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Abstract: Atomically thin two-dimensional (2D) hexagonal boron nitride (hBN) has emerged as an
essential material for the encapsulation layer in van der Waals heterostructures and efficient deep
ultraviolet optoelectronics. This is primarily due to its remarkable physical properties and ultrawide
bandgap (close to 6 eV, and even larger in some cases) properties. Color centers in hBN refer to
intrinsic vacancies and extrinsic impurities within the 2D crystal lattice, which result in distinct optical
properties in the ultraviolet (UV) to near-infrared (IR) range. Furthermore, each color center in hBN
exhibits a unique emission spectrum and possesses various spin properties. These characteristics open
up possibilities for the development of next-generation optoelectronics and quantum information
applications, including room-temperature single-photon sources and quantum sensors. Here, we
provide a comprehensive overview of the atomic configuration, optical and quantum properties, and
different techniques employed for the formation of color centers in hBN. A deep understanding of
color centers in hBN allows for advances in the development of next-generation UV optoelectronic
applications, solid-state quantum technologies, and nanophotonics by harnessing the exceptional
capabilities offered by hBN color centers.

Keywords: hexagonal boron nitride; color center; light emission; quantum emitter

1. Introduction

Since the first mechanical exfoliation of monolayer graphene in 2004 [1], atomically
thin two-dimensional (2D) materials have shown their exotic physical properties, which
are not present in bulk materials. Unlike the gapless semi-metallic properties of graphene,
transition-metal dichalcogenides (TMDCs) [2], which are 2D semiconductors, have been
found to have a direct bandgap, which corresponds to efficient optical emission from
the visible to near-infrared range at the monolayer limit, with possible applications in
advanced optoelectronic devices. Furthermore, the atomically thin insulating material
hexagonal boron nitride (hBN) is composed of covalently bonded boron and nitride with
an sp2 orbital, which is isomorphous with graphene [3]. The single-crystal structure of
multilayer hBN is an AA’-type interlayer bonding structure, which appears as a hexagonal
structure from the top view, as shown in Figure 1a,b, resulting in a large bandgap opening.
Recently, hBN has served as an ideal encapsulation material for graphene in 2D van der
Waals heterostructures and 2D semiconductor TMDCs due to its exceptional chemical
and thermal stability against harsh environmental conditions, such as high temperatures.
Furthermore, due to the absence of dangling bonds and the atomically clean interface, the
single-crystal structure of hBN allows for limited intrinsic charge carrier scattering in 2D
van der Waals heterostructure devices compared to polycrystal-structured materials, such
as silicon dioxide [4–6].
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Figure 1. (a) Schematic diagram of the hBN crystal structure, showing the hexagonal bonding struc-
ture in each plane and the AA’ interlayer bonding structure, with orange balls representing nitrogen 
atoms and purple balls representing boron atoms. (b) Schematic diagram of each unit layer of the 
hBN crystal, seen from the top view, perpendicular to the plane. (c) (a–f) Band structure diagrams 
of hBN with the number of atomic stacked layers being (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) bulk. As 
the layer number increases, the material evolves from a direct to an indirect bandgap material [7]. 
[Reprinted with permission from D. Wickramaratne et al., “Monolayer to Bulk Properties of Hexag-
onal Boron Nitride”, Journal of Physical Chemistry C, 122, 25524–25529 (2018). Copyright 2018, 
American Chemical Society]. (d) A cathodoluminescence spectrum of high-purity single-crystal 
hBN. A narrow peak appears at the photon energy position 5.8 eV (215 nm), showing the deep UV 
optical gap of the hBN crystal [8]. [Reprinted with permission from K. Watanabe et al., “Direct-
bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal”, 
Nature Materials, 3, 404–409 (2004)]. 

The band structure of graphene, a hexagonal structure of carbon atoms, is character-
ized by the absence of a bandgap, leading to its semi-metallic behavior. On the other hand, 
the band structure of hBN includes a bandgap due to the presence of two different types 
of atoms, boron and nitrogen. As a result, hBN exhibits insulating behavior and a large 
bandgap opening. Figure 1c shows the band structure of hBN based on first-principles 
calculation, with the number of atomic stacked layers increasing from monolayer to bulk 
(infinite number of layers) [7]. Monolayer hBN exhibits a direct bandgap at the K point, 
with 6.47 eV bandgap energy. However, with the increase in the number of layers of hBN, 
the bandgap exhibits a transition in the conduction band, shifting to the M point while the 
valence band remains at the K point, resulting in the transformation from a direct bandgap 
to an indirect bandgap semiconductor. 

To create high-quality hBN quantum devices, it is essential to use hBN with excellent 
material quality. Efforts to grow hBN have been attempted extensively, but challenges 
related to crystallinity issues and high impurity contents have often led to failures. In 2004, 
a group of scientists in NIMS (National Institute for Materials Science, Japan) led by T. 
Taniguchi [8] successfully achieved the large-scale growth of hBN using the HTHP (high-
temperature high-pressure) method. The authors used the temperature gradient method 

Figure 1. (a) Schematic diagram of the hBN crystal structure, showing the hexagonal bonding
structure in each plane and the AA′ interlayer bonding structure, with orange balls representing
nitrogen atoms and purple balls representing boron atoms. (b) Schematic diagram of each unit layer
of the hBN crystal, seen from the top view, perpendicular to the plane. (c) (a–f) Band structure
diagrams of hBN with the number of atomic stacked layers being (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and
(f) bulk. As the layer number increases, the material evolves from a direct to an indirect bandgap
material [7]. [Reprinted with permission from D. Wickramaratne et al., “Monolayer to Bulk Properties
of Hexagonal Boron Nitride”, Journal of Physical Chemistry C, 122, 25524–25529 (2018). Copyright
2018, American Chemical Society]. (d) A cathodoluminescence spectrum of high-purity single-crystal
hBN. A narrow peak appears at the photon energy position 5.8 eV (215 nm), showing the deep UV
optical gap of the hBN crystal [8]. [Reprinted with permission from K. Watanabe et al., “Direct-
bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal”,
Nature Materials, 3, 404–409 (2004)].

