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Abstract: Thermal management is a key issue for the downsizing of electronic components in order
to optimise their performance. These devices incorporate more and more nanostructured materials,
such as thin films or nanowires, requiring measurement techniques suitable to characterise thermal
properties at the nanoscale, such as Scanning Thermal Microscopy (SThM). In active mode, a hot
thermoresistive probe scans the sample surface, and its electrical resistance R changes as a function of
heat transfers between the probe and sample. This paper presents the measurement and calibration
protocols developed to perform quantitative and traceable measurements of thermal conductivity
k using the SThM technique, provided that the heat transfer conditions between calibration and
measurement are identical, i.e., diffusive thermal regime for this study. Calibration samples with a
known k measured at the macroscale are used to establish the calibration curve linking the variation
of R to k. A complete assessment of uncertainty (influencing factors and computational techniques) is
detailed for both the calibration parameters and the estimated k value. Outcome analysis shows that
quantitative measurements of thermal conductivity with SThM (with an uncertainty value of 10%)
are limited to materials with low thermal conductivity (k < 10 W m−1 K−1).

Keywords: uncertainty; thermal conductivity; SThM; nanoscale; Monte Carlo method; propagation
of distribution; error-in-variables; Bayesian analysis

1. Introduction

The issues of thermal management in electronic devices (cell phones, laptops, bat-
teries. . . ) became more and more important with the progressive miniaturisation of com-
ponents observed during the last decades. Understanding heat transfer processes in the
corresponding nanostructured materials and devices requires accurate knowledge of the
thermal properties of the materials used at the nanoscale. To meet these needs, several opti-
cal and near-field techniques have been developed to obtain local thermal information on a
small scale [1]. Among these measurement methods, the Scanning Thermal Microscopy
(SThM) [2,3] is the most used technique as it enables to reach a lateral resolution less than
100 nm with appropriate probes [4,5], whereas optical approaches such as photothermal
radiometry [6], thermo-reflectance [7], and photo-reflectance [8] are limited by light diffrac-
tion and have thus higher lateral spatial resolution. Based on conventional atomic force
microscopy (AFM) equipped with a miniaturised thermal sensor, SThM devices have been
developed actively since the 1990s in order to operate either in passive mode for surface
temperature measurements [9] or in active mode for phase transition detection [10], thermal
contact resistance [11], and thermal conductivity contrast imaging [12–14].

SThM is, in addition, a promising technique for performing quantitative measure-
ments of thermal conductivity at the nanoscale [15]. During the last decade, abundance
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experimental measurements have been performed with the SThM technique to quantify
the thermal properties of nanoscale structures. For example, the thermal conductivity of
nanowires embedded in a matrix was estimated [16,17]. SThM has also been used to mea-
sure the thermal conductivity of graphene oxide nanosheets [18] or ZnO thin films [14,19].
Unfortunately, most of the results in the literature are given without associated uncertainty
or with uncertainties corresponding only to the range or the standard deviation [20] of
multiple measurements, and are not traceable to the International System of Units (SI).

The objective of this paper is to provide complete guidance for the calibration of SThM,
for traceable estimation of the thermal conductivity k at nanoscale and the evaluation of
its associated uncertainty using the SThM apparatus, which is a new contribution in this
field. This assessment is not trivial because the measurement of the thermal conductivity
k of a sample by SThM technique is an indirect measurement method [21] which can be
represented with the following implicit measurement model [21]

h(k, Y, Q1, . . . , Qn) = 0, (1)

where h is a function that relates the measurand k (the quantity intended to be mea-
sured [22]) to an intermediate measurand Y linked to the variation of the thermo-electrical
response of the probe (such as the electrical resistance, the temperature, and the electro-
motive force (EMF), depending on the type of probe used), and to other quantities Qi,
i = 1, . . . , N involved in the measurement. The elements h, Y and Qi of (1) are described
thereafter.

In SThM active mode, the probe acts both as a heater and as a sensor. In steady state,
the hot probe exchanges a constant heat flow corresponding to a GTot thermal conductance
(reciprocal of the thermal resistance) with its surroundings. In air, when the probe is far
from the sample, the heat flux dissipates only through the cantilever and the air. When
the probe is in contact with a sample, an additional channel is opened for the heat flux
to the sample. This thermal flux is characterised by a thermal conductance Gsample and is
function of the thermal conductivity k of the sample among other influencing parameters.
The variation Y of the thermo-electrical response of the probe between the measurements
performed far from the sample and measurements performed in contact with the sample is
representative of this thermal conductance Gsample and by the way of k of the sample. Two
steps can then be followed in order to determine the measurement function h in (1) linking
the intermediate measurand Y to the measurand k and the Qi.

