
Citation: Talantsev, E.F. Quantifying

Nonadiabaticity in Major Families of

Superconductors. Nanomaterials 2023,

13, 71. https://doi.org/10.3390/

nano13010071

Academic Editor: Yassine Slimani

Received: 2 December 2022

Revised: 17 December 2022

Accepted: 19 December 2022

Published: 23 December 2022

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Quantifying Nonadiabaticity in Major Families
of Superconductors
Evgueni F. Talantsev 1,2

1 M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18 S. Kovalevskoy Str.,
620108 Ekaterinburg, Russia; evgeny.talantsev@imp.uran.ru; Tel.: +7-912-676-0374

2 NANOTECH Centre, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia

Abstract: The classical Bardeen–Cooper–Schrieffer and Eliashberg theories of the electron–phonon-
mediated superconductivity are based on the Migdal theorem, which is an assumption that the energy
of charge carriers, kBTF, significantly exceeds the phononic energy, }ωD, of the crystalline lattice.
This assumption, which is also known as adiabatic approximation, implies that the superconductor
exhibits fast charge carriers and slow phonons. This picture is valid for pure metals and metallic alloys
because these superconductors exhibit }ωD

kBTF
< 0.01. However, for n-type-doped semiconducting

SrTiO3, this adiabatic approximation is not valid, because this material exhibits }ωD
kBTF

∼= 50. There
is a growing number of newly discovered superconductors which are also beyond the adiabatic
approximation. Here, leaving aside pure theoretical aspects of nonadiabatic superconductors, we
classified major classes of superconductors (including, elements, A-15 and Heusler alloys, Laves
phases, intermetallics, noncentrosymmetric compounds, cuprates, pnictides, highly-compressed hy-
drides, and two-dimensional superconductors) by the strength of nonadiabaticity (which we defined
by the ratio of the Debye temperature to the Fermi temperature, Tθ

TF
). We found that the majority of

analyzed superconductors fall into the 0.025 ≤ Tθ
TF
≤ 0.4 band. Based on the analysis, we proposed

the classification scheme for the strength of nonadiabatic effects in superconductors and discussed
how this classification is linked with other known empirical taxonomies in superconductivity.

Keywords: nonadiabatic effects in superconductors; Heusler alloys; Laves phases; magic-angle
twisted bilayer graphene; hydrogen-rich superconductors

1. Introduction

The majority of experimental works in superconductivity utilize the classical Bardeen–
Cooper–Schrieffer (BCS) [1] and Migdal–Eliashberg (ME) [2,3] theories as primary tools
to analyze measured data. However, it should be clarified that these theories are valid for
superconductors which satisfy the condition designated by the Born–Oppenheimer–Migdal
approximation [4]:

}ωD
kBTF

=
Tθ

TF
=

88 K
1.1× 105 K

∣∣∣∣
Pb

= 8× 10−4 � 1 (1)

where } is the reduced Planck constant, ωD is the Debye frequency, kB is the Boltzmann
constant, Tθ is the Debye temperature, TF is the Fermi temperature, and data for lead
were reported by Poole [5]. The Born–Oppenheimer–Migdal approximation allows the
separation of electronic and ionic motions in metals, because Equation (1) implies that the
conductor exhibits fast charge carriers (for which characteristic energy scale is related to
the Fermi temperature, TF) and relatively slow phonons (for which characteristic energy
scale is related to the Debye temperature, Tθ).
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However, Equation (1) satisfies for many, but not for all superconductors, and the
first discovered superconductor for which Equation (1) was found to be violated is n-type
doped semiconducting SrTiO3 [6]:

}ωD
kBTF

=
Tθ

TF
=

627 K
13 K

∣∣∣∣
SrTiO3

= 48� 1 (2)

where data for SrTiO3 is taken from [7,8]. The theoretical description of the superconductiv-
ity in materials, in which the charge carriers and the lattice vibrations exhibit characteristic
energy scales similar to Equation (2), is complicated, and the general designation of these
superconductors are as nonadiabatic superconductors [9–16]. This theory [9–16] provides
a general equation for the superconducting transition temperature, Tc, in nonadiabatic

superconductors [9]: Tc = 1.134× εF
kB
× e
− 1

λnad , where εF is the Fermi energy, and λnad is the
coupling strength constant in nonadiabatic superconductors, which serves a similar role
to the electron–phonon coupling strength, λe−ph, in the BCS [1] and ME [2,3] theories. In
addition, one of the primary fundamental theoretical problems is calculating this constant
with acceptable accuracy to describe the experiment [4–16].

