
electron (SEM) and transmission electron microscopy (TEM) to determine its nanoarchitec-
ture morphology. Figure 2a,b shows the SEM images of the as-synthesised nanostructured
CuO-NS taken at different magnifications, revealing the morphology of the overlapped
and aggregated nanosheets, as well as the interstitial mesoporous channels with various
nanostructure sizes that facilitate the mass transport diffusion of the analyte molecules. In
contrast, Figure 2c shows the TEM image of CuO-NS, which confirms the 2D nanosheet
morphology of the CuO catalyst. The TEM image revealed the presence of bright and
dark areas, which corresponded to the individual and stacked nanosheet structures, re-
spectively. The dark areas indicate the regions with stacking between sheets in different
crystallographic directions.
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Figure 2. Surface morphology of the CuO-NS catalyst. (a,b) SEM images of the as-synthesised
nanostructured CuO-NS taken at different magnifications. (c) TEM image of the CuO-NS catalyst.
(d) HR-TEM of the CuO-NS lattice fringes and the inset shows the transmission electron diffraction
pattern image.

The lattice fringe could be seen in the HR-TEM image shown in Figure 2d. The lattice
spacing between the adjacent planes was approximately 0.25 nm, corresponding to the distance
between the (111) crystal plane of the CuO diffraction pattern (ICSD:98-006-9757). Further-
more, Figure S3a shows the SAED pattern of the CuO nanosheets that reveal the presence of
the lattice planes of the monoclinic CuO nanosheet crystal structure (ICSD:98-006-9757). The
SAED pattern confirmed the good crystallinity of the CuO nanosheets, which was in good
agreement with the XRD results. Moreover, for comparison, Figure S3b shows the TEM
characterisation image of the bare-CuO catalyst deposited in the absence of the surfactant.
The TEM image shows that the bare-CuO had a thick deposit of bulky micro-particles with
the absence of a nanosheet morphology.

3.2. Electrochemical Characterisation of CuO-NS Electrode

The electrocatalytic activity of CuO-NS in comparison with that of the bare-CuO
electrodes towards the hydrazine oxidation and sensing was examined using the cyclic
voltammetry technique. Figure 3a shows the results of the cyclic voltammetry conducted
at a scan rate of 50 mV/s and in the potential range of −0.2 to 0.8 V versus Ag/AgCl of
CuO-NS in comparison with those of the bare-CuO loaded on the carbon paper electrode in
the absence and presence of 20 mM hydrazine dissolved in 1.0 M KOH as a supporting
electrolyte. In the absence of hydrazine, a very small current density was observed at the
bare-CuO electrode (black line) up to a potential of 0.8 V versus Ag/AgCl. In contrast, the
CuO-NS electrode in the absence of hydrazine showed significant current density increases
around the potential of 0.6 V versus Ag/AgCl (green line), indicating the commencement
of the oxygen evolution reaction at the CuO-NS catalyst in the 1.0 M KOH solution. Upon
the addition of 20 mM hydrazine to the 1.0 M KOH electrolyte, the CuO-NS electrode
exhibited an enormous oxidation peak (blue line) at the onset potential of −0.03 V and the
peak potential of 0.35 V versus Ag/AgCl, which could be attributed to the oxidation of the
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added hydrazine. The oxidation peak current reached 15.60 mA/cm2 during the first cycle
and stabilized at a slightly lower current of 14.70 mA/cm2 during the successive cycles. In
contrast, the bare-CuO electrode showed a considerably lower electrocatalytic response to
the hydrazine oxidation at a more positive potential of 0.55 V versus Ag/AgCl (red line).
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Figure 3. (a) Cyclic voltammetry at a scan rate of 50 mV/s of CuO-NS (250 µg) in comparison to those
of the bare-CuO catalyst loaded on the carbon paper electrode in the absence and presence of 20 mM
hydrazine dissolved in 1.0 M KOH solution. (b) Tafel plots of CuO-NS and bare-CuO electrodes
obtained by fitting the corresponding linear sweep voltammetry results to the Tafel equation. (c) The
Nyquist plots of the CuO-NS (250 µg) compared with bare-CuO-NS electrodes in the 1.0 M KOH
solution containing 10-mM hydrazine at an applied potential of 0.15 V vs. Ag/AgCl and in the
frequency range from 0.01 to 105 Hz and the inset is the fitted equivalent circuit. (d) CVs of the
CuO-NS catalyst with different loadings ranging from 50 to 300 µg as recorded at 50 mV/s in 20 mM
hydrazine dissolved in the 1.0 M KOH solution; the inset is the corresponding correlation between
the hydrazine oxidation peak current density and the catalyst loading.

