

Article Band Gap Tuning in Transition Metal and Rare-Earth-Ion-Doped TiO₂, CeO₂, and SnO₂ Nanoparticles

Iliana Apostolova ¹, Angel Apostolov ² and Julia Wesselinowa ^{3,*}

- ¹ University of Forestry, Kl. Ohridsky Blvd. 10, 1756 Sofia, Bulgaria
- ² University of Architecture, Civil Engineering and Geodesy, Hristo Smirnenski Blvd. 1, 1046 Sofia, Bulgaria
- ³ Sofia University "St. Kliment Ohridski", J. Bouchier Blvd. 5, 1164 Sofia, Bulgaria

* Correspondence: julia@phys.uni-sofia.bg

Abstract: The energy gap E_g between the valence and conduction bands is a key characteristic of semiconductors. Semiconductors, such as TiO₂, SnO₂, and CeO₂ have a relatively wide band gap E_g that only allows the material to absorb UV light. Using the s-d microscopic model and the Green's function method, we have shown two possibilities to reduce the band-gap energy E_g —reducing the NP size and/or ion doping with transition metals (Co, Fe, Mn, and Cu) or rare earth (Sm, Tb, and Er) ions. Different strains appear that lead to changes in the exchange-interaction constants, and thus to a decrease in E_g . Moreover, the importance of the s-d interaction, which causes room-temperature ferromagnetism and band-gap energy tuning in dilute magnetic semiconductors, is shown. We tried to clarify some discrepancies in the experimental data.

Keywords: TiO₂, CeO₂, SnO₂ nanoparticles; ion doping; band-gap energy; s-d model

Citation: Apostolova, I.; Apostolov, A.; Wesselinowa, J. Band Gap Tuning in Transition Metal and Rare-Earth-Ion-Doped TiO₂, CeO₂, and SnO₂ Nanoparticles. *Nanomaterials* **2023**, *13*, 145. https:// doi.org/10.3390/nano13010145

Academic Editors: Grzegorz Sulka, Agnieszka Brzózka, Magdalena Jarosz and Karolina Syrek

Received: 30 November 2022 Revised: 22 December 2022 Accepted: 24 December 2022 Published: 28 December 2022

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Dilute magnetic semiconductors (DMS)—bulk and nanostructures, doped with transition metal (TM) ions, have been intensively investigated in recent years due to the number of unusual electronic, magnetic, and optical properties. Recently, room-temperature ferromagnetism has been observed experimentally and theoretically in pure and ion-doped semiconducting TiO₂, SnO₂, and CeO₂ nanostructures due to uncompensated spins or to oxygen vacancies at the surface and doping effects [1–5]. It is known that TiO₂, SnO₂, and CeO₂ have a relatively wide band gap E_g (~3.2, ~3.6, and ~3 eV, respectively) [6–8], which limits their photocatalytic activity to the ultraviolet region of light. One effective way to overcome these problems is to modify the band gap of these compounds is doping with different elements, such as metals and nonmetals, which affect E_g in different ways. Transition metals, such as Co, Fe, Ni, and Mn, lead to decreasing E_g in TiO₂, SnO₂, and CeO₂ NPs, as observed experimentally by many authors [9–22], improving the absorption of visible light. It must be mentioned that Salah et al. [23] and Venugopal et al. [24] observed an increase in E_g in Mn-doped SnO₂ NPs, i.e., there are some discrepancies.

In order to reduce the electron-hole recombination and to shift the absorption wavelength to the desired visible region ($\lambda > 400$ nm), a decrease in the band gap of rare earth (RE)-doped TiO₂, CeO₂, and SnO₂ bulk and nanoparticles (NPs) has been considered, which improves the absorption of visible light [25–33]. Let us emphasize that there are also results with enhanced E_g by increasing the RE ion concentration [7,34]. Long et al. [33] obtained, in Sn-doped TiO₂, a minimum of the band gap E_g as a function of the doping concentration. The doping effects in Sn-doped TiO₂ are reported to lead to the red-shift or blue-shift of E_g [35,36] as well as in La-doped TiO₂ [34,37]. Again, there are some discrepancies. First-principle studies are used to analyze the optical properties of TiO₂, SnO₂, and CeO₂ doped with TM [38–43] and RE ions [44–47].

The aim of the present paper is using the s - d model to investigate on a microscopic level the band gap tuning of TM- and RE-doped TiO₂, SnO₂, and CeO₂ NPs, which are

promising candidates for applications of visible-light photocatalytic activities, and to explain the discrepancies reported in the experimental data of the band gap E_g values. We will show that lattice deformations, lattice parameters, and surface and doping effects are strongly correlated with E_g values.

2. Model and Method

The Hamiltonian, which describes the magnetic properties of TM and RE ion-doped DMS NPs, is the s-d(f) Hamiltonian proposed for ferromagnetic semiconductors [4]

$$H_{s-d} = H_{sp} + H_{el} + H_{sp-el}.$$
 (1)

 H_{sp} is the Heisenberg model of the d(f)-electrons in TM or RE metal ions

$$H_{sp} = -\sum_{i,j} x J_{ij} (S_i^+ S_j^- + S_i^- S_j^+ + 2S_i^z S_j^z) - \sum_i D_i (S_i^z)^2.$$
(2)

Here, S_i^+ , S_i^- , and S_i^z are the spin-operators for the localized spins at site *i*, J_{ij} is the magnetic exchange interaction between nearest neighboring sites *i* and *j*, D_i is the single-site anisotropy parameter, and *x* is the ion-doping concentration.

The Hamiltonian of the conduction band electrons H_{el} is observed after development according to Wannier functions and limited to one band taking into account interactions between different Wannier states [48]:

$$H_{el} = \sum_{ij\sigma} t_{ij} c^+_{i\sigma} c_{j\sigma} + \frac{1}{2} \sum_{ijkl,\sigma\sigma'} v(ijkl) c^+_{i\sigma} c^+_{j\sigma'} c_{k\sigma'} c_{l\sigma},$$
(3)

where t_{ij} is the hopping integral, v is the Coulomb interaction, and $c_{i\sigma}^+$ and $c_{i\sigma}$ are the Fermi-creation and -annihilation operators.