For experimentalists, it is important to have a simple practical routine to establish
the strength of nonantiadiabatic effects in newly discovered superconductors. The most
obvious parameter, which serves as an experimentally measured value to quantify the
strength of nonantiadiabaticity, is the Tθ

TF
ratio. For practical use of this criterion, there is a

need for the taxonomy of possible Tθ
TF

values.
To establish the taxonomy, we performed the analysis for a broad a range as possible

of superconductors; these range from two- to three-dimensional materials, from elements
to compounds of up to five elements, from low-Tc (with Tc ∼ 0.1 K) to record high-Tc (with
Tc = 240 K) hydrides, and from materials that exhibit a high order of crystalline lattice
symmetry to the materials with low symmetry. Namely, we tried to cover all superconduc-
tors for which primary characteristic parameters (apart Tc, Tθ , and TF), such as the London
penetration depth, λ(0), the coherence length, ξ(0), the amplitude of the superconducting
energy gap, ∆(0), and the electron–phonon coupling strength constant, λe−ph, were estab-
lished. In the results, we presented the analysis of more than 40 superconductors within
the families of main superconductors.

Based on our analysis, we proposed the following classification scheme:
Tθ
TF

< 0.025→ adiabatic superconductor;
0.025 . Tθ

TF
. 0.4→ moderately strong nonadiabaticity;

0.4 < Tθ
TF
→ nonadiabatic superconductor.

(3)

One of our findings is that for weakly nonadiabatic superconductors (i.e., for materials
exhibited 0.025 ≤ Tθ

TF
. 0.4), the predicting power of the BCS-ME theories (for instance, the

prediction of the superconducting transition temperature) is reasonably accurate. However,
all these superconductors are located outside of the BCS corner in the Uemura plot.

We also showed how the proposed classification scheme is linked to other known
empirical scaling laws and taxonomies in superconductivity [13,17–21]; meanwhile, the
search for the link of the proposed taxonomy with the recently reported big data [22,23] is
under progress.

2. Utilized Models

Proposed taxonomy is based on the knowledge of three fundamental temperatures
of the superconductor, which are Tc, Tθ , and TF. The superconducting transition tem-
perature, Tc, is directly measured in either temperature resistance or in magnetization
experiments. It is also important to mention the primary experimental techniques and the-
oretical models utilized to deduce the Debye temperature, Tθ , and the Fermi temperature,
TF, in superconductors.
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There are two primary techniques to determine the Debye temperature, Tθ . One
technique is to analyze the measured temperature-dependent normal-state specific heat,
Cp(T), from which the electronic specific heat coefficient, γn, and the Debye temperature,
Tθ , are deduced (see, for instance [24–26]):

Cp(T)
T

= γn + βT2 + αT4 (4)

where β is the Debye law lattice heat-capacity contribution, and α is from higher order
lattice contributions. The Debye temperature can be calculated:

Tθ =

(
12π4Rp

5β

) 1
3

(5)

where R is the molar gas constant, and p is the number of atoms per formula unit.
Another technique is to fit normal-state temperature dependent resistance, R(T), to

the Bloch–Grüneisen (BG) equation [24–28]:

R(T) =
1

1
Rsat

+ 1

R0+A×
(

T
Tθ

)5
×
∫ Tθ

T
0

x5
(ex−1)(1−e−x)

·dx

(6)

where, Rsat is the saturated resistance at high temperatures which is temperature inde-
pendent, R0 is the residual resistance at T → 0 K, and A is free fitting parameter. Many
research groups utilized both techniques (i.e., Equations (4)–(6)) to deduce Tθ [24–27,29].