The hydrazine oxidation kinetics of the CuO-NS compared with the bare-CuO electrode
was investigated by Tafel plots obtained by fitting the linear cyclic voltammetry results to
the Tafel equation, as shown in Figure 3b. It can be noted that the Tafel slope of the CuO-NS
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electrode (125 mV/dec) was significantly much lower than in the case of the bare-CuO
electrode (323 mV/dec), which indicates much faster charge transfer kinetics and that less
overpotential is required to oxidized hydrazine when using the CuO-NS electrode.

Electrochemical impedance spectroscopy (EIS) was employed to confirm the facili-
tation of the electron transfer kinetics at the CuO-NS electrode. Figure 3c displays the
Nyquist plots of CuO-NS compared with the bare-CuO-NS electrodes in the 1.0 M KOH
solution containing 10 mM hydrazine and in the frequency range from 0.01 to 105 Hz
at an applied potential of 0.15 V versus Ag/AgCl. The CuO-NS electrode exhibited a
smaller diameter semicircle at a low frequency than the bare-CuO electrode, indicating that
the CuO-NS electrode was considerably less resistive to the charge transfer. The inset of
Figure 3c shows the equivalent circuit that fits the corresponding Nyquist diagrams, where
Rs is the solution resistance and the Rct represents the hydrazine oxidation charge transfer
resistance, and Q1 is the double electric layer capacitance of the CuO-NS electrode. The
Warburg impedance (W) due to the charge transfer at the catalyst/electrolyte interface was
observed in the case of the diffusion-controlled reaction. The corresponding impedance
parameters obtained from the fitting circuit are reported in Table 1; it can be observed that
the CuO-NS electrode showed a considerably lower Rct value (8.17 Ω) than the bare-CuO
electrode (52.72 Ω), further evidence that the charge transfer occurred considerably faster
at the CuO-NS electrode.

Table 1. The equivalent circuit parameter values of the ISE spectra of hydrazine oxidation at the
CuO-NSs and bare-CuO electrodes.

Element CuO -NSs Bare-CuO

Rs (Ω) 1.18 1.96

Q1 (mF) 64.4 0.409

RCT (Ω) 8.17 52.72

W1 (Ω/cm2) 0.70691 0.098586

The hydrazine oxidation catalytic current was significantly enhanced with the increase
in the CuO-NS catalyst loading, and as shown in Figure 3d, the CVs of the CuO-NS catalyst
with different loadings ranging from 50 to 300 µg were obtained at 50 mV/s in 20 mM
hydrazine dissolved in the 1.0 M KOH solution. As shown in the inset in Figure 3d, the
relationship between the hydrazine oxidation peak current density and the catalyst loading
exhibited a volcanic plot with a gradual increase in the oxidation peak current as the
catalyst loading increased, reaching a maximum oxidation peak current of 14.80 mA/cm2

at a catalyst loading of around 250 µg. The loading effect trend could be related to the
increase in the available electrochemical active sites of the CuO-NS catalyst with an increase
in the catalyst loading. In addition, the decrease in the hydrazine oxidation current above a
catalyst loading of >250 µg could be attributed to the retardation of the electron transfer
and the active ion diffusion within the thicker catalyst film.