The operator H_{sp-el} couples the two subsystems—Equations (2) and (3)—by an intraatomic exchange interaction I_i :

$$H_{sp-el} = \sum_{i} x I_i \mathbf{S}_i \mathbf{s}_i.$$
(4)

The spin operators \mathbf{s}_i of the conduction electrons at site *i* can be expressed as $s_i^+ = c_{i+}^+ c_{i-}, s_i^z = (c_{i+}^+ c_{i+} - c_{i-}^+ c_{i-})/2$. The important role of the s-d interaction *I*, taken into account in our paper, is supported by many experimental data. Room-temperature ferromagnetism may be due to sp - d exchange interactions (as observed in optical spectra for DMS), which may be responsible for the ferromagnetic properties of the samples [49]. The carriers are spin-polarized to mediate the ferromagnetic ordering of the magnetic moments of transition metal ions doped into the semiconductor host lattice. Moreover, for example, Kaushik et al. [50] have shown that the optical spectra have a red shift with increasing Co in TiO₂ due to sp - d exchange interactions. The shift of E_g in Mn-doped SnO₂ NPs could also be attributed to the sp - d exchange interactions [51].

The band-gap energy E_g is defined by the difference between the valence and conduction bands:

$$E_g = \omega^+(\mathbf{k} = 0) - \omega^-(\mathbf{k} = \mathbf{k}_\sigma).$$
(5)

The electronic energies

$$\omega^{\pm}(k) = \epsilon_k - \frac{\sigma}{2} I \langle S^z \rangle + \sum_{k'} [v(o) - v(\mathbf{k} - \mathbf{k'})] \langle n_{k' - \sigma} \rangle \tag{6}$$

are observed from the Green's functions $g(\mathbf{k}\sigma) = \ll c_{k\sigma}; c_{k\sigma}^+ \gg, \sigma = \pm 1$. $\langle n_{k'\sigma} \rangle$ is the occupation number distribution. $\langle S^z \rangle$ is the magnetization calculated in our previous work [4].

For the approximate calculation of the Green's functions $g(\mathbf{k}\sigma)$, we use a method proposed by Tserkovnikov [52]. After a formal integration of the equation of motion for g_{ij} , one obtains

$$g_{ij}(t) = -i\theta(t)\langle [c_i^-; c_j^+]\rangle \exp(-i\omega_{ij}(t)t)$$
(7)

where

$$\omega_{ij}(t) = \omega_{ij} - \frac{i}{t} \int_{0}^{t} dt' t' \left(\frac{\langle [j_{i}(t); j_{j}^{+}(t')] \rangle}{\langle [c_{i}^{-}(t); c_{j}^{+}(t')] \rangle} - \frac{\langle [j_{i}(t); c_{j}^{+}(t')] \rangle \langle [c_{i}^{-}(t); j_{j}^{+}(t')] \rangle}{\langle [c_{i}^{-}(t); c_{j}^{+}(t')] \rangle^{2}} \right)$$
(8)

with the notation $j_i(t) = \langle [c_i^-, H_{interaction}] \rangle$. The time-independent term

$$\omega_{ij} = \frac{\langle [[c_i^-, H]; c_j^+] \rangle}{\langle [c_i^-; c_i^+] \rangle} \tag{9}$$

is the spin excitation energy in the generalized Hartree–Fock approximation. The timedependent term in Equation (8) includes damping effects.

3. Results and Discussion

For the numerical calculations of ion-doped TiO₂, we have taken the following model parameters: J = 0.31 meV, D = -0.1 meV, I = 60 meV, v = 0.3 meV, $F = 4 \text{ cm}^{-1}$, $R = -0.35 \text{ cm}^{-1}$, J(Co-Co) = 44 meV [53], J(Cu-Cu) = 30 meV [54], J(Fe-Fe) = 36.5 meV [55], J(Sm-Sm) = 0.3 meV [5], and J(Tb-Tb) = 1.5 meV [56], J(Er-Er) = 6 meV [57].

For example, the TiO₂ NP has a spherical shape and the Ti spins are situated into shells numbered by n = 1, ..., N, where n = 1 is the central spin and n = N—the surface shell, due to the changed number of next neighbors on the surface and to the fact that the reduced symmetry J_s on the surface is different from that in the bulk J_b , as well as due to different strains J_d in the doped states that are different to the undoped ones J_b . Moreover, J is inverse-proportional to the lattice parameters.

3.1. Size Dependence of the Band-Gap Energy

The first way to narrow the band gap E_g of TiO₂, SnO₂, and CeO₂ is to reduce the size of the pure undoped compound. In general, in TiO₂ the interaction between the Ti⁴⁺ ions (S = 0) is diamagnetic. However, on the surface of non-doped TiO₂ NPs due to uncompensated spins, there Ti³⁺ ions appear with $S \neq 0$, and thus magnetism is induced. Santara et al. [58] have observed that the reduction in the particle size leads to an increase in the lattice parameter, i.e., to an increase in tensile strain. In our model, this would lead to a decrease in the exchange interactions J_s on the surface compared to the bulk value J_b , i.e., $J_s < J_b$. In Figure 1, curve 1, the size dependence of E_g for TiO₂ is shown. It can be seen that E_g decreases with decreasing NP size, as reported experimentally by Chen et al. [29], Kalathil et al. [59], Garcia et al. [60], and Dette et al. [61]. This decrease in E_g with the decrease in NP size is valid for all three compounds and is shown in Figure 1, curves 2 and 3, for CeO₂ and SnO₂, respectively, in coincidence with the experimental data for CeO₂ NPs of Ansari et al. [8] and Tatar et al. [62] but not of Tamizhdurai et al. [63], as well as for SnO₂ NPs of Kamarulzaman et al. [64], but in disagreement with the result of Asaithambi et al. [65], who reported an increase in E_g with the decrease in the size of SnO₂ NPs.

Figure 1. Size dependence of the band-gap energy E_g for $J_s = 0.8J_b$, T = 300 K for a (1) TiO₂, (2) CeO₂, and (3) SnO₂ NP.