The most challenging way is to build a complete theoretical physical model describing
the heat transfer between the probe and the sample that remains complex and involves
many influencing quantities [15]. The easiest way that is used in this paper is to build a
calibration curve [23–27], based on the measurements of a set of bulk calibration materials
with well-known thermal conductivities, and to fit the experimental points with a model
deduced from phenomenological studies of the measurements [27,28]. The use of this
model and of the calibration curve is based on a strong assumption: the heat transfer condi-
tions are the same during calibration on bulk calibration materials as during measurement
on the studied material. The advantage of this method is that it can ensure measurement
traceability, provided that the thermal conductivity measurements of the calibration mate-
rials are themselves traceable. The International Vocabulary of Metrology (VIM) defines
metrological traceability as the “property of a measurement result whereby the result
can be related to a reference through a documented, unbroken chain of calibrations, each
contributing to the measurement uncertainty” [22].

The evaluation of the uncertainty associated wih the estimated value of k requires the
evaluation of uncertainties associated with (Y, Q1, . . . , Qn) and the inversion procedure.
Due to the absence of an explicit relationship between the measurand k and the uncer-
tainty sources (Y, Q1, . . . , Qn), it is challenging to perform standard uncertainty evaluation
using the traditional law of propagation of uncertainties [29]. One solution is to apply
Bayesian statistical inversion in order to both predict the value k∗ of k corresponding to
an observed value y∗ of Y and estimate the parameters of the SThM calibration curve and
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their associated uncertainties. The interest of this approach is the joint estimation of the
calibration parameters and the thermal conductivities from fresh SThM measurements
in addition to the calibration data. The marginal posterior distribution π(k∗|y, y∗) can
be considered as the measurement result, from which can be extracted point estimates,
standard uncertainties, and 95% credibility intervals.

Previous works performed at LNE (Laboratoire National de Métrologie et
d’Essais) [30,31] present measurement and calibration procedures with the aim of per-
forming quantitative and traceable measurements of k at nanoscale by the SThM technique.
A measurement protocol named “dark mode”, where the laser of the optical force detection
system of the SThM is switched off, has been proposed to avoid the bias induced by the
overheating of the thermoresistive probe due to the laser beam [31]. An analysis of the
measurement process and the uncertainty associated with the intermediate measure (cor-
responding to the electrical resistance variation ∆R of the probe) have been described in
detail [30]. Then, a new intermediate measurand Y was defined, and the measurement and
calibration protocols were improved in order to build the calibration curve (using a theoret-
ical model and experimental measurements on bulk materials) to ensure the traceability to
the International System of Units (SI) of measurements at nanoscale.

Based on Bayesian inversion, this paper presents the first complete uncertainty assess-
ment for calibration of SThM apparatus for thermal conductivity k measurements. It details
the measurement, calibration, and uncertainty assessment processes at the macro-scale and
investigates the determination of thermal conductivity at the nano-scale, as well as the
assessment of the corresponding measurement uncertainty as illustrated in Figure 1.

Figure 1. Representation of the workflow for establishing traceability to the SI for thermal conductiv-
ity measurements by SThM technique for measurements in diffusive thermal regime.

2. Materials and Methods

SThM is an atomic force microscope (AFM) with an instrumented probe acting as
a thermal sensor. Therefore, SThM offers the possibility to characterise surfaces at the
nanometric scale in terms of topography, such as standard AFM, as well as in terms of
thermal properties. In order to perform thermal conductivity measurements, the probe
acts both as a sensor and as a heater. When the probe maps the surface of a sample, its
electrical resistance changes as a function of its own temperature, depending on, inter alia,
heat transfer between the probe and the sample. In this section, the equipment, the used
resistive probes, the SThM measurement protocol, the calibration protocol elaborated to
perform SI traceable measurement, and the uncertainty assessment method are presented.
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2.1. Measurement Equipment
2.1.1. SThM System

The LNE’s scanning thermal microscope is a commercial NTEGRA scanning probe
microscope from the NT-MDT company. The dedicated Nova-Px software-v2013 enables
accurate displacements of sample against the probe using x, y, and z directions of piezo-
electric scanners. The contact force between the probe and the sample is controlled using a
classical optical feedback system that includes a laser diode beam reflected on the cantilever
and a quadrant of photodiodes. In addition to the standard deflection signal of the laser
beam, the oscilloscopes included in the software enable the recording of signals from the
thermal unit as current intensity or voltages.

