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Significant progress in carbon nanostructures has been achieved in the past 20 years;
however, there is plenty of room for further study. Researchers must bring developments
from the laboratory to an industrial scale. The interest in carbon nanostructures is ever grow-
ing. Carbon nanotubes, graphene, graphene nanoribbons, 2D heterostructures, fullerenes,
nanodiamonds, filled carbon nanotubes (CNTs), and related carbon nanostructures should
be realized in applications. On the fundamental side, topics such as synthesis and growth
methods, as well as modification of properties, have been considered. Theoretical stud-
ies for modeling properties have also been reported. In experimental materials science,
the chemical and physical properties of new carbon nanostructures are considered to be
promising. The kinetics of the growth of carbon nanostructures is attractive for fundamen-
tal and applied research. Activation energy and growth rates inside metallocene-filled
carbon nanotubes have been measured for applications. On the applied side, four spectro-
scopic methods have been implemented on carbon nanostructures to study the kinetics
and electronic properties of materials in depth. Among them are Raman spectroscopy,
near-edge X-ray absorption fine structure spectroscopy, photoemission spectroscopy, and
optical absorption spectroscopy. Applications of new carbon nanostructures include molec-
ular electronics, thermoelectric power generation, light emission, construction materials,
and medicine.

In this Special Issue, entitled “Progress in Carbon Nanostructures: From Synthesis to
Applications”, we have published four papers, including two review papers [1–4].

In Ref. [1], M. Kharlamova considered issues of the kinetics of growth of filled single-
walled carbon nanotubes (SWCNTs) and their electronic properties. Spectroscopic data on
carbon nanotubes were discussed. The kinetics included the calculations of growth rates
and activation energies of SWCNTs inside SWCNTs encapsulating metallocene molecules.
The highlighted spectroscopic methods are Raman spectroscopy, near-edge X-ray absorp-
tion fine-structure spectroscopy (NEXAFS), photoemission spectroscopy (PES), and optical
absorption spectroscopy (OAS) (Figure 1). Metal halogenides and metal chalcogenides
result in n- or p-doping of SWCNTs [5–18]. In this review, the correlations between the
chemical nature of the compound and its electronic properties are summarized. They
are related to the work function differences between the pristine carbon nanotubes and
the compounds.

In Ref. [2], the issues of the cytotoxicity of carbon nanotubes, graphene, fullerene, and
dots were considered. The materials characterizations and theoretical considerations are
covered. The data of scanning electron microscopy (SEM), transmission electron microscopy
(TEM), Raman spectroscopy, OAS, fluorescence spectroscopy, and Fourier transform in-
frared spectroscopy are discussed. Cell viability and drug release issues are highlighted
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(Figure 2), and bioimaging issues of carbon nanomaterials are described. As a perspective,
the single-cell viability of carbon nanotubes is discussed. Cancer prevention in single cells
is needed. This stimulates the development of single-cell methods of analysis, such as
microscopy and spectroscopy. Further advancements in drug loading and bioimaging are
needed to lower the cytotoxicity.
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Figure 2. Lemna minor after treatment of raw graphene and graphene oxide (GO). Control group:
(a1–a6,a13,a14,a16,a17) after treatment of pristine graphene; (a7–a12,a15,a18,a19) after GO treatment.
Copyright 2021 by the authors. Licensee: MDPI, Basel, Switzerland. This article is an open-access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license [19].

In Ref. [3], the authors developed a new method for directly growing patterned ver-
tical graphene on a SiO2/Si substrate by plasma-enhanced chemical vapor deposition
(PECVD) with patterned Cr film. The quality of the grown vertical graphene was investi-
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gated by Raman spectroscopy (Figure 3). The Raman spectrum of graphene includes the
characteristic D, G, and 2D modes. Mapping results for D, G, 2D, and ratios D/G and
2D/G are presented. In Figure 4, the schematic of the patterned vertical graphene growth
mechanism is presented. The steps are before growth (Figure 4a), heating (Figure 4b),
reaching a maximum (σmax = −660 MPa) compressive stress σmax in the Cr film (Figure 4c),
growth (Figure 4d), cooling (Figure 4e), and decreasing temperature to Ty, where vertical
graphene/Cr cracks and warps (Figure 4f). This method is very promising, and it proves
the possibility of growing graphene on Cr films.
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150 µm × 150 µm, and 2601 data points were used. Copyright 2023 by the authors. Licensee: MDPI,
Basel, Switzerland. This article is an open-access article distributed under the terms and conditions
of the Creative Commons Attribution (CC BY) license [3].
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Figure 4. Schematic of the patterned vertical graphene growth mechanism. The steps are before
growth (a), heating (b), reaching a maximum (σmax = −660 MPa) compressive stress in the Cr film (c),
growth (d), cooling (e), and decreasing temperature to Ty, where vertical graphene/Cr cracks and
warps (f). Copyright 2023 by the authors. Licensee: MDPI, Basel, Switzerland. This article is an
open-access article distributed under the terms and conditions of the Creative Commons Attribution
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