3.2. Ion-Doping Dependence of the Band-Gap Energy

3.2.1. Ion-Doping Dependence of the Band-Edge Energies

The conduction band (CB) in TiO₂ is dominated by the empty Ti *d*-band, whereas the valence band (VB) is composed of the occupied O p-band and Ti d-band. Fujisawa et al. [66] and Dorenbos [67] have observed the valence and conduction band energies in bulk TiO_2 to be VB = -7.25 (-7.2) eV and CB = -4.05 (-4.0) eV, respectively. For SnO₂, the reported values are for VB = -7.76 [67] (-8.2 eV [68]) and for CB = -4.14 [67] (-4.6 eV [68]). However, it must be noted that the data are not consistent. Ion doping can move the band edges of the VB and/or the CB. Next, we will study the influence of the doping with a TM, for example, Fe, and an RE ion, for example, Sm, on the VB and CB energies in bulk TiO₂ and SnO₂. The transition metal ions form a dopant level above the VB band of TiO_2 [10,37,69]. Fe³⁺ is known to create shallow trapping sites at the donor and acceptor levels [37]. This leads to a decrease in the band gap of Fe-doped TiO₂. In Figure 2, curve 1, the calculation from Equation (6), using the s-d model, VB energy as a function of the Fe concentration, is presented. It can be seen that there is an increase in the VB edge energy. This increase is due to the contribution from the lower Fe 3d band, which benefits the hole mobility in VB. As a result of Fe-doping, the electron transition energy from the VB to the CB decreases, which may induce a red shift at the edge of the optical-absorption range. A broadening of the VB in Fe-doped TiO_2 is reported by Wu et al. [11]. The incorporation of RE ions, for example, Sm, into the TiO_2 host modifies the band gap of TiO_2 with subband-gap energy levels of RE ions under the CB. These energy levels offer an electronic transition from the TiO_2 valence band to the empty RE ion sub-band-gap energy levels. From Figure 2, curve 2, a reduction in the calculated CB edge energy in bulk Sm-doped TiO₂ can be seen, as observed experimentally by Wei et al. [70], too. We also observed similar behavior for the dependence of the VB and CB energies of Fe (curve 3) and Sm (curve 4) doped bulk SnO₂.

Figure 2. Dependence of the (1,3) VB edge energy of Fe-doped and (2,4) of the CB edge energy of Sm-doped bulk TiO_2 and SnO_2 , respectively, on the ion-doping concentration *x*.

3.2.2. Transition-Metal-Ion (Co, Fe, Mn, and Cu) Doping Effect on the Band-Gap Energy

Next, we will study the band-gap energy E_g in a TM-doped TiO₂ NP, Ti_{1-x}TM_xO₂, for example, with Fe. E_g is calculated with our model from Equation (5). The difference of the ionic radius of Fe³⁺ (0.64 Å) to that of Ti⁴⁺ (0.68 Å) [71] means that the doped ion has a smaller ionic radius than the host ion, i.e., compressive strain appears. Our calculations show a decrease in the band-gap energy E_g with increasing Fe-doping concentration x in a TiO₂ NP (see Figure 3, curve 2), which is in agreement with other results [37,38,41,43,72]. The photochemical studies of George et al. [9] showed that band-gap energy E_g in Fe-doped TiO₂ was reciprocally tuned proportional to the Fe content. Shortly, we will discuss the importance of the s-d interaction. It must be noted that for simplification we only consider the *s* electrons and the s - d interaction. Due to the compressive strain, the exchange-interaction constants between the Ti³ and the Ti³⁺-Fe³⁺ ions lead to a small magnetization, which increases with increasing Fe-doping concentration. In order to explain the data strong decrease in the band gap by TM ion doping observed in the experimental data, we must take the large s-d interaction (see Equation (6)) into account, which strongly reduces the band-gap energy E_g .

In Figure 3 (curves 1 and 4), the band gap reduction in TiO₂ NP with other TM ions is demonstrated, for example, with Co²⁺ (0.745 Å) [50] and Cu²⁺ (0.87 Å) [65], whose ionic radii are larger than the radius of the host Ti ion, i.e., unlike in the Fe ion doping, tensile strain appears. We have to use the relation $J_d < J_b$. This means that the exchange interaction between the Ti³⁺ ions in the doped states would decrease compared to the undoped ones, and we would observe a small magnetization *M* that would slowly decrease with increasing Co or Cu dopants. It must be noted that the double exchange interaction energy between these TM ions and the Ti³⁺ ion is ferromagnetic and stronger than that between the Ti³⁺-Ti³⁺ ions; together with the strong s - d interaction, it can change the behavior of the magnetization *M*, *M*, and it can increase when the concentration *x* is raised. Thus, we again obtain a decrease in the band-gap energy E_g as observed in [10,50,73–75]. Let us emphasize that similar behavior is also reported in TM-doped CeO₂ [13,72,76–78]

and SnO₂ NPs [12,65,79]. In order to clarify the discrepancies by Mn ion doping, let us emphasize that, with our model, we obtain a reduced band gap in a Mn²⁺ (r = 0.8 Å)-doped SnO₂ NP using J(Mn-Mn) = 20.24 meV [12] (see Figure 3, curve 3). The ionic radius of the doped Mn²⁺ ion is smaller than that of the host Sn⁴⁺ ion (0.83 Å), i.e., again there appears a compressive strain; we have $J_d > J_b$. The substitution of Sn⁴⁺ by Mn²⁺ would require the formation of oxygen vacancies for charge balance, which is important for the RTFM and the band-gap reducing. It is advantageous to the photocatalytic activity, too [80]. Our result is in good qualitative agreement with that of Chatterjee et al. [81] for Mn-doped CeO₂ NPs, as well as with the behavior in Mn-doped TiO₂ [17,37] and Mn-doped SnO₂ NPs [14,82], but in disagreement with Refs. [23,24,83], which reported an increase in the band-gap energy E_g in Mn-doped SnO₂ NPs despite the observed compressive strain. In our opinion, these discrepancies are due to the experimental methodology of synthesis and of growth, to the method of doping, and to the method of annealing.

Figure 3. Dependence of the band-gap energy E_g for T = 300 K on the ion-doping concentration x in a TiO₂ NP (N = 20 shells) for (1) Co, (2) Fe, (3) Mn, and (4) Cu.