From the measured Tc and the deduced Tθ , one can derive the electron–phonon
coupling constant, λe−ph, as a root of either the original McMillan equation [30], or its
recently revisited form [27]:

Tc =

(
1

1.45

)
× Tθ × e

−(
1.04(1+λe−ph)

λe−ph−µ∗(1+0.62λe−ph)
)
× f1 × f ∗2 (7)

f1 =

(
1 +

(
λe−ph

2.46(1 + 3.8µ∗)

)3/2
)1/3

(8)

f ∗2 = 1 + (0.0241− 0.0735× µ∗)× λ2
e−ph (9)

where µ∗ is the Coulomb pseudopotential, 0.10 . µ∗ . 0.15 [27,30].
There are several experimental techniques to derive the Fermi temperature, TF, from

experimental data. One of these techniques is to measure the temperature dependent
Seebeck coefficient, S(T), and fit a measured dataset to the equation [8]:∣∣∣∣S(T)T

∣∣∣∣ = π2

3
kB
e

1
TF

(10)

Another approach is to measure the magnetic quantum oscillations [31], from which
the magnitude of charge carrier mass, m∗ = me

(
1 + λe−ph

)
(where me is bare mass of

electron), together with the size of the Fermi wave vector, kF, can be obtained and plugged
into [31]:

TF =
}2

2kB

k2
F

m∗
(11)

An alternative approach is based on the extraction of the charge carriers mass, m∗,
and density, n, as two of four parameters from the simultaneous analysis of Cp(T), R(T),
the muon spin relaxation (µSR), the lower critical field data, Bc1(T), and the upper critical
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field data, Bc2(T) [32], and plugging these parameters into the equation for an isotropic
spherical Fermi surface [32]:

TF =
}2

2kB

1
m∗
(

3π2ns

) 2
3 (12)

where ns is bulk charge curriers density at T → 0 K . For 3D superconductors, ns is given
by the equation [33]:

ns(0) =
m∗

µ0e2
1

λ2(0)
(13)

where µ0 is the permeability of free space, l is the charge carrier mean free path, λ(0) is the
ground state London penetration depth, and ξ(0) is the ground state coherence length.

It should be noted that λ(0) can be also deduced from the ground state lower critical
field [28,34]:

Bc1(0) =
φ0

4π

ln
(

1 +
√

2κ(0)
)

λ2(0)
(14)

where κ(0) = λ(0)
ξ(0) is the ground state Ginzburg–Landau parameter.

For two dimensional (2D) superconductors, TF can be determined from µSR measure-
ments and crystallographic data [18]:

TF =
π}2

kB

1
m∗

ns × cint (15)

where cint is the average distance between superconducting planes.
If measuring techniques are limited to the magnetoresistance measurements, R(T, B)

(which was the case in the field of highly-compressed near-room temperature superconduc-
tors (NRTS) [35–50], until recent experimental progress by Minkov et al. [51,52]), TF can be
estimated by the equation [53]:

TF =
π2m∗

2kB}2 × ξ2(0)× ∆2(0) (16)

where ∆(0) is the ground state amplitude of the superconducting energy gap, which is
varying in a reasonably narrow range 3.2 ≤ 2∆(0)

kBTc
≤ 5.0, so that the ballpark value for TF can

be estimated. For instance, ξ(0) can be deduced from magnetoresistance measurements [54]
and the electron–phonon coupling strength constant, λe−ph, can be assumed to be the
average value of values calculated by first-principles calculations [55,56].

3. Results

In Table 1, we present data for major groups of superconductors, where data sources
for Tc, Tθ , TF, and other parameters (for instance, λe−ph) are given.

Table 1. Superconductors and their parameters used in the work. In all calculations (except some
original sources, µ∗ = 0.13).

Type/Chemical
Composition

λ(0)
(nm)

ξ(0)
(nm) λe-ph

Tc
(K)

Tθ
(K)

2∆(0)
kBTc

TF
(103 K) Tθ/TF

Pure metals

Aluminium 1.18 [57,58] 394 [5] 136 [5] 2.9× 10−3

Aluminium 50 [57] 1550 [58] 0.43 [59] 1.18 [57,58] 394 [5] 3.535 [59] 18.9 (Equation (12)) 2.1× 10−2

Tin 3.72 [58] 170 [5] 118 [5] 1.4× 10−3
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Table 1. Cont.