The band structure of graphene, a hexagonal structure of carbon atoms, is characterized
by the absence of a bandgap, leading to its semi-metallic behavior. On the other hand,
the band structure of hBN includes a bandgap due to the presence of two different types
of atoms, boron and nitrogen. As a result, hBN exhibits insulating behavior and a large
bandgap opening. Figure 1c shows the band structure of hBN based on first-principles
calculation, with the number of atomic stacked layers increasing from monolayer to bulk
(infinite number of layers) [7]. Monolayer hBN exhibits a direct bandgap at the K point,
with 6.47 eV bandgap energy. However, with the increase in the number of layers of hBN,
the bandgap exhibits a transition in the conduction band, shifting to the M point while the
valence band remains at the K point, resulting in the transformation from a direct bandgap
to an indirect bandgap semiconductor.

To create high-quality hBN quantum devices, it is essential to use hBN with excellent
material quality. Efforts to grow hBN have been attempted extensively, but challenges
related to crystallinity issues and high impurity contents have often led to failures. In
2004, a group of scientists in NIMS (National Institute for Materials Science, Japan) led
by T. Taniguchi [8] successfully achieved the large-scale growth of hBN using the HTHP



Nanomaterials 2023, 13, 2344 3 of 19

(high-temperature high-pressure) method. The authors used the temperature gradient
method under HP (4.0–5.5 GPa)/HT (1500–1700 ◦C) conditions using barium boron nitride
(Ba3B2N4) as a solvent system to prepare samples of deoxidized hBN. They confirmed
the high crystallinity and low defect density with efficient deep UV emission and lasing
behavior at a photon energy of 5.7 eV (215 nm), as shown in Figure 1d, and claimed that
multilayer hBN has a direct bandgap. The ultraviolet emission spectrum of multilayer hBN
was acquired using cathodoluminescence (CL) spectroscopy, irradiating an electron beam
on the sample to excite the valence band electrons and observing the light emission during
the electron–hole recombination. Despite the efficient and intense emission from multilayer
hBN around 5.7 eV (215 nm), the basic question of the nature of the bandgap properties
and bandgap value of hBN was controversial. In 2016, G. Cassabois et al. presented
evidence that hBN has an indirect bandgap, along with evidence of a phonon-assisted
optical transition at 5.955 eV with 130 meV exciton-binding energy, through two-photon
spectroscopy and temperature-dependent photoluminescence [9]. Nevertheless, hBN has
emerged as a key material for the development of robust, next-generation optoelectronics
due to its large bandgap (close to 6 eV, and even larger in some cases) and efficient phonon-
assisted optical transition [10–13].

2. Color Centers in Ultrawide-Bandgap Semiconductors

In this chapter, we will look at the behaviors of defects and impurities in ultrawide-
bandgap semiconductors, such as diamond and hBN. Single-crystal diamonds have a
5.47 eV bandgap, making them transparent in the visible wavelength range. However, oc-
casionally, natural and artificial diamonds show various colors of luminescence depending
on their natural vacancies or extrinsic impurities in the crystal lattice under ultraviolet
excitation, as shown in Figure 2a [14]. Due to this phenomenon, optically active atomic
defects are known as “color centers” in ultrawide-bandgap materials. Figure 2b shows var-
ious types of color centers—vacancy, substitutional, interstitial, and self-interstitial—in the
crystal lattice [15]. A crystal can have a vacancy color center when the constructing atoms
are evacuated. The vacant site can be substituted with other atoms to make a substitutional
color center. The heterogeneous atom can be placed somewhere other than the exact crystal
atom place, leading to an interstitial color center. When such a place is occupied by the
original atom, it is called a self-interstitial color center.

In ultrawide-bandgap semiconductors like diamond and hBN, color centers give
rise to stable energy states within the forbidden region of the bandgap of host materials,
as shown in Figure 2c. The Franck–Condon principle explains the optical transition
between the ground state and excited state of color centers [16]. According to the
Franck–Condon principle, the nuclei are considered fixed due to their much larger
mass compared to the electrons during an electronic transition. Let us think about a
molecule consisting of two atoms. Initially, the electron is in a ground state, and two
nuclei are placed at a certain distance, called optimal bound state position. If some
amount of energy is given to the molecule, the electron jumps up from the ground state
to the excited state. After the electron state has been changed, we see that the optimal
bound state position of the nuclei (ν = 0) is no longer optimal with the new state of the
electron. With the new optimal position being created, the nuclei start to move to the
new optimal position, initiating the vibration of the nuclei. The same thing happens for
the emission process. In short, the light absorption and emission produces molecules
in vibrationally excited states (see Figure 2d). Now, we generalize this situation to a
crystal consisting of many atoms. The degree of freedom of nuclear motion can lead
to changes in the vibrational energy levels, taking into account the coupling between
the electronic and vibrational modes. This explains the interplay between electronic
and vibrational transitions in color centers in ultrawide-bandgap materials during
processes such as the absorption, emission, or scattering of light.
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Figure 2. (a) Fabricated colored diamonds of various colors with luminescent characteristics. The 
colors were observed using ultraviolet fluorescence (265 nm) using DiamondView (De Beers, Lon-
don, UK) [14]. (b) Types of color centers: vacancy, substitutional, interstitial, and self-interstitial 
color centers [15]. (c) The band diagram of the color center states formed in an ultrawide-bandgap 
semiconductor crystal. (d) A diagram of the Franck–Condon principle, showing the “ground state” 
and “excited state” with their own bound sub-states of the vibrational states. We see that the electron 
state change causes the new optimal position of the nuclei [16]. (e) Fluorescence and absorption 
spectrum of the Franck–Condon model, where the absorption spectrum is blue-shifted (higher en-
ergy) from the “energy gap”, while the emission spectrum is red-shifted (lower energy) from the 
energy gap. For example, the indication on the fluorescence peak 0→2 stands for the transition from 
ν’ = 0 to ν = 2. 