3.2.3. Rare Earth (Sm, Tb, and Er) Ion Doping Effects on the Band-Gap Energy

Next, we will study the observed decrease in the band-gap energy E_g in a RE (for example, Sm, Tb, and Er)-doped TiO₂, Ti_{1-x}RE_xO₂ NP. The ionic radius of Ti⁴⁺ is smaller than that of Sm³⁺ = 1.09 Å, and it is smaller than the ionic radius of the most RE ions. This means that there is a tensile strain. In Figure 4, we have calculated the band-gap energy E_g as a function of the ion-doping concentration for different RE ions. It can be seen that E_g decreases with increasing x. This is due to the reduction in the CB edge energy (see Figure 2, curve 2), reported also by Wei et al. [70]. Let us emphasize that the role of the intra-atomic s - d exchange interaction is very important here. The situation is in analogy with the doping with the TM ions Co and Cu. The tensile strain leads to changes in the exchange-interaction constants J_d between the Ti³⁺ ions in the doped states and the undoped ones J_b , i.e., we have to use $J_d < J_b$. It must be noted that if we only take this interaction into account, then we will observe a small decrease in the magnetization [5] and of the band gap E_g . However, taking into account the strong s - d interaction and the interaction between Ti and the doping ion, the magnetization M changes its behavior, and it increases with increasing doping concentration x. An increase in M with increasing

Sm and Nd ion doping is reported in [84]. Therefore, the band-gap energy E_g decreases (see Figure 4, curve 1) in coincidence with [70,85] but not with [20]. The reduction in the band-gap energy of Sm-doped TiO₂ indicates a red shift of the light adsorption. A decrease in E_g in Sm-doped CeO₂ NPs is also observed in [86–88], which can increase the photocatalytic activity. The decrease in E_g with increasing Tb (r = 1.06 Å) or Er (r = 1.03 Å) doping concentration is presented in Figure 4, curves 2 and 3, in coincidence with Lee et al. for Er-doped TiO₂ thin films [89]. We obtain within our s - d model a decrease in E_g in TiO₂, CeO₂, and SnO₂ with the most RE ions. Moreover, the band-gap energy E_g decreases with the increase in the s - d interaction *I*. Let us emphasize that there are some discrepancies by the RE ion doping. A decrease in E_g for small doping concentrations of different RE ions (for example, Sm, La, Dy, Nd, Eu, Er, and Tb) is also reported in TiO₂, CeO₂, or SnO₂ NPs [70,85,90–94]. However, some authors have observed an increase in the band-gap energy E_g in Sm [95] and Yb, Sc [45]-doped TiO₂ NPs, and Pr-doped CeO₂ NPs [96].

Figure 4. Dependence of the band-gap energy E_g for T = 300 K on the ion-doping concentration x in a TiO₂ NP (N = 20 shells) for (1) Sm, (2) Tb, and (3) Er.

It must be mentioned that pure bulk TiO₂ without defects and impurities is diamagnetic due to the presence of Ti⁴⁺, which has no unpaired electrons, making it diamagnetic. Doping TiO₂ with TM or RE ions in order to induce unpaired spins introduces the required magnetic ordering to this compound. Due to the exchange interactions between the substituted doping ions on the Ti sites, there appears a magnetic moment, a spontaneous magnetization *M* different from zero, which increases with the increase in the doping concentration *x* (see Figure 5). The observed RTFM in ion-doped bulk TiO₂ is reported in [43,46,69]. Moreover, E_g in TM- and RE-doped bulk TiO₂ decreases (see Figure 6) in good qualitative agreement with the experimental data [11,38,43]. This is also valid for the other two compounds CeO₂ and SnO₂.

Figure 5. Dependence of the magnetization *M* on the ion-doping concentration (1) Fe and (2) Sm for $J_s = 1.2 J_{br} T = 300$ K, for bulk TiO₂.

Figure 6. Dependence of the band-gap energy E_g on the doping concentration *x* in bulk TiO₂: (1) Co, (2) Fe, and (3) Sm, for $J_s = 1.2J_b$, T = 300 K.

4. Conclusions