The cyclic voltammetry and impedance results indicate that the CuO-NS electrode
showed a significant oxidation performance and faster charge transfer during the elec-
trocatalytic hydrazine oxidation reaction compared with the bare-CuO electrode, which
could be related to the nanosheet architecture with an enhanced surface area and electron
transfer kinetics [60–63]. Based on recent studies, the mechanism of hydrazine oxidation
by the electrocatalytic process significantly depends on the electrode surface nature and
the electrolyte solution [60–63]. In the case of the CuO electrode in an alkaline solution, the
mechanism could be proposed to proceed via the irreversible reactions of the hydrazine
oxidation at the CuO electrode where the formed intermediate complex of hydrazine in
Equation (1) is oxidized at the CuO-NSs surface, producing the N2 gas as described by
Equations (2) and (3).

N2H4 + 2OH− → [HO−N2H4−OH]2− (1)
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[HO−N2H4−OH]2− + 4CuO→ 2Cu2O + 2H2O + 2OH− + N2 (2)

2Cu2O + 4OH− → 4CuO + 2H2O + 4e− (3)

The effect of the hydrazine concentration was also investigated using linear sweep
voltammetry (LSV) at 50 mV/s, using 250 µg of the CuO-NS electrode, as shown
in Figure 4a.
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Figure 4. (a) Linear sweep voltammetry at 50 mV/s for the effect of the hydrazine concentration
in 1.0 M KOH using 250 µg of the CuO-NS electrode. (b) Correlation between the oxidation peak
current and the hydrazine concentration of CuO-NS electrode. (c) Effect of the scan rates of the
hydrazine oxidation at the CuO-NS (250 µg) electrode from 10 to 400 mV/s in the 1.0 M KOH solution
containing 20.0 mM hydrazine. (d) Relationship of the oxidation peak currents against the square
root of the potential scan rates.

The CV results show that the hydrazine anodic oxidation current at the CuO-NS
electrode increased with the increase in hydrazine concentration (from 5.0 to 45 mM)
accompanied by the peak potential shift to a higher potential from around 0.250 to 0.500 V
versus Ag/AgCl as the hydrazine concentration increased. Moreover, the correlation
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between the oxidation peak current and the hydrazine concentration showed two regions
of the linear range, as shown in Figure 4b. The first region’s concentration ranged from
1.0 to 5.0 mM, and the second region’s concentration ranged from 10.0 to 45.0 mM with
an oxidation current sensitivity of 0.76 mA/cm2 mM and 1.06 mA/cm2 mM, respectively,
indicating a high electrocatalytic activity of CuO-NS towards the hydrazine oxidation
because of the nanosheet architecture with a high surface area and the presence of a
porous network that facilitated the hydrazine diffusion [60–63]. Moreover, the presence of
two dependent linear equations for the correlation between the oxidation peak current and
the hydrazine concentration could be related to the variation in the hydrazine/hydroxide
ratio and the adsorption competition between hydrazine/hydroxide ions as well as the
oxidation mechanism and rate-determining step, in addition to the N2 gas formation at
the catalytic active sites of the CuO-NS catalyst [60–65]. Figure 4c shows the effect of
the scan rates of the hydrazine oxidation at the CuO-NS electrode where the CVs were
recorded at different potential scan rates from 10 to 400 mV/s in the 1.0 M KOH solution
containing 20.0 mM hydrazine. Note that the oxidation peak currents linearly increased
against the square root of the potential scan rates (υ1/2) with the regression equation
(Ipeak = 1.57x + 4.16 and regression coefficient (R2) = 0.999), as shown in Figure 4d. This
behaviour was consistent with the hydrazine oxidation at CuO-NS that occurred via the
four- electron transfer and mainly via a diffusion-controlled process [60–63].

To optimize the electrocatalytic sensing activity of the hydrazine oxidation and sens-
ing at the CuO-NS electrode surface, the effects of the applied oxidation potential and
the hydroxide electrolyte concentration were investigated using a chronoamperometric
technique. Figure 5a shows the chronoamperometry responses of the CuO-NS (250 µg)
electrode measured at various applied potentials (from 0.15 to 0.35 V versus Ag/AgCl)
to investigate the sensing electroactivity of the CuO-NS electrode towards the successive
addition of 1.0 mM hydrazine in the 1.0 M KOH solution and under stirring conditions.
In general, the chronoamperometric response of CuO-NS compared with the bare-CuO
electrodes showed that the oxidation current at all of the applied potentials gradually in-
creased upon the stepwise addition of the hydrazine analyte. The correlation plots between
the oxidation current and the hydrazine concentration are shown in Figure 5b, where the
oxidation current exhibited a linear response within the studied hydrazine concentration
range (from 1.0 to 7.0 mM). The line slopes (hydrazine sensitivity) gradually increased
as the applied potential increased and reached a maximum of up to 0.86 mA/cm2 mM
at the applied potential of 0.30 V versus Ag/AgCl, which was significantly higher than
those at the other potentials and approximately eight times higher than those in the case of
the bare-CuO electrode (slope = 0.10 mA/cm2 mM). Therefore, 0.30 V was chosen as the
optimum potential in the following experiments for the further quantitative determination
of hydrazine.