The absorption and emission spectrum consists of a sharp line corresponding to an 
“energy gap” and other lower-energy lines, with the former spectral line being the zero-
phonon line (ZPL), and the latter spectral lines being the phonon sideband (PSB) due to 
vibronic coupling. The separated spectral lines of the PSB are characteristic of an interband 
transition with a vibrational mode, such as optical and acoustic phonons, and the spectral 
wavelength of the ZPL represents the types of color centers. The principle further states 
that the intensity of the transition is directly proportional to the overlap between the wave-
functions of the initial and final electronic states. This overlap is determined by the relative 
positions of the nuclei in the two states involved in the optical transition of absorption and 
emission. In the color centers in ultrawide-bandgap materials, the Franck–Condon prin-
ciple explains the optical transitions between the ground state and excited state of the 
color centers as well as their quantum properties (see Figure 2e). 

Throughout the 2000s, significant progress was made in understanding and manip-
ulating the quantum properties of NV center diamond, including quantum control of the 
electron spin, initialization, and readout techniques. [17] Despite the promising features, 
NV center diamond also has limitations. One of the main challenges is related to the co-
herence times, which can be affected by the surrounding environment and impurities in 

Figure 2. (a) Fabricated colored diamonds of various colors with luminescent characteristics. The
colors were observed using ultraviolet fluorescence (265 nm) using DiamondView (De Beers, London,
UK) [14]. (b) Types of color centers: vacancy, substitutional, interstitial, and self-interstitial color
centers [15]. (c) The band diagram of the color center states formed in an ultrawide-bandgap
semiconductor crystal. (d) A diagram of the Franck–Condon principle, showing the “ground state”
and “excited state” with their own bound sub-states of the vibrational states. We see that the electron
state change causes the new optimal position of the nuclei [16]. (e) Fluorescence and absorption
spectrum of the Franck–Condon model, where the absorption spectrum is blue-shifted (higher energy)
from the “energy gap”, while the emission spectrum is red-shifted (lower energy) from the energy
gap. For example, the indication on the fluorescence peak 0→2 stands for the transition from ν’ = 0
to ν = 2.

The absorption and emission spectrum consists of a sharp line corresponding to
an “energy gap” and other lower-energy lines, with the former spectral line being the
zero-phonon line (ZPL), and the latter spectral lines being the phonon sideband (PSB)
due to vibronic coupling. The separated spectral lines of the PSB are characteristic of an
interband transition with a vibrational mode, such as optical and acoustic phonons, and the
spectral wavelength of the ZPL represents the types of color centers. The principle further
states that the intensity of the transition is directly proportional to the overlap between
the wavefunctions of the initial and final electronic states. This overlap is determined by
the relative positions of the nuclei in the two states involved in the optical transition of
absorption and emission. In the color centers in ultrawide-bandgap materials, the Franck–
Condon principle explains the optical transitions between the ground state and excited
state of the color centers as well as their quantum properties (see Figure 2e).

Throughout the 2000s, significant progress was made in understanding and manipu-
lating the quantum properties of NV center diamond, including quantum control of the
electron spin, initialization, and readout techniques. [17] Despite the promising features,
NV center diamond also has limitations. One of the main challenges is related to the
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coherence times, which can be affected by the surrounding environment and impurities in
the crystal lattice. The scalability of NV center-diamond-based quantum devices has been
hindered due to difficulties in fabricating large-scale devices and integrating them with
other quantum components. In recent years, researchers have turned their attention to hBN
as an alternative platform for quantum devices. hBN’s two-dimensional nature and unique
crystal structure make it an attractive candidate for quantum technologies, especially for
integration with quantum photonic circuits. As a result, efforts have been made to study
color centers in hBN as a potential replacement for NV center diamond.

The band structure of diamond (Figure 3b) [18,19] is characterized by a large bandgap
between the valence band and the conduction band. The NV center diamond introduces
localized energy levels within the bandgap, creating an energy level scheme that involves
electronic transitions between these levels. The NV center diamond has a ground state and
two low-lying excited states, separated by a zero-phonon line (ZPL). The ZPL wavelength
of the NV center in diamond is around 637 nm (nanometers) in the visible region of the
electromagnetic spectrum. The ground state corresponds to the electronic configuration
of a nitrogen atom in a substitutional site in a diamond lattice with an unpaired electron
spin. The two excited states are associated with transitions involving the nitrogen spin and
lattice vibrations (phonons).
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tride, hBN has a wider bandgap in the ultraviolet range, typically around 6 eV. The color 
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Figure 3. (a) Simplified atomic structure of the NV center diamond, consisting of a substitutional
nitrogen atom (red), an atomic vacancy (white), and carbon atoms (blue) [17]. (b) PL spectrum and
energy level diagram in the NV center in diamond. The primary transition between the ground-
and excited-state triplets is spin conservation. Decay via the intermediate singlets gives rise to spin
polarization by converting spin from ms = ±1 to ms = 0 [18].