Type/Chemical
Composition

λ(0)
(nm)

ξ(0)
(nm) λe-ph

Tc
(K)

Tθ
(K)

2∆(0)
kBTc

TF
(103 K) Tθ/TF

Tin 77 [60] 180 [58] 0.72 [59] 3.72 [58] 170 [5] 3.705 [59] 10.0 (Equation (12)) 1.2× 10−2

Lead 7.20 [58] 88 [5] 110 [5] 8× 10−4

Lead 64 [60] 87 [58] 1.55 [59] 7.20 [60] 88 [5] 4.497 [59] 11.2 (Equation (12)) 7.8× 10−3

Niobium 9.25 [58] 265 [5] 61.8 [5] 4.3× 10−3

Niobium 52 [58] 39 [58] 0.98 [59] 9.25 [58] 265 [5] 3.964 [59] 16.1 (Equation (12)) 1.6× 10−2

Gallium 52 [58] 39 [58] 2.25 [59] 1.09 [5,32,58,59] 325 [5,32,58,59] 120 [5,32,58] 2.7× 10−3

A15 Alloys

Nb3Sn 124 [61] 3.6 [61] 1.8 [62] 17.9 [61] 234 [61] 4.2 [62] 4.5 (Equation (12)) 5.2× 10−2

V3Si 62 [62] 3.3 [62] 0.96 [62] 16.4 [63] 297 [64] 3.7 [62] 12.8 (Equation (12)) 2.3× 10−2

Nb3Ge 90 [58] 3.0 [58] 1.60 [59] 23.2 [58] 302 [65] 4.364 [59] 7.1 (Equation (12)) 4.3× 10−2

Heusler alloys

ZrNi2Ga 350 [66] 15 [66] 0.551 [66] 2.85 [66] 300 [66] 1.4 (Equation (12)) 2.2× 10−1

YPd2Sn 196 [67] 19 [67] 0.70 [67] 4.7 [67] 210 [67] 4.1 [67] 2.9 (Equation (12)) 7.2× 10−2

HfPd2Al 225 [67] 13 [67] 0.68 [67] 3.66 [67] 182 [67] 3.74 [67] 2.4 (Equation (12)) 7.5× 10−2

Noncentrosymmetric

Nb0.5Os0.5 654 [68] 7.8 [68] 0.53 [68] 3.07 [68] 367 [68] 3.62 [68] 0.60 (Equation (12)) 6.1× 10−1

Re6Zr (mSR) 356 [29] 3.7 [29] 0.67 [29] 6.75 [29] 338 [29] 3.72 [29] 1.3 2.6× 10−1

Re6Zr
(magnetization) 247 [29] 3.3 [29] 0.67 [29] 6.75 [29] 237 [29] 3.72 [29] 2.1 1.1× 10−1

Mo3Al2C 376 [69] 4.2 [69]
0.74

(Equations
(7)–(9))

9.2 [69] 339 [69] 4.03 [69] 1.2 2.8× 10−1

NbIr2B2 [70] 223 4.5 0.74 7.18 274 2.4 1.1× 10−1

TaIr2B2 [70] 342 4.7 0.70 5.1 230 1.4 1.7× 10−1

Re3Ta [71] 0.62 4.7 321 0.64 5.0× 10−1

Laves phases

BaRh2 [72] 340 8.4 0.80 5.6 178 1.4 1.3× 10−1

SrRh2 [72] 229 9.1 0.71 5.4 237 2.3 1.0× 10−1

SrRh2 [73] 121 8.6 0.93 5.4 250 5.3 4.7× 10−2

SrIr2 [74] 237 7.5 0.84 5.9 180 2.3 8.2× 10−2

Intermetallics

MgCNi3 [75] 248 4.6
0.74

(Equations
(7)–(9))