In conclusion, narrowing the optical band gap of TiO₂, SnO₂, and CeO₂ NPs is essential for visible light applications. Using the s - d microscopic model, we have shown on a microscopic level two possibilities to reduce the band-gap energy E_g of CeO₂, TiO₂, or SnO₂ NPs, reducing the NP size and/or ion doping with TM (Co, Fe, Mn, and Cu) or RE (Sm, Tb, and Er) ions, which can improve the photocatalytic activity. Different strains appear due to the different ionic radii of the TM or RE ions and the host ions, which lead to lattice deformations. Furthermore, the discrepancies by the E_g behavior in Mn-doped and RE-doped TiO₂, CeO₂, and SnO₂ NPs are discussed. We have shown that the decrease in the band-gap energy E_g by RE doping is much smaller than that by TM doping. Therefore, one can conclude that the doping with TM ions is a more effective method than the doping with RE ions in order to reduce the band width E_g in CeO₂, TiO₂, and SnO₂ NPs and thus to enhance the photocatalytic activity.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Sundaresan, A.; Rao, C.N.R. Ferromagnetism as a Universal Feature of Inorganic Nanoparticles. Nano Today 2009, 4, 96. [CrossRef]
- Chang, G.S.; Forrest, J.; Kurmaev, E.Z.; Morozovska, A.N.; Glinchuk, M.D.; McLeod, J.A.; Moewes, A.; Surkova, T.P.; Hong, N.H. Oxygen-vacancy-induced ferromagnetism in undoped SnO₂ thin films. *Phys. Rev. B* 2012, *85*, 165319. [CrossRef]
- Kumar, S.; Kim, Y.J.; Koo, B.H.; Lee, C.G. Structural and Magnetic Properties of Co Doped CeO₂ Nano-Particles. *J. Nanosci.* Nanotechnol. 2010, 10, 7204–7207. [CrossRef] [PubMed]
- 4. Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. A comparative study of the magnetization in transition metal ion-doped CeO₂, TiO₂ and SnO₂ nanoparticles. *Phys. E* 2018, *99*, 202–207. [CrossRef]
- Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. Magnetic Properties of Rare Earth Doped SnO₂, TiO₂ and CeO₂ Nanoparticles. *Phys. Status Solidi B* 2018, 255, 1800179. [CrossRef]
- Zhang, Y.; Xu, X. Machine Learning Band Gaps of Doped-TiO₂ Photocatalysts from Structural and Morphological Parameters. ACS Omega 2020, 25, 15344–15352. [CrossRef]
- Nguyen, T.B.; Le, T.T.B.; Nguyen, N.L. The preparation of SnO₂ and SnO₂:Sb nanopowders by a hydrothermal method. *Adv. Nat. Sci. Nanosci. Nanotechnol.* 2010, 1, 025002. [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Lee, J.; Cho, M.H. Band Gap Engineering of CeO₂ Nanostructure by Electrochemically Active Biofilm for Visible Light Applications. *RSC Adv.* 2014, *4*, 16782–16791. [CrossRef]
- 9. George, S.; Pokhrel, S.; Ji, Z.; Henderson, B.L.; Xia, T.; Li, L.J.; Zink, J.I.; Nel, A.E.; Maedler, L. Role of Fe Doping in Tuning the Band Gap of TiO₂ for the Photo-Oxidation-Induced Cytotoxicity Paradigm. *J. Am. Chem. Soc.* **2011**, *133*, 11270–11278. [CrossRef]
- 10. Nebi, M.; Peker, D.; Temel, S. Deposition of Co doped TiO₂ films using sol gel spin coating technique and investigation of band gap. *AIP Conf. Proc.* **2018**, *1935*, 150004.
- 11. Wu, T.S.; Chen, Y.W.; Weng, S.C.; Lin, C.N.; Chang, C.; Soo, Y.L. Dramatic band gap reduction incurred by dopant coordination rearrangement in Co-doped nanocrystals of CeO₂. *Sci. Rep.* **2017**, *7*, 4715. [CrossRef] [PubMed]
- Sharma, A.; Varshney, M.; Kumar, S.; Verma, K.D.; Kumar, R. Magnetic properties of Fe and Ni doped SnO₂ nanoparticles. *Nanomater. Nanotechnol.* 2011, 1, 29–33. [CrossRef]
- 13. Kumari, K.; Aljawfi, R.N.; Vij, A.; Chae, K.H.; Hashim, M.; Alvi, P.A.; Kumar, S. Band gap engineering, electronic state and local atomic structure of Ni doped CeO₂ nanoparticles. *J. Mater. Sc. Mater. Electr.* **2019**, *30*, 4562–4571. [CrossRef]
- 14. Ungureanu, A.; Jitaru, I.; Gosnea, F. Mn-doped SnO₂ prepared by a sol-gel method. UPB Sci. Bull. Series B 2013, 75, 43.
- 15. Nakaruk, A.; Lin, C.Y.W.; Channei, D.; Koshy, P.; Sorrell, C.C. Fe-doped and Mn-doped titanium dioxide thin films. *J. Sol-Gel Sci. Techn.* **2012**, *61*, 175–178. [CrossRef]
- Deng, Q.R.; Xia, X.H.; Guo, M.L.; Gao, Y.; Shao, G. Mn-doped TiO₂ nanopowders with remarkable visible light photocatalytic activity. *Mater. Lett.* 2011, 65, 2051–2054. [CrossRef]