The NV center diamond’s energy level structure exhibits spin-dependent optical
transitions, meaning that its optical properties are sensitive to the spin state of the electron.
This spin-dependent nature allows for an efficient and high-fidelity readout of the NV
center’s electron spin state, a crucial property for quantum information processing. In
conclusion, the NV center in diamond possesses unique properties related to its electronic
bandgap, such as spin-dependent optical transitions and a sharp zero-phonon line emission
peak [20]. Comparing NV center diamond and color centers in hexagonal boron nitride,
hBN has a wider bandgap in the ultraviolet range, typically around 6 eV. The color centers
in hBN exhibit broadband photoluminescence in the visible and UV regions. Diamond
also has a large bandgap of approximately 5.5 eV, and the NV center diamond exhibits
well-defined optical transitions with a zero-phonon line (ZPL) at around 637 nm in the
visible spectrum.

The coherence times of the color centers in hBN are generally shorter than those of
NV center diamond. Unlike carbon atoms in diamonds, nitrogen and boron atoms in hBN
have nuclear spins, which hinder the spin from being in coherent states. On the contrary,
NV center diamond are renowned for their long coherence times at room temperature. In
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Ref. [21], M. Ye et al. performed computer simulations to obtain the spin coherence times
of four different 2D materials, namely delta-doped diamond layers, thin Si films, MoS2,
and hBN. Compared to three other materials whose spin coherence times are around a few
milliseconds, hBN exhibited significantly short spin coherence times, which are only about
10~30 microseconds, two orders of magnitude smaller than the others. The boron-vacancy
color center in hBN (which will be discussed again in Section 5.2) is well known for its
spin texture, but the spin coherence lifetime is limited compared to that of NV center
diamonds. The experimental study Ref. [22] tells us that the spin coherence lifetime of an
hBN defect measured via Rabi oscillation was 10 microseconds at a cryogenic temperature
of T = 8 K, while an NV center diamond recorded a much longer spin coherence time of
400 microseconds even at room temperature.

However, improvements in coherence times have been shown by careful engineering
of the local environment and isotopically purifying the hBN samples. The study Ref. [23]
demonstrated that the coherent manipulation of VB

− spinful color centers in hBN was pos-
sible even at room temperature by applying pulsed spin resonance protocols. Moreover, at
cryogenic temperature, spin-lattice relaxation time achieved the record of 18 microseconds,
which is three orders of magnitude larger than its usual value. In Ref. [24], the authors
performed computation on the temporal properties of decoherence by combining density
functional theory (DFT) and cluster correlation expansion (CCE), and demonstrated that
the coherence time can be extended by the factor of three by replacing all the boron atoms
in the hBN crystal to 10B isotopes.

The luminosity factor of the color centers for quantum photonic applications is usually
measured by the number of photons emitted from optically saturated single-photon emit-
ters. In a previous study, a nitrogen-vacancy single-photon emitter [25] achieved 4.2 Mcps
(million photon counts per second), showing compatibility with other materials, such as
NV center diamond and SiC, with a brightness of roughly 0.1~1 Mcps.

3. Fabrication Process of Color Centers in hBN
3.1. Thermal Annealing Method

The thermal annealing method is a process that involves heating pristine hBN crystals
to high temperatures, typically between 550 ◦C and 850 ◦C, in a vacuum and several gas
environments, as shown in Figure 4a. This technique has the distinction of being the very
first technique used to create quantum-light-emitting color centers in hBN crystals [25],
and it has since become a common and standard method for producing single-photon
sources at room temperature [26]. The color centers, such as intrinsic vacancies, are
randomly generated through thermal annealing and undergo extensive examination using
photoluminescence spectroscopy, revealing that a sharp zero-phonon line (ZPL) peak
appears around 560–650 nm with multiple phonon sideband (PSB) peaks. It is worth noting
that while the basic thermal annealing technique can produce color centers with sharp
spectra and stable emissions, it does not necessarily ensure the stability of the spectrum or
the deterministic wavelength and position of the color centers. Despite these limitations,
thermal annealing remains a valuable technique for producing color centers in hBN crystals,
and its widespread use has spurred the development of new and improved methods for
color center fabrication.

3.2. UV Ozone Treatment Method

UV ozone treatment of pristine hBN is also used for color center activation. C. Li
et al. demonstrated the creation of color centers and their single-photon emission from
hBN through thermal annealing and UV ozone treatment [26]. Inside the UV ozone etcher,
the ozone is produced from the oxygen molecules (O2) in the air. They are broken into
individual oxygen atoms (O + O) by the high-power ultraviolet light from the UV lamp,
which react with oxygen molecules to produce ozone molecules (O3). hBN samples are
placed inside a commercially available UV ozone cleaner for 15, 30, and 60 min; then, the
samples are examined via PL spectroscopy. Ozone-treated color centers in hBN have shown
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a sharp ZPL spectrum of 567.1 nm with an FWHM linewidth of 3.19 nm [26], which shows
the advantage of the UV ozone treatment technique (see Figure 4b).

3.3. Laser Writing Method

The creation of deterministic atomic-scale vacancies or defects in an hBN crystal by
firing a focused laser beam onto the sample was demonstrated by C. Palacios-Berraquero
et al. [27]. They created a 2D lattice of color centers with a five-micrometer interval in hBN
using a single-shot femtosecond pulse laser with a pulse width of less than 500 fs and an
energy range from 30 to 60 nJ. Photoluminescence (PL) scanning of the sample revealed that
the laser writing color center fabrication process is highly deterministic, with color center
emissions (530–600 nm) visible from nearly all irradiated spots. Large-scale, high-yield
lattice arrays of color center spots can be produced with this method. However, the ZPL
wavelengths are widely distributed between 530 nm and 600 nm, rendering this technique
only useful for independently operating photon sources (see Figure 4c).