7.6 284 2.1 1.4× 10−1

RuAl6 [76] 265 27.7 0.81 1.21 458 1.9 2.4× 10−1

Perovskite

SrTiO3 0.2 [7] 0.086 [8] 690 [77] 1.3× 10−2 [8] 5.3× 101

Pnictides

ThFeAsN 375 [78] 1.48 [78] 28.1 [78] 332 [79]
0.47 (Equation (17))

cint = 8.5 Å [78] 7.0× 10−1

KCa2Fe4As4F2 230 [80] 1.59 [80] 33.4 [80] 366 [80]
1.3 (Equation (17))

cint = 8.5 Å [80] 2.9× 10−1

RbCa2Fe4As4F2 232 [80] 1.45 [80] 29.2 [80] 332 [80]
1.2 (Equation (17))

cint = 8.5 Å [80] 2.8× 10−1

CsCa2Fe4As4F2 244 [80] 1.44 [80] 28.3 [80] 344 [80]
1.1 (Equation (17))

cint = 8.5 Å [80] 3.1× 10−1
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Table 1. Cont.

Type/Chemical
Composition

λ(0)
(nm)

ξ(0)
(nm) λe-ph

Tc
(K)

Tθ
(K)

2∆(0)
kBTc

TF
(103 K) Tθ/TF

Cuprates

YBa2Cu3O7 [81] 115
[81,82] 2.5 [81] 1.5 [83] 93.2 [81] 437 [7]

3.4 (Equation (17))
cint = 5.8 Å [83] 1.2× 10−1

(Y,Dy)Ba2Cu3O7
[84]

128
[84,85] 2.5 [81] 1.5 [83] 90.4 [84,85] 437 [7] 4.24

[84,85]
2.9 (Equation (17))

cint = 5.8 Å [83] 1.5× 10−1

Bi2Sr2CaCu2O8
[86] 196 [85] 1.2 [85] 4.7 [7] 82.7 [85] 240 [7] 3.9 [85]

1.2 (Equation (17))
cint = 6 Å [83] 2.0× 10−1

Tl2Ba2CaCu2O8
[87] 179 [85] 1.2 [85] 103 [85] 425 [88] 4.3 [85]

1.5 (Equation (17))
cint = 6 Å [83] 2.9× 10−1

HgBa2CaCu2O8
[89] 188 [85] 1.6 [85] 120 [85] 525 [88] 3.3 [85]

1.3 (Equation (17))
cint = 6 Å [83] 3.9× 10−1

Bi2Sr2Ca2Cu3O10
[90] 175 [85] 1.0 [85] 4.5 85 [85] 319 [7] 4.5 [85]

1.5 (Equation (17))
cint = 6 Å [83] 2.1× 10−1

Bismuthates

Ba1-xKxBiO3
(x = 0.4) [91,92] 1.10 [93] 23 [92] 210 [94] 3.8-4.1

[93] 1.5 [92] 1.4× 10−1

Ba1-xKxBiO3
(x = 0.5) [91,92] 1.10 [93] 14 [92] 210 [94] 3.8-4.0

[93] 1.1 [92] 1.9× 10−1

2D
superconductors

MATBG [95] 2180 [96]
m∗
me

= 0.2
[96]

1.2 [96] 1864 [97] 4.4 [96]
16.5× 10−3

(Equation (15))
cint = 1 nm

1.1× 102

MATBG [95] 61.4 [96] [96] 1.2 [96] 1864 [97] 4.4 [96] 28.6× 10−3

(Equation (16)) 6.5× 101

Li-doped
graphene, LiC6
[98]

0.61 [99] 5.9 [98] 2240 [99] 15.5 [99] 1.45× 10−1

IrTe2 [100]
(sample
thickness is
21 nm)

600 [100] 75 [100] 1.6 [100] 5.46 [100] 0.118 (Equation (15))
cint = 0.54 nm

Ionic Salt

CsI
(P = 206 GPa)
[101]

0.445 [102] 1.1 [101] 339 [102] (20± 4)× 10−2

[102]
17± 4
[102]

NRTS hydrides

H3S
(P = 155 GPa)
[35]

37 [52] 1.9 [54] 2.2 [103] 197 [103] 1427 [103] 21.6 (Equation (12))
and [104] 6.6× 10−2

H3S
(P = 155 GPa)
[35]

1.9 [54] 1.76 [55,56] 197 [103] 1427 [103] 3.55 [53]
10± 3

(Equation (16)) and
[104]

(1.4± 0.3)×
10−1

LaH10
(P = 150 GPa)
[36]