2.1.2. Resistance Temperature Probe

The resistance temperature probes used for this study are constituted from a SiN-
grooved cantilever with gold pads. A fine resistive ribbon of palladium (about 150 µm
length) is deposited on the tip of the cantilever, as illustrated in Figure 2. These probes,
called KNT probes, are provided by Kelvin Nanotechnology. The new generation of
KNT probes has a nominal electrical resistance R(Tambient) in the range of 340 Ω to 450 Ω

(measurements performed on a set of 12 probes).

(a) (b)
Figure 2. SEM images of a KNT probe (2an type): (a) View of the SiN cantilever with the two gold
pads (b) Zoom on the tip with the resistive Pt ribbon at deposited at the top end of the tip.

2.1.3. Thermal Unit

The probe is included in a homemade thermal unit that encloses a current generator
whose amplitude ISThM extends from 750 µA to 1350 µA and a Wheatstone bridge that
is a well-established technique for accurate electrical resistance measurements. Figure 3
describes the homemade thermal unit with a scheme of the Wheatstone bridge adapted to
the KNT resistance temperature probes. One leg of the bridge is comprised of the SThM
resistance temperature probe in series with a fixed precision resistor R1. The other leg is
comprised of an adjustable resistance Ra in series with two precision resistors R2 and R f .
The precision resistor R2 is fixed, and R f is a calibrated decade resistor (DB62-11K from
IET Labs) with a Kelvin type 4-terminal configuration. The value of this resistor is adjusted
to the lower decade of the nominal electrical resistance R(Tambient) for each probe (as an
example, for a resistance temperature probe with a nominal electrical resistance of 412 Ω,
value of R f is adjusted to 410 Ω). The value of the adjustable resistance Ra is manually
monitored by a rotary knob arbitrarily scalable in 1000 graduations; the level of graduation
for the knob is denoted as BBk in the following. The bridge balance voltage BBv is amplified
by a factor A (110). Once Ra is adjusted to meet the following equality:

R · R2 = R1 · [Ra + R f ], (2)
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the Wheatstone bridge is balanced, and the measured bridge balance value BBv, recorded by
an external voltmeter, equals zero. An external voltmeter is used rather than the oscilloscope
of the Nova-Px software-v2013 because an offset of 58.2 mV (amplified value by a factor
110) on the oscilloscope measurements when the bridge is balanced has been identified.
This offset is due to parasitic resistance (the unequal resistance of the wires). In addition
to the BBv voltage data recording, an external voltmeter enables the measurement of the
probe voltage U. A complete description of the SThM setup can be found in paper [30].
Based on the knowledge of the electrical resistances (Ra, R f , R1, R2) involved in the bridge,
the amplificator factor A, the measurement of BBv voltage, and the U probe voltage,
the electrical resistance R of the probe can be determined following Equation (3):

R =
U

Ra+R f +R2
(Ra+R f )·R1

(
R2

Ra+R f +R2
U − BBv

A

) . (3)

Figure 3. Scheme of the thermal unit encloses an adjustable current generator and a Wheatstone
bridge composed of two fixed resistances (R1 and R2), two adjustable resistances: R f for coarse
adjustments and Ra for fine adjustments, the resistance temperature probe R and an amplifier setup
A to amplify the bridge balance BBv voltage. The probe electrical resistance R is included in one leg
of the Wheatstone bridge and the adjustable resistance Ra in the opposite leg. Ra can be set manually
by rotary knob arbitrarily scalable in 1000 graduations. Value of the knob adjustment is denoted BBk.

2.2. SThM Measurements
2.2.1. Active Mode Configuration

The SThM technique can be used in two different modes: the passive mode, where
the probe is cold and comes in contact with the hot sample surface for temperature mea-
surements, and the active mode, dedicated to thermal conductivity measurement, where
the probe is hot, self-heated by the Joule effect, and comes in contact with the cold sample
surface. In our configuration, we performed measurements in active mode, and our SThM
measurement consists of estimating the variation of heat losses from the heated probe to its
surrounding environment between the two configurations “out of contact” with the sample
and “in contact” with the sample:
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• “out of contact” abbreviated in “oc” where the probe is placed far from the thermal
influence of the sample. Furthermore, the electrical resistance R of the probe mostly
depends on the convective and conductive heat losses between the probe and the
ambient air, the current intensity in the probe, the conductive heat losses from the
probe to the cantilever, and the heat induced by the laser diode beam illuminating the
cantilever. The radiative heat losses can be neglected.