3.4. Local Strain Method Using Micropillars

The transfer of hBN onto a nanofabricated pillar substrate shows the advantage of
highly concentrated nanoscale strain on atomically thin crystals that can yield vacancies
or defects. By utilizing a patterned substrate that generates a strained area via a nano-
sized pillar, color centers can be created in intentional locations. This patterned substrate
technique has also been applied to WSe2 monolayer crystals at cryogenic temperatures
in the studies [28,29], and it has since been adapted to study room-temperature quantum
emitters in hBN. In 2018, N. V. Proscia et al. [28] prepared an atomically thin hBN sheet
grown through chemical vapor deposition (CVD) on a copper substrate. As depicted in
Figure 4d [30], the authors mechanically transferred hBN onto a nanoscale pillar-patterned
substrate to induce nano-sized strain at deterministic positions. Through this process,
they were able to successfully generate color centers with an emission wavelength of
approximately 540 nm at room temperature.

An alternative approach to the pillar substrate method involves growing hBN crystals
natively strained at deterministic positions [31]. A thin hBN crystal can be fabricated
using the CVD process by applying borazine gas onto a silicon oxide/silicon substrate at
a high temperature of approximately 1200 ◦C. Unlike the previous method, this process
intentionally creates defects early on during the crystal growth phase through natural
crystal strain without the need for external atoms. To implement the pillar substrate method,
one can prepare a nano-sized circular pillar array on the substrate using photolithography
techniques. The pillars have a lattice constant of 2500 nm, a height of 650 nm, and a
diameter of 500 nm. Through this preparation, CVD-fabricated thin hBN crystals naturally
have strong strain on top of each pillar. Wide-field photoluminescence (PL) imaging reveals
that at least half of the strain created on top of the pillars leads to bright emitting sites. The
ZPL and PSB positions are around 608.5 and 663.9 nm, respectively, demonstrating a red
visible emission. This method is particularly advantageous for producing color centers
with deterministic positions.
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Figure 4. Fabrication methods of hBN color centers. (a) Thermal annealing method. The hBN
crystals are usually placed inside a furnace at ~500 ◦C for ~30 min in a vacuum or environment
to create defects in the crystal [26]. (b) UV ozone plasma method. The hBN crystals are placed
inside a commercially available UV ozone cleaner for ~30 min, and the highly reactive ozone creates
defects [26]. (c) Laser writing method. The hBN crystal is damaged with a single-pulse laser with
energy of 50 nJ, and the array patterns are written [27]. [Reprinted with permission from L. Gan et al.,
“Large-Scale, High-Yield Laser Fabrication of Bright and Pure Single-Photon Emitters at Room
Temperature in Hexagonal Boron Nitride”, ACS Nano, 16, 14254–14261 (2022), Copyright 2022,
American Chemical Society]. (d) Pillar array method. A thin layer of hexagonal boron nitride is
transferred to silicon oxide with a micro-size pillar array to induce local strain points in the hBN layer.
The characteristic emissions are observed using confocal PL mapping on every single pillar point,
showing the near-deterministic nature and high brightness of the pillar emitters [30]. [Reprinted with
permission from N. V. Proscia et al., “Near-deterministic activation of room-temperature quantum
emitters in hexagonal boron nitride”, Optica, 5, 1128 (2018), Copyright 2018, American Chemical
Society]. (e) Solvent exfoliation method. The hBN crystal is originally hydrophobic, but surface
treatment with polyvinylpyrrolidone (PVP) molecules makes hBN soluble in water [32]. [Reprinted
with permission from Y. Chen et al., “Solvent-Exfoliated Hexagonal Boron Nitride Nanoflakes for
Quantum Emitters”, ACS Applied Nano Materials, 4, 10449–10457 (2021), Copyright 2021, American
Chemical Society].

3.5. Solution Exfoliation Method

The natural hBN crystal possesses hydrophobic properties and is insoluble in water
or any other polar solvent. However, to make it soluble, a water-soluble polymer-based
surfactant, polyvinylpyrrolidone (PVP), can be added to the solution. PVP has a large
molecular chain of 40,000 Da and is commonly used in nanoparticle synthesis and biomedi-
cal research. It reduces the surface energy of water, making hBN powder soluble in water.
To exfoliate thin hBN nanoflakes, hBN powder is added to an aqueous PVP (0.1 M) solution,
and a probe ultra-sonicator is submerged into the solution for half an hour. The resulting
water-dissolved hBN solution can then be dropped onto a thermal oxide silicon substrate.
The substrate is then annealed at 850 ◦C in argon (1 Torr) to completely dry the solution [32].
The aqueous hBN solution is applied to the silicon substrate and completely dried to leave
hBN flakes with random natural defects and color centers. This process not only produces
an hBN crystal but also activates color centers for use as light emitters. Furthermore, this
annealing technique can also be used to make a pristine hBN crystal defective. The resulting
crystal from the heat-dried solution now has defects that can be used as a color center light
emitter. Although the distribution of wavelengths is not very homogeneous, with values
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ranging from 582 nm to 614 nm in five different samples, this technique still produces
useful and independently acting color center emitters (see Figure 4e).