30 [51] 1.5 [51] 2.77 [27] 240 [27] 1310 [27] 27.0 (Equation (12)) 2.7× 10−2

La1-xNdxH10
(x = 0.15)
(P = 180 GPa)
[48]

2.3 [105] 1.65 [105] 122 [105] 1156 [105] 4.0 [105] 4.4 [105]
(Equation (16)) 2.6× 10−1

Compressed
oxygen

ζ-O2
(P = 115 GPa)
[106]

42 [107] 0.42 [107] 0.64 [107] 306 [107] 3.5× 10−2 [107]
(Equation (16)) 8.7

In Figure 1, we show the Tc vs.TF dataset in a log–log plot, which is the traditional
data representation in the well-known Uemura plot [18].
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Figure 1. Uemura plot (Tc vs. TF) for primary superconducting families. References on original data
(Tc and TF) can be found in Table 1.

In Figure 2, we represent the same superconducting materials, but here we display the
λe−ph vs. Tθ

TF
dataset in a semi-log plot. To our best knowledge, the λe−ph vs. Tθ

TF
plot was

first plotted by Pietronero et al. [13] in linear–linear scales. However, because the Tθ
TF

ratio
for main families of superconductors is varied within four orders of magnitude (Table 1),
and 0.4 ≤ λe−ph ≤ 3.0, it is more suitable to use the semi-log plot (Figure 2).
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Nanomaterials 2023, 13, 71 8 of 14

Finally, in Figure 3, we represented the same superconducting materials, but here we
displayed the Tc vs. Tθ

TF
dataset in a log–log plot. This type of plot was chosen because as Tc,

as Tθ
TF

are varied within several orders of magnitude.
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vs. Tc for primary superconducting families. References on original data (Tθ, Tc,
TF) can be found in Table 1.

4. Discussion

The family of near-room temperature superconductors (NRTS) is represented in Table 1
and Figure 1 by H3S (P = 155 GPa), SnH12 (P = 190 Gpa), and La1-xNdxH10 (x = 0.09,
P = 180 Gpa). Two independent approaches were used to perform calculations in H3S:

1. TF was calculated based on Equations (12) and (13). In these calculations λ(0) = 37 nm
(extracted from the analysis of DC magnetization experiments reported by Minkov
et al. [51,52]) was used.

2. TF was calculated based Equations (6)–(9) and (18), in which utilized ξ(0) values
were extracted [53] from magnetoresistance measurements reported by Mozaffari
et al. [54]).

It should be noted that, in both approaches, the electron–phonon coupling strength
constant, λe−ph, was assumed to be λe−ph = 1.76, which is the average value of values
calculated by first-principles calculations [55,56], and values extracted from experimental
R(T) data [27].

It can be seen in Table 1 and Figure 1 that the calculated TF values for H3S, by two
alternative approaches, are in a very good agreement with each other. To demonstrate the
acceptable level of variation in TF values for the same material, in Table 1 and Figure 1
we present the results of the calculations for pure metals, where TF was calculated by the
two approaches mentioned above and the use of experimental data reported by different
research groups.

TF in HTS cuprates were calculated by the Equations (13) and (15), which do not
require the knowledge of the electron–phonon coupling constants, λe−ph. This is despite
Ledbetter et al. [7] reporting the so-called effective electron–phonon coupling strength,
λe−ph,e f f , from which the effective mass can be deduced, m∗ =

(
1 + λe−ph,e f f

)
×me.
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In addition, it should be noted that for YBa2Cu3O7, Uemura [83] reported the rela-
tion [83]:

m∗

me
= 2.5 (17)

from which λe−ph = 1.5 can be derived. Calculated values are in a reasonable agreement
with experimental m∗

me
values reported by several research groups [108–110] in YBa2Cu3O7-x.

However, because the phenomenology of the electron–phonon mediated supercon-
ductivity cannot describe the superconducting state in cuprates, and the Tθ for cuprates
were taken as experimental values (see, for instance, report by Ledbetter et al. [7,88]), all
cuprate superconductors are shown in Figures 1 and 3 and are not shown in Figure 2.