The electrocatalyst activity of the CuO electrode towards hydrazine oxidation was
highly dependent on the OH− concentration under the alkali condition [66], and to obtain
the optimal hydroxide concentration, Figure 5c shows the effect of the OH− concentration
on the chronoamperometry profiles of CuO-NS (250 µg) electrode upon the addition of
different hydrazine concentrations at an applied potential of 0.30 V versus Ag/AgCl. All
of the chronoamperometry curves for the different KOH concentrations exhibited a rapid
current increase upon the addition of hydrazine, as shown in Figure 5c. The plots of the
hydrazine oxidation current as a function of the hydrazine concentration in the 0.1, 0.5, and
1.0 M KOH solution are shown in Figure 5d. It was observed that in the 1.0 M KOH solution
that the CuO-NS electrode displayed the maximum hydrazine sensing performance with a
higher sensitivity (0.860 mA/cm2) and linearity, with a high correlation coefficient than in
the 0.1 M (0.358 mA/cm2) and 0.5 M (0.594 mA/cm2) KOH solutions. Hence, 1.0 M KOH
was used as the optimal solution for hydrazine sensing in this study.
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Figure 5. (a) Chronoamperometry responses of the CuO-NS (250 µg) electrode measured at various
applied potentials (from 0.15 to 0.35 V vs. Ag/AgCl) after the successive addition of 1.0 mM
hydrazine doses in the 1.0 M KOH solution and under a stirring condition. (b) Relationship of the
hydrazine oxidation current at various applied potentials against the hydrazine concentration in a
range from 1.0 to 7.0 mM. (c) The effect of the KOH concentration on the chronoamperometry profiles
of CuO-NS (250 µg) upon the addition of different hydrazine concentrations at an applied potential
of 0.30 V versus Ag/AgCl. (d) Plots of the hydrazine oxidation current as a function of the hydrazine
concentration in the 0.1, 0.5, and 1.0 M KOH solutions.

The enhanced electrochemical activity of the CuO-NS electrode towards the hydrazine
oxidation at various concentrations could be used to achieve high detection sensitivity,
relatively wide linear ranges, and a low limit of detection (LOD) of the hydrazine ana-
lyte. Figure 6a shows the chronoamperometry response of the CuO-NS compared with
bare-CuO electrodes at a constant applied potential of 0.30 V and with various injected low
concentrations of hydrazine (from 0.025 to 2.5 mM) and under continuous stirring. The
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CuO-NS electrode exhibited a significantly larger hydrazine oxidation current and shorter
time response of less than 3 s compared with the bare-CuO electrode, which indicated the
highly enhanced electrocatalytic activity and rapid response time of CuO-NS under the
lower concentration of hydrazine. In addition, Figure 6b shows that the CuO-NS sensor
displayed more than ten times higher hydrazine sensitivity and a better linear relationship
(1.47 mA/cm2 mM, (R2) = 0.998) in the concentration range of 0.25 to 2.5 mM of hydrazine
than the bare-CuO electrode (0.11 mA/cm2 mM, (R2) = 0.996). The limit of detection (LOD)
could be calculated as follows [66]:

LOD = 3 σ/S (4)

where σ is the background current standard deviation before hydrazine addition and S
is the slope of the calibration plot of hydrazine. The achieved limit of detection (LOD) of
hydrazine at the CuO-NS electrode reached 15 µM, which was significantly lower than
that of the different nanostructure electrode materials reported in the literature [60–63].
Table 2 summarises the hydrazine sensitivity, linear range, and limit of detection (LOD)
for the other electrode materials reported in the literature. The CuO-NS sensor showed
a significantly higher sensitivity (1.47 mA/cm2 mM) and wider linear range from 0.025
to 2.5 mM concentration, which made the CuO-NSs catalyst have the potential to detect
a relatively low hydrazine concentration. In addition, the CuO-NS catalyst was easy to
fabricate using the one-pot synthesis approach of the foam-surfactant dual template (SFDT)
under ambient conditions.
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Figure 6. (a) Chronoamperometry curves of the CuO-NS (250 µg) compared with bare-CuO electrodes
at a constant applied potential of 0.30 V and with various injected low concentrations of hydrazine
(from 0.025 to 2.5 mM) and under continuous stirring. (b) Relationship between the hydrazine
oxidation current at the CuO-NS electrode and the hydrazine concentration in comparison with the
bare-CuO electrode.

3.3. Selectivity and Stability of the CuO-NS Sensor

Selectivity is also an important factor for hydrazine sensing; hence, an interference
analysis of the CuO-NS electrode towards various interferences was conducted using
chronoamperometry at the applied potential of 0.30 V versus Ag/AgCl, as shown in
Figure 7a. The selectivity of the CuO-NS electrode was measured with the addition of a
10 mM solution of each of the common interferences considered, such as uric acid, urea,
cysteine, and NaCl. In this context, a solution of 1.0 M KOH was initially used, followed
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by the successive addition of 1, 2, and 4 mM hydrazine, and then a 10 mM concentration
of the interference of uric acid, urea, cysteine, and NaCl were stepwise added to the test
solution under continuous magnetic stirring. It was seen that the initial addition of the
hydrazine doses led to a substantial current increase, while the stepwise additions of the
interferences of uric acid, urea, cysteine, and NaCl produced almost negligible current
responses. Moreover, the further stepwise addition of 1, 2, and 4 mM hydrazine produced
a current response enhancement similar to that obtained during the first-time addition of
hydrazine, implying that the electrode showed excellent selectivity for hydrazine detection.
For the hydrazine electrochemical oxidation stability and efficiency study at the CuO-NS
electrode, Figure 7b shows the current–time signal response during prolonged oxidation
at an applied potential of 0.30 V versus Ag/AgCl and after the successive addition of
5.0 mM and 10 mM hydrazine to 1.0 M KOH under magnetic stirring. The results show
that the oxidation current density signal was extremely stable for more than 1.0 h with a
negligible current change observed upon the addition of either the low (5.0 mM) or the high
(10.0 mM) concentration regime of hydrazine.

Table 2. Compared performances of different types of electrode material for hydrazine sensitivity,
linear range, and limit of detection.

Electrode Material Applied
Potential (V)

Sensitivity
(µA/cm2 mM)

Linear Range
(µM)

The
Detection

Limit (µM)
Reference

CoOOH nanosheets 155 20–1200 20 [67]

ZnO NRs/Ag - ~105 0.01–98.6 - [68]

ZnCo2O4 0.55 ~0.5 100-600 0.2 [14]

CuO/OMC–GCE - 537 1–2.11 × 103 0.887 [18]

CuO/GCE - ~94 0.1–600 0.03 [50]

CuO/CNTs-rGO/GCE 0.45 ~4.0 1.2–430 0.2 [69]

CuO NA/ GCE 0.0 ~30 0.2–20 0.17 [62]

Cu2O-nanoarray 0.0358 ~0.02 0.1–1221 0.15 [60]

Nano-CuO modified
GCE - ~8.0 50–2500 12 [63]

CuO-NSs/CP 0.30 1470 25–2500 15 This work

Figure 7c shows the long-term stability of the CuO-NS catalyst during storage for
30 days in the air, as investigated every 10 days, by the chronoamperometric response to
the hydrazine successive stepwise addition from 1.0 to 7.0 mM in the 1.0 M KOH electrolyte
under magnetic stirring and using a 250 µg loading of the CuO-NS catalyst. As shown in
Figure 7c, the CuO-NS electrode exhibited a very stable hydrazine oxidation current with
almost no change in the hydrazine sensitivity (average sensitivity of 0.87 mA/cm2 mM)
during frequent usage for 30 days and storage in air, as shown in the inset in Figure 7c,
which confirmed the high stability behaviour of the CuO-NS electrode during the sensing
of hydrazine.