• “in contact” abbreviated in “ic” where the probe is in contact with the sample surface.
In this configuration, R depends on the same influencing parameters as in the “out of
contact” configuration and on the heat transfers between the probe and the surface
sample. These are functions of the thermal properties of the sample and the interface
thermal resistance between the probe and the sample.

Bycomparing the probe signals in “oc” and “ic” configurations, a measured quantity
value [22] ∆R can be defined associated with the probe used. This measured quantity
value ∆R actually corresponds to a temperature drop of the probe between the “oc” and
“ic” configurations:

∆R = Roc − Ric (4)

and is, inter alia other parameters, function of the thermal conductivity k of the sample.

2.2.2. Definition of the Intermediate Measurand

As highlighted in the previous paragraph, the probe electrical resistance R(T) depends
on its temperature T and follows a quite linear relationship with its temperature for low
variation of temperature:

R(T) = R(Tambient) · [1 + α(T − Tambient)], (5)

with α the temperature coefficient of the probe material and R(Tambient) the electrical
resistance of the probe at room temperature. The measured quantity value ∆R is then
expressed by:

∆R = R(Tambient) · α · (Toc − Tic). (6)

Unfortunately, experiments highlight the long-term drift of the value of R(Tambient)
depending on the ageing of the probe. Indeed, wear of the tip affects the R(Tambient) value
on many levels. Many landings cause wear of the apex that changes both the size of the
solid-solid contact between the tip and the surface of the sample and the length of the
resistive Pd ribbon. In addition, a high value of the current intensity can induce matter
transport resulting from electron displacement. This can cause the Pd ribbon to be damaged.
In metallic thin layers, the electro-migration is prevalent. One way to correct the influence
of this drift is to work with a reference sample. By performing measurements on the
reference sample before each measurement on a studied sample, we define an intermediate
measurand Ym equal to the ratio between ∆Rsample obtained on the studied sample and
∆Rre f obtained on the reference sample:

Ym =
∆Rsample

∆Rre f
=

∆Rsample

∆RSiO2 f
=

Rsample
oc − Rsample

ic

RSiO2 f
oc − RSiO2 f

ic

. (7)

The reference sample must be chemically inert and must remain stable over time. Fur-
thermore, SThM measurements require perfect surface conditions with the sample [14,27].
Finally, the material must have a thermal conductivity within the sensitivity range of the
SThM technique, i.e., lower than 10 W m−1 K−1 as we will discuss in Section 4.1. The refer-
ence sample selected by LNE is a piece of fused amorphous silica SiO2 f with a roughness
value Ra of 0.56 nm.

In order to evaluate the effect of repeatability and reproducibility conditions with
regard to some uncertainty sources, our measurement process is repeated several times
in different conditions described in Section 2.2.3. Each condition i = 1, . . . , 10 provides a
corresponding measurement result Ym,i composed of a measured quantity value ym,i and
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its associated uncertainty u(ym,i). Finally, the intermediate measurand Y is computed as
the mean Ȳm of this set of ten individual measurement results Ym,i:

Y = Ȳm =

10
∑

i=1
Ym,i

10
. (8)

2.2.3. SThM Measurement Protocol
Sample Requirements

The sample dimensions must allow the landing of the SThM probe but be small
enough to allow two samples to be inserted at the same time on the SThM sample holder.
For this study, typical dimensions (diameter) were 0.5 and 1 cm. The sample must be
protected from any effect likely to alter its properties (contamination, dust, oxidation, water
contact, temperature changes). The contact between the tip and the sample is assumed to
be identical from one sample to another, provided that the scanning surfaces are locally
flat [27,32]. The sample surface should be mirror polished to avoid poor mechanical
contacts between the tip and the surface and to assume that the contact resistance is the
same for all samples.

Measuring Conditions

Temperature and relative humidity of the environment must be controlled as they
influence directly the heat transfer between the tip and the environment. Humidity en-
hances the water meniscus formed at the tip/sample contact and, consequently, the thermal
conductance of the contact [33].The SThM is located in an air-conditioned room where
the temperature is set to 21 °C and the relative humidity is 50%. A station sensor located
close to the scanning probe microscope monitors the environment. The variations are very
slow over a day or a week, less than 0.5 °C and 3%, respectively. These conditions limit
the influence of the hydrophilic nature of the different samples. The measurements were
performed in air with thermal steady-state conditions. Some thermal drifts have been
measured when performing measurements with the NTEGRA protection cover, which is
quite airtight [30]. These thermal drifts are due to air conditioning and SThM heat sources
such as step motors and piezo motors. A specific homemade enclosure viewed in Figure 4a
has been developed to protect both the SThM and the thermal unit from air conditioning
disruptions and to limit thermal drifts from internal heat sources.