- 17. Chauhan, R.; Kumar, A.; Chaudhary, R.P. Structural and photocatalytic studies of Mn-doped TiO₂ nanoparticles. *Spectrochim. Acta Part A* **2012**, *98*, 256–264. [CrossRef]
- Sagadevan, S.; Chowdhury, Z.Z.; Johan, M.R.B.; Aziz, F.A.; Roselin, L.S.; Podder, J.; Lett, J.A.; Selvin, R. Cu-Doped SnO₂ Nanoparticles: Synthesis and Properties. *J. Nanosci. Nanotechnol.* 2019, *19*, 7139–7148. [CrossRef]
- Munir, S.; Shah, S.M.; Hussain, H.; Khan, R.A. Effect of carrier concentration on the optical band gap of TiO₂ nanoparticles. *Mater. Des.* 2016, 92, 64–72. [CrossRef]
- 20. Babu, M.H.; Dev, B.C.; Podder, J. Texture coefficient and band gap tailoring of Fe-doped SnO₂ nanoparticles via thermal spray pyrolysis. *Rare Metals* **2022**, *41*, 1332–1341. [CrossRef]
- Poudel, M.B.; Ojhab, G.P.; Akim, A.; Kim, H.J. Manganese-doped tungsten disulfide microcones as binder-free electrode for high performance asymmetric supercapacitor. J. Energy Storage 2022, 47, 103674. [CrossRef]
- Poudel, M.B.; Yu, C.; Kim, H.J. Synthesis of Conducting Bifunctional Polyaniline/Mn-TiO₂ Nanocomposites for Supercapacitor Electrode and Visible Light Driven Photocatalysis. *Catalysts* 2020, 10, 546. [CrossRef]
- Salah, N.; Habib, S.; Azam, A.; Ansari, M.S.; Al-Shawafi, W.M. Formation of Mn-Doped SnO₂ Nanoparticles Via the Microwave Technique: Structural, Optical and Electrical Properties. *Nanomater. Nanotechnol.* 2016, *6*, 1. [CrossRef]
- Venugopal, B.; Nandan, L.; Ayyachamy, A.; Balaji, V.; Amirthapandian, S.; Panigrahi, B.K.; Paramasivam, T. Influence of manganese ions in the band gap of tin oxide nanoparticles: Structure, microstructure and optical studies. *RSC Adv.* 2014, *4*, 6141. [CrossRef]
- Mehtab, A.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Rare earth doped metal oxide nanoparticles for photocatalysis: A perspective. *Nanotechn.* 2022, 33, 142001. [CrossRef]
- Rehani, D.; Saxena, M.; Solanki, P.R.; Sharma, S.N. Transition Metal and Rare-Earth Metal Doping in SnO₂ Nanoparticles. J. Supercond. Novel Magn. 2022, 35, 2573–2581. [CrossRef]
- Saqib, N.U.; Adnan, R.; Shah, I. A mini-review on rare earth metal-doped TiO₂ for photocatalytic remediation of wastewater. *Environ. Sci. Pollut. Res. Int.* 2016, 23, 15941–15951. [CrossRef]
- Chandran, D.; Nair, L.S.; Balachandran, S.; Babu, K.R.; Deepa, M. Band gap narrowing and photocatalytic studies of Nd³⁺ ion-doped SnO₂ NPs using solar energy. *Bull. Mater. Sci.* 2016, *39*, 27–33. [CrossRef]
- Chen, X.; Luo, W. Optical spectroscopy of rare earth ion-doped TiO₂ nanophosphors. J. Nanosci. Nanotechnol. 2010, 10, 1482–1494. [CrossRef]
- 30. Priyanka, K.P.; Tresa, S.A.; Jaseentha, O.P.; Varghese, T. Cerium doped nanotitania-extended spectral response for enhanced photocatalysis. *Mater. Res. Express* **2014**, *1*, 015003. [CrossRef]
- Song, L.; Zhao, X.; Cao, L.; Moon, J.-W.; Gu, B.; Wang, W. Synthesis Rare Earth Doped TiO₂ Nanorods and Their Application in the Photocatalytic Degradation of Lignin. *Nanoscale* 2015, 7, 16695–16703. [CrossRef] [PubMed]
- 32. Amritha, A.; Sundararajan, M.; Rejith, R.G.; Mohammed-Aslam, A. La-Ce doped TiO₂ nanocrystals: A review on synthesis, characterization and photocatalytic activity. *SN Appl. Sci.* **2019**, *1*, 1441. [CrossRef]
- Long, R.; Dai, Y.; Huang, B. Geometric and Electronic Properties of Sn-Doped TiO₂ from First-Principles Calculations. J. Phys. Chem. C 2009, 113, 650–653. [CrossRef]
- 34. Priyanka, K.P.; Revathy, V.R.; Rosmin, P.; Thrivedu, B.; Elsa, K.M.; Nimmymol, J.; Balakrishna, K.M.; Varghese, T. Influence of La doping on structural and optical properties of TiO₂ nanocrystals. *Mater. Character.* **2016**, *113*, 144–151. [CrossRef]
- Mahanty, S.; Roy, S.; Sen, S. Effect of Sn doping on the structural and optical properties of sol-gel TiO₂ thin films. *J. Cryst. Growth* 2004, 261, 77–81. [CrossRef]
- Lin, J.; Yu, J.C.; Lo, D.; Lam, S.K. Photocatalytic Activity of Rutile Ti_{1-x}Sn_xO₂ Solid Solutions. *J. Catal.* 1999, 183, 368–372.
 [CrossRef]
- Lin, C.Y.W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C.C. Multivalent Mn-doped TiO₂ thin films. *Phys. E* 2012, 44, 1969–1972.
 [CrossRef]
- Wang, Y.; Zhang, R.; Li, J.; Li, J.; Lin, S. First-principles study on transition metal-doped anatase TiO₂. *Nanoscale Res. Lett.* 2014, 9, 46. [CrossRef]
- Zhou, Z.; Li, M.; Guo, L. A first-principles theoretical simulation on the electronic structures and optical absorption properties for O vacancy and Ni impurity in TiO₂ photocatalysts. *J. Phys. Chem. Solids* 2010, 71, 1707–1712. [CrossRef]
- 40. Cai, X.; Zhang, P.; Wei, S.-H. Revisit of the band gaps of rutile SnO(2 and TiO₂: A first-principles study. *J. Semicond.* **2019**, *40*, 092101. [CrossRef]
- 41. Mendez-Galvan, M.; Celaya, C.A.; Jaramillo-Quintero, O.; Muniz, J.; Diaz, G.; Lara-Garcia, H.A. Tuning the band gap of M-doped titanate nanotubes (M = Fe, Co, Ni, and Cu): An experimental and theoretical study. *Nanoscale Adv.* 2021, *3*, 1382–1391. [CrossRef] [PubMed]
- 42. Chetri, P.; Saikia, B.; Choudhury, A. Exploring the structural and magnetic properties of TiO₂/SnO₂ core/shell nanocomposite: An experimental and density functional study. *J. Appl. Phys.* **2013**, *113*, 233514. [CrossRef]
- Begna, W.B.; Gurmesa, G.S.; Zhang, Q.; Geffe, C.A. A DFT+U study of site dependent Fe-doped TiO₂ diluted magnetic semiconductor material: Room-temperature ferromagnetism and improved semiconducting properties. *AIP Adv.* 2022, 12, 025002. [CrossRef]
- 44. Shi, H.; Hussain, T.; Ahuja, R.; Kang, T.W.; Luo, W. Role of vacancies, light elements and rare-earth metals doping in CeO₂. *Sci. Rep.* **2016**, *6*, 31345. [CrossRef] [PubMed]