3.4. Electrochemical Analysis of Real Samples

Next, the feasibility of the CuO-NS electrode in a real tap water sample for hydrazine
sensing collected from Riyadh and bottled drinking water supplied by Nova Company was
evaluated. The chronoamperometric response of the CuO-NS electrode (250 µg loading)
towards the hydrazine oxidation was observed with the successive stepwise addition
of 1.0 mM hydrazine to 50 mL of the 1.0 M KOH solution containing 5.0 mL from an
unknown concentration of the real samples and under magnetic stirring. The recovery
experiments were carried out through the standard addition method for the amperometry
current response at various concentrations of hydrazine in the real samples. As shown in
Table S1 (Supporting Information), the recovery results were in the range of 97–108% for
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tap water and 99–106% for bottled drinking water, indicating that the CuO-NS electrode is
a promising electrode for hydrazine determination in real samples.
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Figure 7. (a) Chronoamperometry response of the CuO-NS (250 µg) electrode at an applied po-
tential of 0.30 V vs. Ag/AgCl and after the addition of 10 mM solution of uric acid, urea, cys-
teine, or NaCl interference and in the presence of 1, 2, or 4 mM hydrazine in 1.0 M KOH solution.
(b) Chronoamperometry signal response of the CuO-NS (250 µg) electrode at an applied potential of
0.30 V vs. Ag/AgCl during a prolonged oxidation period and after the successive addition of 5.0 mM
and 10 mM hydrazine to 1.0 M KOH under magnetic stirring. (c) Long-term chronoamperometry
curves of the CuO-NS catalyst after storage in air for 30 days, as investigated every 10 days, to
hydrazine oxidation through the successive stepwise addition of 1.0 to 7.0 mM hydrazine in the 1.0 M
KOH electrolyte and under continuous magnetic stirring, the inset shows the correlation between the
hydrazine oxidation current density and the concentration over 30 days of usage and store.

4. Conclusions

In summary, a nanosheet architecture of the copper oxide (CuO-NS) electrocatalyst
was obtained at room temperature via a versatile one-pot foam-surfactant dual template
(SFDT) synthesis approach using sodium borohydride (NaBH4) as a reducing agent. NaBH4
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chemically reduced the copper ions confined in the aqueous domain of the Brij®58 sur-
factant template, as well as in situ generating excessive hydrogen foam that exfoliate
the deposited copper oxide nanosheets. The as-prepared CuO-NS electrode exhibited
a remarkably enhanced electrocatalytic activity and sensitivity, low detection limit, and
excellent selectivity and stability towards hydrazine oxidation in an alkaline solution. The
electrochemical CuO-NS sensing activity for hydrazine oxidation revealed that the CuO
nanosheets had a superior sensing performance compared with the bare-CuO and reported
state-of-the-art catalysts due to the nanosheet architecture and active sites’ high surface
area, which facilitated the charge transfer as well as the mass transport diffusion of the hy-
drazine molecule. In addition, hydrazine detection in tap and bottled water using CuO-NS
electrodes was achieved with a good recovery, which confirmed the potential of CuO-NS
electrodes for practical use. The foam-surfactant dual template (SFDT) is a one-pot synthe-
sis approach that could be applied to produce a wide range of nanomaterials with various
compositions and nanoarchitectures at room temperature for enhancing electrochemical
catalytic reactions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano13010129/s1. Figure S1: XRD of CuO-NSs and
bare-CuO. Figure S2: The XPS survey spectrum of the as-prepared CuO-NS. Figure S3: (a) SAED
pattern of the CuO nanosheets and (b) TEM image of the bare-CuO catalyst deposited in the absence
of the surfactant. Table S1: Results for detection of hydrazine from different water sources injected
with a known concentration of hydrazine.
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