It should be mentioned that the result of the TF calculation in MATBG (Table 1),
TF = 16.5 K, which was primarily based on the London penetration depth, λ(0) = 1860 nm,
was deduced in Ref. [96] from the self-field critical current density, Jc(s f , T), by the approach
proposed by us [84]:

Jc(s f , T) =
φ0

4πµ0

ln
(

1 +
√

2κ(T)
)

λ3(T)
(18)

The remarkable agreement of the deduced value, TF = 16.5 K, and the value reported
in the original work on MATBG by Cao et al. [95], TF = 17 K, which was calculated
based on normal state charge carriers density in MATBG, independently validates our
primary idea [84] about the fundamental nature of the self-field critical current in weak-
links samples [84,85,111]. This concept was recently proven by Paturi and Huhtinen [112],
who utilized the fact that the London penetration depth, λ(0), in real samples, depends on
the mean free-path of charge carriers, l:

λ(0) = λclean limit(0)

√
1 +

ξ(0)
l

(19)

where λ(0) is the effective penetration depth, and λclean limit(0) is the penetration depth in
samples, exhibiting a very long mean free-path, l � ξ(0). Paturi and Huhtinen [112] varied l
in YBa2Cu3O7-x films and showed that the change in Jc(st, T) satisfies Equations (18) and (19).

Materials, in which λ(0) was deduced by the mean temperature dependent self-field
critical current density, Jc(s f , T) (Equation (18)), have designation “Jc(s f , T)” in Figures 1–3.

The MATBG does not show in Figure 2, because the derivation of λe−ph cannot be

performed by the used phenomenology: m∗ =
(

1 + λe−ph

)
×me, because m∗

me
= 0.2 [96];

however, this material is shown in Figures 1 and 3, because λe−ph is not required for these
plots.

Returning back to hydrides, we need to note that Durajski [56] performed first-
principles and studied the strength of the nonadiabatic effects in highly-compressed sulfur
hydride and phosphorus hydride. Calculations show that the strength of the nonadiabatic
effects can be quantified as moderately weak in comparison with the classical nonadiabatic
superconductor SrTiO3. This is in a good agreement with our result (see Figure 3 and
Table 1), that all deduced Tθ

TF
values for NRTS are within the range of:

0.03 ≤ Tθ

TF
≤ 0.3 (20)

Moreover, the classical nonadiabatic superconductor SrTiO3 falls into the intermediate
zone between unconventional and BCS superconductors; this is because this material
exhibits Tc

TF
= 0.0066, and by this criterion, SrTiO3 is similar to the Laves phase materials,

intermetallics, A-15 alloys, and Heusler alloys, which cannot be considered to be a correct
manifestation of primary uniqueness for this nonadiabatic material.
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More unexpectedly, a two dimensional LiC6 (which is a lithium-doped graphene)
superconductor falls into the BCS metals zone in the Uemura plot (Figure 1), despite the
fact that this material exhibits reasonable strength in the nonadiabatic effects, Tc

TF
= 0.15 [99].

However, in Figures 2 and 3, the outstanding separations of all nonadiabatic su-
perconductors from their adiabatic and moderate nonadiabatic counterparts are clearly
manifested.

By looking at the data in Figures 2 and 3, it is easy to recognize that 3/4 (32 of 42) of the
analyzed superconductors fall into a reasonably narrow band:

0.025 ≤ Tθ

TF
≤ 0.4 (21)

Based on this, we proposed that the values in Equation (21) were used as empirical lim-
its for the adiabatic superconductors ( Tθ

TF
≤ 0.025), moderate nonadiabatic superconductors

(0.025 ≤ Tθ
TF
≤ 0.4), and strong nonadiabatic superconductors ( Tθ

TF
≥ 0.4).

It also follows from our analysis that all strong nonadiabatic superconductors exhibit
low superconducting transition temperatures, Tc ≤ 1.2 K (Figure 3).

5. Conclusions

In this work, we proposed a new classification scheme to quantify the effects of
nonadiabaticity in superconductors. By performing the analysis of experimental data for
more than 40 superconductors, which represent the primary families of superconductors,
we found that 3

4 of all analyzed superconductors fall into a narrow 0.025 ≤ Tθ
TF
≤ 0.4 band.

Based on this, we proposed the taxonomy for the strength of the nonadiabatic effects in
superconductors.
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