- 45. Bian, L.; Song, M.; Suker, Z.; Zhao, X.; Dai, Q. Band gap calculation and photo catalytic activity of rare earths doped rutile TiO₂. *J. Rare Earths* **2009**, 27, 461–468. [CrossRef]
- Lamrani, A.F. Rare-earth-doped TiO₂ rutile as a promising ferromagnetic alloy for visible light absorption in solar cells: First principle insights. *RSC Adv.* 2020, 10, 35505. [CrossRef]
- 47. Xie, K.; Jia, Q.; Wang, Y.; Zhang, W.; Xu, J. The Electronic Structure and Optical Properties of Anatase TiO₂ with Rare Earth Metal Dopants from First-Principles Calculations. *Materials* **2018**, *11*, 179. [CrossRef]
- 48. Elk, K.; Gasser, W. Green's Function Method in the Solid State Physics; Akademie: Berlin, Germany, 1979; p. 61.
- Ohtsuki, T.; Chainani, A.; Eguchi, R.; Matsunami, M.; Takata, Y.; Taguchi, M.; Nishino, Y.; Tamasaku, K.; Yabashi, M.; Ishikawa, T.; et al. Role of Ti 3 d Carriers in Mediating the Ferromagnetism of Co:TiO2 Anatase Thin Films. *Phys. Rev. Lett.* 2011, 106, 047602. [CrossRef] [PubMed]
- 50. Kaushik, A.; Dalela, B.; Kumar, S.; Alvi, P.A.; Dalela, S. Role of Co doping on structural, optical and magnetic properties of TiO₂. *J. Alloy. Compd.* **2013**, 552, 274. [CrossRef]
- Sabri, N.S.; Deni, M.S.M.; Zakaria, A.; Talari, M.K. Effect of Mn Doping on Structural and Optical Properties of SnO₂ Nanoparticles Prepared by Mechanochemical Processing. *Phys. Proceedia* 2012, 25, 233–239. [CrossRef]
- 52. Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green's functions. Teor. Mat. Fiz. 1971, 7, 250. [CrossRef]
- 53. Scarrozza, M.; Vindigni, A.; Barone, P.; Sessoli, R.; Picozzi, S. A combined first-principles and thermodynamic approach to M-Nitronyl Nitroxide (M=Co, Mn) spin helices. *Phys. Rev. B* 2015, *91*, 144422. [CrossRef]
- Cheng, J.; Zhou, J.; Li, J.; Dong, P.; Wu, Z. Magnetism in Cu-Doped Rutile SnO₂ Semiconductor Induced by the RKKY Interaction. J. Supercond. Nov. Mat. 2014, 27, 581. [CrossRef]
- Adhikari, R.; Das, A.K.; Karmakar, D.; Rao, T.V.C.; Ghatak, J. Structure and magnetism of Fe-doped SnO₂ nanoparticles. *Phys. Rev. B* 2008, *78*, 024404. [CrossRef]
- 56. Peters, L.; Ghosh, S.; Sanyal, B.; van Dijk, C.; Bowlan, J.; de Heer, W.; Delin, A.; Marco, I.D.; Eriksson, O.; Katsnelson, M.I.; et al. Magnetism and exchange interaction of small rare-earth clusters; Tb as a representative. *Sci. Rep.* **2016**, *6*, 19676. [CrossRef]
- 57. Maeda, A.; Sugimoto, H. Intramolecular exchange interaction between two rare-earth ions, RE = Sm³⁺-Yb³⁺ and Y³⁺. *J. Chem. Soc. Faraday Trans.* **1986**, *82*, 2019–2030. [CrossRef]
- Santara, B.; Giri, P.K.; Imakita, K.; Fujii, M. Microscopic origin of lattice contraction and expansion in undoped rutile TiO₂ nanostructures. J. Phys. D 2014, 47, 215302. [CrossRef]
- 59. Kalathil, S.; Khan, M.M.; Ansari, S.A.; Lee, J.; Cho, M.H. Band gap narrowing of titanium dioxide (TiO₂) nanocrystals by electrochemically active biofilms and their visible light activity. *Nanoscale* **2013**, *5*, 6323–6326. [CrossRef]
- 60. Morales-Garcia, A.; Escatllar, A.M.; Illas, F.; Bromley, S.T. Understanding the interplay between size, morphology and energy gap in photoactive TiO₂ nanoparticles. *Nanoscale* **2019**, *11*, 9032–9041. [CrossRef]
- Dette, C.; Perez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO₂ anatase with a bandgap in the visible region. *Nano Lett.* 2014, 14, 6533–6538. [CrossRef]
- 62. Tatar, B.; Sam, E.D.; Kutlu, K.; Uergen, M. Synthesis and optical properties of CeO₂ nanocrystalline films grown by pulsed electron beam deposition. *J. Mater. Sci.* 2008, 43, 5102–5108. [CrossRef]
- Tamizhdurai, P.; Sakthinathan, S.; Chen, S.-M.; Shanthi, K.; Sivasanker, S.; Sangeetha, P. Environmentally friendly synthesis of CeO₂ nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite. *Sci. Rep.* 2017, 7, 46372. [CrossRef]
- Kamarulzaman, N.; Aziz, N.D.A.; Kasim, M.F.; Chayed, N.F.; Subban, R.H.Y.; Badar, N. Anomalies in wide band gap SnO₂ nanostructures. J. Solid State Chem. 2019, 277, 271–280. [CrossRef]
- Asaithambi, S.; Murugan, R.; Sakthivel, P.; Karuppaiah, M.; Rajendran, S.; Ravi, G. Influence of Ni Doping in SnO₂ Nanoparticles with Enhanced Visible Light Photocatalytic Activity for Degradation of Methylene Blue Dye. *J. Nanosci. Nanotechn.* 2019, 19, 1–9. [CrossRef]
- 66. Fujisawa, J.; Eda, T.; Hanaya, M. Comparative study of conduction-band and valence-band edges of TiO₂, SrTiO₃, and BaTiO₃ by ionization potential measurements. *Chem. Phys. Lett.* **2017**, *685*, 23–26. [CrossRef]
- 67. Dorenbos, P. The Electronic Structure of Lanthanide Impurities in TiO₂, ZnO, SnO₂, and Related Compounds. *ECS J. Solid State Sci. Techn.* **2014**, *3*, R19–R24. [CrossRef]
- Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. *Chem. Mater.* 2002, 14, 2812. [CrossRef]
- Kikoin, K.; Fleurov, V. On the nature of ferromagnetism in non-stoichiometric TiO₂ doped with transition metals. *J. Magn. Magn. Magn. Mater.* 2007, 310, 2097–2098. [CrossRef]
- 70. Wei, L.; Yang, Y.; Xia, X.; Fan, R.; Su, T.; Shi, Y.; Yu, J.; Lia, L.; Jiang, Y. Band edge movement in dye sensitized Sm-doped TiO₂ solar cells: A study by variable temperature spectroelectrochemistry. *RSC Adv.* **2015**, *5*, 70512–70521. [CrossRef]
- Zheng, X.; Li, Y.; You, W.; Lei, G.; Cao, Y.; Zhang, Y.; Jiang, L. Construction of Fe-doped TiO_{2-x} ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H₂S. *Chem. Eng. J.* 2022, 430 Pt 2, 132917. [CrossRef]
- Wu, H.-C.; Li, S.-H.; Lin, S.-W. Effect of Fe Concentration on Fe-Doped Anatase TiO₂ from GGA+U Calculations. *Intern. J. Photoen.* 2012, 2012, 823498. [CrossRef]