4. Wavelength of Color Centers in hBN

The emissions of photons with different wavelengths depend on the types of color
centers in hBN, and they display a stable ZPL emission with single-photon emission and
spin qubit characteristics at room temperature. These properties of color centers in hBN
make them promising candidates for solid-state UV light sources and quantum information
applications. Optical excitation and PL spectroscopy observations are the most commonly
used and easily accessible methods to study the electronic structure of hBN color centers.
Recent PL spectroscopy studies have revealed the existence of numerous color centers in
hBN, making it crucial to survey observed color center emissions to identify the origin of
the atomic configuration of color centers in hBN.

In this paper, we compiled data from recent research papers published between the
years 2016 and 2023 ([6–99]). For further analysis, we present a histogram of the ZPL
wavelength of the color centers in hBN, as shown in Figure 5a, which includes 148 data
points. The results show that the majority (nearly 50%) of the ZPL is located in the green-to-
red visible range (550~650 nm), with some (about 15%) ultraviolet emissions (300~400 nm)
and a small number of near-infrared (near-IR) emissions longer than 750 nm. To represent
each region of the wavelength, we selected three representative emission spectra, which
are shown in Figure 5b–d. Figure 5b from Ref. [39] represents a rare deep ultraviolet
emission (~303 nm) from a carbon substitutional color center at a nitrogen site, excited
via cathodoluminescence (CL). Figure 5c from Ref. [25] represents the green-to-red visible
region (~630 nm), where the majority of hBN color centers are located. Finally, Figure 5d
from Ref. [22] represents the near-infrared (near-IR) region (~850 nm) from a boron-vacancy
color center. Based on this survey, we can conclude that hBN color center emission covers
almost all ranges of visible light, including the deep UV and near-IR regions.
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Figure 5. A survey of hBN color center emission wavelengths. (a) ZPL wavelength of color centers in
the hBN distribution [6–99]. (b) Deep ultraviolet emission with a photon energy of 4.1 eV (equivalent
to the wavelength of 303 nm) from a carbon impurity color center [35]. [Reprinted with permission
from R. Bourrellier et al., “Bright UV Single Photon Emission at Point Defects in h-BN”, Nano Letters,
16, 4317–4321 (2016), Copyright 2016, American Chemical Society]. (c) Visible emission of 630 nm from
a nitrogen-vacancy color center [25]. [Reprinted with permission from T. T. Tran et al., “Quantum
emission from hexagonal boron nitride monolayers”, Nature Nanotech, 11, 37–41 (2016)]. (d) Near-
infrared emission of 850 nm from boron-vacancy color centers [22]. [Reprinted with permission from
A. Gottscholl et al., “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at
room temperature”, Nature Materials, 19, 540–545 (2020)].
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5. Atomic Configuration of Color Centers in hBN

In the previous chapter, we explored the optical characteristics of color centers in
hBN. However, to gain a deeper understanding of the origins of these optical responses,
we need to reveal the specific color center types within the atomic-scale microscopic
structures. Investigating the source of luminescence in color centers in hBN proves to be
challenging, but several potential candidates have been suggested. Figure 6 presents a
possible illustration of the atomic configuration of diverse hBN color centers with vacancies
and substitute carbon atoms.
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Figure 6. Atomic structure of color centers in hBN with intrinsic vacancies and carbon impurities.
There are various hBN color center types with substitute atoms. Here, we present VN (nitrogen
vacancy), VB (boron vacancy), VBCN (boron vacancy and carbon substitution at the nitrogen site),
VNCB (nitrogen vacancy and carbon substitution at the boron site), and CBCN (carbon substitutions
at the nitrogen and boron sites).

5.1. Nitrogen Vacancy

The generation of nitrogen-vacancy color centers in hBN crystals is commonly achieved
through the argon-atmosphere thermal annealing method. By employing ab initio compu-
tations, the energy diagrams for the two distinct types of nitrogen-vacancy color centers
have been studied. These color centers have been experimentally observed using opti-
cal spectroscopy and single-photon emission experiments, as depicted in Figure 7 [25].
Figure 7a shows a room-temperature PL spectroscopy result, which compares the spectra of
color centers from multilayer and monolayer hBN. Both spectra have the same sample ZPL
peak wavelength of 625 nm (1.98 eV). However, the line widths of the spectra are different.
The multilayer color center has a narrow emission with a full width at half maximum
(FWHM) of around 5 nm, which allows for easily distinguishing between the ZPL peak
(a single peak at 625 nm) and the PSB peaks (double peak around 680 nm). On the other
hand, the monolayer color center has a broad emission with an FWHM of around 20 nm,
which only allows for the observation of the ZPL peak. We attribute the broader phonon
sideband emission from the monolayer hBN to the stronger phonon interaction with the
substrate in monolayer hBN crystal structure, where the atomically thin monolayer hBN is
more vulnerable to electron–phonon interaction.

The study of reference [25] proposed the atomic structure of the color center between
the ordinary nitrogen vacancy (VN) and the anti-site nitrogen vacancy (NBVN), which is a
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nitrogen-vacancy color center where boron is substituted for nitrogen. Figure 7b shows
the atomic structure of NBVN. This particular NBVN configuration is a common form of
nitrogen-vacancy color center in hBN, with bright emission at a photon energy of 1.9~2.15
eV and stable quantum emission properties at room temperature. The quantum emission
properties of NBVN were confirmed to be PL intensity saturation features and single-
photon emission through a second-order time correlation g(2) measurement, as shown in
Figure 7c,d. In order to distinguish between the two types of nitrogen-vacancy color centers,
VN and NBVN, it is necessary to consider not only the difference in the ZPL wavelength
but also the polarization characteristics. Unlike the color center type VN, which exhibits
azimuthal rotation with a 360◦ rotational symmetric emission, the color center type NBVN
emits highly anisotropic and linearly polarized photons. The study of Ref. [25] observed a
highly linearly polarized emission, which indicated that the color center corresponded to
NBVN based on its polarization properties and characteristic wavelength of 630 nm.
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Figure 7. Nitrogen-vacancy-based hBN color center [25]. [Reprinted with permission from T. T.
Tran et al., “Quantum emission from hexagonal boron nitride monolayers”, Nature Nanotech, 11,
37–41 (2016)]. (a) Room-temperature photoluminescence spectra of a defect center in an hBN mono-
layer (blue) and multilayer (red). (b) Schematics of the anti-site nitrogen vacancy NBVN. (c) An-
tibunching curves from an individual defect center in an hBN monolayer (blue open circles) and
multilayer (red open circles). (d) Fluorescence saturation curve obtained from a single defect.