- 73. Akshay, V.R.; Arun, B.; Dash, S.; Patra, A.K.; Mandal, G.; Mutta, G.R.; Chanda, A.; Vasundhara, M. Defect mediated mechanism in undoped, Cu and Zn-doped TiO₂ nanocrystals for tailoring the band gap and magnetic properties. *RSC Adv.* 2018, *8*, 41994. [CrossRef] [PubMed]
- 74. Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S.J.; Bartlett, J.; Nolan, M.; Pillai, S.C. Cu-Doped TiO₂: Visible Light Assisted Photocatalytic Antimicrobial Activity. *Appl. Sci.* **2018**, *8*, 2067. [CrossRef]
- Khlyustova, A.; Sirotkin, N.; Kusova, T.; Kraev, A.; Titov, V.; Agafonov, A. Doped TiO₂: The effect of doping elements on photocatalytic activity. *Mater. Adv.* 2020, 1, 1193. [CrossRef]
- 76. Soni, S.; Vats, V.S.; Kumar, S.; Dalela, B.; Mishra, M.; Meena, R.S.; Gupta, G.; Alvi, P.A.; Dalela, S. Structural, optical and magnetic properties of Fe-doped CeO₂ samples probed using X-ray photoelectron spectroscopy. *J. Mater. Sci. Mater. Electr.* 2018, 29, 10141–10153. [CrossRef]
- 77. Xue, M.; Liu, X.; Wu, H.; Yu, B.; Meng, F. Construction of Cu²⁺-doped CeO₂ nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance. *J. Mater. Sci. Mater. Electr.* **2021**, *32*, 27576–27586. [CrossRef]
- Ranjith, K.S.; Dong, C.-L.; Lu, Y.-R.; Huang, Y.-C.; Chen, C.-L.; Saravanan, P.; Asokan, K.; Kumar, R.T.R. Evolution of Visible Photocatalytic Properties of Cu-Doped CeO₂ Nanoparticles: Role of Cu²⁺-Mediated Oxygen Vacancies and the Mixed-Valence States of Ce Ions. ACS Sust. Chem. Eng. 2018, 6, 8536–8546. [CrossRef]
- Arif, M.; Shah, M.Z.U.; Ahmad, S.A.; Shah, M.S.; Ali, Z.; Ullah, A.; Idrees, M.; Zeb, J.; Song, P.; Huang, T.; et al. High photocatalytic performance of copper-doped SnO₂ nanoparticles in degradation of Rhodamine B dye. *Optical Mater. A* 2022, 134, 113135. [CrossRef]
- 80. Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855. [CrossRef]
- Chatterjee, P.; Mukherjee, D.; Sarkar, A.; Chakraborty, A. K. Mn-doped CeO₂-CNT nanohybrid for removal of water soluble organic dyes. *Appl. Nanosci.* 2022, *12*, 3031–3043. [CrossRef]
- Mohanta, D.; Barman, K.; Jasimuddin, S.; Ahmaruzzaman, M. MnO doped SnO₂ nanocatalysts: Activation of wide band gap semiconducting nanomaterials towards visible light induced photoelectrocatalytic water oxidation. *J. Colloid. Interface Sci.* 2017, 505, 756–762. [CrossRef] [PubMed]
- Azam, A.; Ahmed, A.S.; Habib, S.S.; Naqvi, A.H. Effect of Mn doping on the structural and optical properties of SnO₂ nanoparticles. J. Alloy. Compd. 2012, 523, 83–87. [CrossRef]
- 84. Dimri, M.C.; Khanduri, H.; Kooskora, H.; Subbi, J.; Heinmaa, I.; Mere, A.; Krustok, J.; Stern, R. Ferromagnetism in rare earth doped cerium oxide bulk samples. *Phys. Status Solidi A* **2012**, 209, 353. [CrossRef]
- Dinkar, V.A.; Shridhar, S.J.; Madhukar, E.N.; Anil, E.A.; Nitin, H.K. Sm-Doped TiO₂ Nanoparticles with High Photocatalytic Activity for ARS Dye Under Visible Light Synthesized by Ultrasonic Assisted Sol-Gel Method. *Orient J. Chem.* 2016, 32, 933. [CrossRef]
- Mandal, B.; Mondal, A.; Ray, S.S.; Kundu, A. Sm-doped mesoporous CeO₂ nanocrystals: Aqueous solution-based surfactant assisted low temperature synthesis, characterization and their improved autocatalytic activity. *Dalton Trans.* 2016, 45, 1679–1692. [CrossRef] [PubMed]
- 87. Xia, X.; Li, J.-Q.; Chen, C.-Y.; Lan, Y.; Mao, X.; Bai, F. Optimal RE (RE = La, Y and Sm) doping conditions and the enhanced mechanism for photocatalytic application of ceria nanorods. *Nanotechn.* **2021**, *32*, 195708. [CrossRef]
- Xia, X.; Li, J.; Chen, C.; Lan, Y.-P.; Mao, X.; Chu, Z.; Ning, D.; Zhang, J.; Liu, F. Collaborative influence of morphology tuning and RE (La, Y, and Sm) doping on photocatalytic performance of nanoceria. *Environ. Sci. Pollut. Res. Int.* 2022, 29, 88866–88881. [CrossRef]
- 89. Lee, D.Y.; Kim, J.-T.; Park, J.-H.; Kim, Y.-H.; Lee, I.-K.; Lee, M.-H.; Kim, B.-Y. Effect of Er doping on optical band-gap energy of TiO₂ thin films prepared by spin coating. *Current. Appl. Phys.* **2013**, *13*, 1301–1305. [CrossRef]
- Butt, K.M.; Farrukh, M.A.; Muneer, I. Influence of lanthanum doping via hydrothermal and reflux methods on the SnO₂-TiO₂ nanoparticles prepared by sol-gel method and their catalytic properties. *J. Mater. Sci. Mater. Electron.* 2016, 27, 8493–8498. [CrossRef]
- 91. Nabi, G.; Ali, W.; Majid, A.; Alharbi, T.; Saeed, S.; Albedah, M.A. Controlled growth of Bi-Functional La-doped CeO₂ nanorods for photocatalytic H₂ production and supercapacitor applications. *Int. J. Hydrogen Energy* **2022**, *47*, 15480–15490. [CrossRef]
- 92. Tian, A.; Ma, T.; Shi, X.; Wang, D.; Wu, W.; Liu, C.; Pei, W. Synergistic Improvement in Coating with UV Aging Resistance and Anti-Corrosion via La-Doped CeO₂ Powders. *Coatings* **2021**, *11*, 1095. [CrossRef]
- Fan, Y.; Jiao, J.; Zhao, L.; Tang, J. Preparation of Lanthanide-doped (La, Nd, and Eu) polystyrene/CeO₂ abrasives and investigation of slurry stability and photochemical mechanical polishing performance. *Colloids Surf. A Physicochem. Eng. Asp.* 2023, 656, 130508. [CrossRef]
- Joseph, J.; Mathew, V.; Abraham, K.E. Physical properties of Dy and La-doped SnO₂ thin films prepared by a cost effective vapour deposition technique. *Cryst. Res. Techn.* 2006, 41, 1020–1026. [CrossRef]

- 95. Babu, K.R.V.; Renuka, C.G.; Zikriya, M. Band Gap and Photo luminescence studies of Sm³⁺ doped TiO₂ NP for wLED. *Int. Adv. Res. J. Sci. Eng. Techn.* **2021**, *8*, 24. [CrossRef]
- 96. Bharathi, R.N.; Sankar, S. Structural, optical and magnetic properties of Pr doped CeO₂ nanoparticles synthesized by citrate–nitrate auto combustion method. *J. Mater. Sci. Mater. Electr.* **2018**, *29*, 6679–6691. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.