5.2. Boron Vacancy

The boron-vacancy color center in hBN usually appears in the form of a negatively
charged state of VB

−, as shown in Figure 8a, which is often created by bombarding high-
energy particles, such as heavy ions, neutrons, and electrons. PL spectroscopy of the VB

−

color center generated by bombarding a lithium/gallium ion beam showed a characteristic
broad peak centered at around 850 nm [22], as shown in Figure 8b. The zero external mag-
netic field energy level diagram of VB

− is well known to be accompanied by an electronic
spin-triplet (S = 1) system (see Figure 8c). The three triplet states are grouped into two
levels, mS = 0 and mS = ±1, where the two states of mS = ±1 are energetically degenerated.

The important factor describing the negatively charged boron-vacancy color center in
hBN, VB

−, is the zero-field splitting (ZFS) splitting D value, which is the energy splitting
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between the state mS = 0 and the states mS = ±1 (degenerated, same values). The value
of ZFS is D = 14 µeV, which corresponds to D/h~3.5 GHz. This kind of ZFS can be de-
tected through optically detected magnetic resonance (ODMR) measurements, as shown in
Figure 8d, and has been found to remain stable even in high-temperature environments
up to 600 K. Under an external magnetic field applied to the VB

− color center, ZFS level
splitting between the states of mS = ±1 is increased, and magnetic-field-dependent ODMR
splitting can be measured, as shown in Figure 8c,d [22,85,86]. An electron paramagnetic
resonance (EPR) measurement can be performed to directly confirm that the emission is
from the boron vacancy by detecting a seven-line structure induced by the hyperfine inter-
action of the electron spin with three equivalent nitrogen-14 nuclei. The zero-field splitting
of VB

− varies sensitively with the temperature, pressure, external magnetic field, and strain.
For example, the ZFS value of VB

− varies by ~120 MHz between room temperature and
4 K out of 3.5 GHz. The VB

− color center instability can be exploited to detect any change
in the environment, paving the way for quantum sensors.
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Figure 8. Boron-vacancy color center in hBN. (a) Schematic crystal structure of a negatively charged
boron-vacancy color center. (b) PL spectroscopy result of VB

− showing the characteristic broad
emission spectrum centered around 850 nm. (c) Energy diagram of VB

− color center energy levels
depicting the triplet ground state. (d) Dependence of ODMR frequencies as a function of the magnetic
field (B || c) [22]. [Reprinted with permission from A. Gottscholl et al., “Initialization and read-out
of intrinsic spin defects in a van der Waals crystal at room temperature”, Nature Materials, 19,
540–545 (2020)].

5.3. Oxygen Impurities

Oxygen vacancies in hBN crystals are typically created through thermal annealing
or argon plasma etching. In a study by Yang et al. [86], a PL spectrum with an emission
peak at 711 nm was observed at room temperature and 11 K after argon plasma etching
and annealing of hBN crystals. A PL mapping comparison also showed the effect of
oxygen-plasma-induced color center creation. X-ray photoemission spectroscopy (XPS)
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confirmed the presence of oxygen bonding after plasma etching, indicating the existence
of an oxygen-impurity-based hBN color center. Among the theoretically possible oxygen
color centers, VBO2, a two-oxygen-atom hBN color center, is proposed as a strong candidate
for luminescent oxygen color centers. Another method to create oxygen-related hBN
color centers is oxygen plasma etching. In 2021, Na et al. [87] demonstrated how to
modulate hBN’s optical and electrical properties by inducing color centers via oxygen
plasma treatment. Their study showed prominent PL peaks around 720 nm, and as the
time of exposure to the oxygen plasma became longer, the characteristic PL peaks of the
oxygen color centers ON, VB, VBON, VBO2, and VN also grew (Figure 9).
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Figure 9. Oxygen-impurity-based hBN color center. (a) Photoluminescence (PL) spectra of hBN, with
the oxygen plasma treatment time. (b) Color center structures of ON, VB, VBON, VBO2, and VN,
and electronic structure. Black arrows indicate spin-up/down in occupied states, while gray arrows
indicate empty states [87]. [Reprinted with permission from Y. Na et al., “Modulation of optical and
electrical properties in hexagonal boron nitride by defects induced via oxygen plasma treatment”, 2D
Materials, 8, 045041 (2021)].

5.4. Carbon Impurities

We observed that the color center types mentioned earlier cover a significant portion
of the visible wavelength range. The nitrogen-vacancy color center spans approximately
600 nm, the oxygen impurity color center covers around 700 nm, and the boron-vacancy
color center extends to approximately 850 nm. Now, we will shift our focus to a new
wavelength region, namely the blue and UV emitters, with wavelengths ranging from 300
to 450 nm. Carbon-related color centers are usually created by injected carbon impurities
during the synthesis process of the hBN crystal itself. The synthesis process of hBN
is usually carried out in a high-pressure high-temperature (HPHT) environment or an
atmospheric-pressure high-temperature (APHT) environment, leading to a significant
amount of impurity injection, and carbon is the impurity with the largest portion.

As demonstrated in Figure 1b, CL spectroscopy of single-crystal high-purity pristine
hBN crystals does not exhibit any discernible peak in the vicinity of approximately 4.1 eV
(around 300 nm). However, Figure 10a [89] reveals that hBN crystals enriched with carbon
display a distinct and vibrant emission at approximately 4.1 eV (300 nm). A comparison
of the spectra between high-purity pristine hBN and carbon-rich hBN illustrates that the
addition of carbon impurities significantly suppresses the prominent 215 nm peak observed
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in the pure sample by one order of magnitude. Instead, new peaks emerge in the range
of 300 nm to 350 nm (corresponding to photon energies of 3.5 to 4.1 eV), revealing the
presence of a deep ultraviolet (UV) optical gap within the hBN bandgap.
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Figure 10. Carbon-impurity-based hBN color center. (a) Cathodoluminescence spectrum of a high-
purity hBN sample and an impure sample. As the impurity is added, the 215 nm peak is quenched
by an order of magnitude, and other peaks appear around 300 nm~350 nm, showing the deep UV
optical gap of the hBN crystal [89]. (b) Simulated PL spectrum of a dimer (CNCB), 4C pair, and 6C
ring where the ZPL energies are aligned for the sake of comparison of PSBs [90]. (c) Extended set of
hBN carbon color centers with different numbers of substituted carbon atoms: 2, 4, and 6. Orange:
nitrogen; purple: boron; black: carbon [91]. (d,e) Low-temperature (5 K) spectra of the eight spots
with two different spectral resolutions showing a reproducible ZPL within 0.7 nm [99].

The vibrational peaks observed in the PL, in accordance with the Franck–Condon
principle discussed in Section 2, are noteworthy. In a prior investigation [90], A. Vokhmint-
sev et al. conducted a detailed analysis of a well-defined PL spectrum associated with
the carbon-impurity-related color centers in hBN. These clear vibrational peaks show a
significant sign of quantum oscillation inside the carbon color center. This luminescence is
suspected to originate from carbon dimers like CNCB or carbon monomer defects like CB
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and CN. A carbon atom can form not only these simple defect structures but also complex
color centers such as VBCN or VNCB. Even more complex structures are possible, as shown
in Figure 1c [91], with the extended set of hBN carbon color centers with different numbers
of substituted carbon atoms; i.e., 2, 4, and 6. Figure 10b shows a simulated PL spectrum
of carbon color centers in the form of a 6C ring, 4C pair, and 2C carbon dimer through ab
initio computation, which matches well with the experimentally measured PL spectroscopy
of carbon impurities in hBN.

There have also been computational studies on VBCN and VNCB for platforms of spin–
orbit coupling, optical transition, and ZFS. VBCN color centers show visible luminescence
and hold a triplet ground state, while VNCB holds a singlet ground state. The spin texture of
these carbon color centers is also under investigation for making use of them for quantum
memory. Carbon-based color center defects in hBN are being actively studied as single-
photon emitter platforms for quantum information; in particular, the stable emission of an
ultraviolet photon from the 6C color center is gathering the most attention ([91–99]).

Recently, there has been prominent research on carbon-based color centers, which
are called blue emitters (see Figure 10d,e [99]). In one study, color centers were created
using the electron beams of a commercial SEM, and the low-temperature (down to 5 K)
spectroscopy study revealed that the emission from this type of color center has a narrow
emission wavelength of 435.5 ± 0.3 nm. The great repeatability and single-photon purity
of the blue emitter technique show its potential for creating the ideal quantum light source,
paving the way for optical quantum information usage.

6. Conclusions

Through a comprehensive review of the color centers in hBN, we explored various
aspects of hBN color centers, encompassing their fundamental photon emission principles,
categorization based on emitted wavelengths, fabrication methods, and microscopic atomic
structures. We summarized the unique properties associated with each type of defect, pro-
viding insights into their specific characteristics and potential applications. The literature
survey revealed that due to the ultrawide bandgap of hBN, color centers can exhibit a
diverse range of colors spanning the visible, near-infrared, and ultraviolet regions. Among
the atomic vacancies and impurities, the carbon color centers stand out as promising candi-
dates. The carbon color centers demonstrate theoretically predictable room-temperature
UV emission characterized by remarkable brightness and stability. This aspect renders
them highly intriguing for potential applications in quantum technologies and advanced
UV optoelectronics.

Some of hBN’s key applications include, but are not limited to, quantum photonics
and UV optoelectronics. In quantum photonics, hBN is being explored as a platform for
on-chip integrated quantum photonic devices. It can be used to create sources of single
photons from color centers, which are crucial for quantum information processing and
quantum key distribution. Compared to other materials, such as NV center diamond and
silicon carbide (SiC), hBN has a great advantage in that it is an atomically thin 2D material;
therefore, its integration into quantum photonic chips and the manipulation of optical
properties, such as straining the device, are much easier.

In UV optoelectronics, hBN possesses a wide bandgap, making it an excellent candi-
date for UV optoelectronic applications. It can be used to create efficient UV light emitters,
detectors, and sensors. hBN-based LEDs can be used in advanced UV lighting applications,
such as sterilization, water purification, and UV curing processes, in industries. These
applications highlight the broad potential of hBN in advancing quantum technologies
and UV optoelectronics, enabling the development of more efficient, compact, and robust
devices for various scientific and industrial applications.
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