Two samples are placed at the same time on the SThM sample holder, as illustrated
in Figure 4b: the reference sample (fused silicon dioxide (SiO2 f ) and the studied sam-
ple. The two samples are close enough to assume that they are at the same temperature.
The NTEGRA x, y directions of piezoelectric scanners provide displacement of the sample
holder to place either of the samples under the probe.

Measurements require thermal steady-state conditions. Samples stay in the SThM
for a stabilisation time of at least 2 h before starting measurements. To avoid any laser
effects on bridge balance voltage BBv (probe overheating, thermal drift), measurements are
performed in “dark mode” [31].

In dark mode, the laser of the probe guiding system is turned off to avoid continuous
heating of the probe. The probe landing on the sample surface was performed step-by-step
by the user. The contact of the probe with the sample surface is indicated by a strong
discontinuity in the BBv voltage signal. The “oc” distance between probe and sample
was 1000 steps (approximately 1.5 mm) during these experiments. This chosen distance of
1.5 mm is large enough to avoid the thermal influence of the sample in the dark mode.
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1 
 

 
Figure 4. Views of apparatus: (a) SThM and thermal unit inside the dedicated enclosure to decrease
influence of thermal drifts and (b) view of the location of the probe above the SiO2 f reference sample.
Range of displacement of x, y direction piezoelectric scanners enables to switch from SiO2 f reference
sample to the studied sample (ZrO2 sample for the picture).

Measurement Process

The measurements were performed with direct current (DC) heating of the resistive
probe in a “constant current” configuration. At the beginning of the experiments, the value
of the electrical current ISThM is fixed arbitrarily to 900 µA. The value of the electrical
current is maintained below the critical value specified by the supplier (ISThM < 2.5 mA) in
order to avoid damage or premature wear of the probe. In addition, a study of the influence
of the value of the electrical current showed that working with an electrical current of
900 mA provided the best measurement repeatability (<2.10−4 a.u.) for the intermediate
measurand Y [34]. The bridge balance is balanced by adjusting the value of Ra with the
rotary knob BBk, this adjustment of the BBk is strictly kept constant during all of the
calibration experiments. For the preliminary adjustments of ISThM and BBv, the probe is in
an “out of contact” configuration.

After these preliminary settings, the experiment sequence for each measurement is:

• after stabilisation (criteria of standard deviation < 10−4 V for BBre f
v,oc mean value

calculated with measurements performed during a 100 s period), start recording of
BBre f

v,oc and Ure f
oc signals during a 100 s period with the probe in an “out of contact”

configuration above the reference SiO2 f sample;
• land with “dark mode” on one position of the SiO2 f reference sample, wait for

stabilisation (with the same criteria as for the first step), record BBre f
v,ic and Ure f

ic signals
during a 100 s period with the probe in an “in contact” configuration;

• remove the probe from contact and wait for stabilisation (with the same criteria

as for the first step), record BBre f
v,ic and Ure f

ic signals during a 100 s period with the
probe in “out of contact” configuration; repeat these three operations for two other
landings at the same position above and on the SiO2 f reference sample (repeatability
of measurements).

• After 3 measurements at the same position on the SiO2 f reference sample, from “out
of contact” configuration, move to another position above the sample (reproducibility
measurements). After stabilisation (criteria of standard deviation < 10−4 V for BBre f

v,oc
mean value calculated with measurements performed during a 100 s period), start
recording of BBre f

v,oc and Ure f
oc signals during a 100 s period with the probe in “out of

contact” configuration for the new position above the reference SiO2 f sample;
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• land with “dark mode” on the new position of the SiO2 f reference sample, wait for

stabilisation (with the same criteria as for the first step), record BBre f
v,ic and Ure f

ic signals
during a 100 s period with the probe in “in contact” configuration;

• remove the probe out of contact, waiting for stabilisation (with the same criteria as for

the first step), record BBre f
v,ic and Ure f

ic signals during a 100 s period with the probe in
“out of contact” configuration;

• from “out of contact” configuration, move to another position above the sample,
and repeat the two steps described in the two last bullets for this third location on
the sample.

• After measurements on the SiO2 f reference sample, perform measurements on the
studied sample following the same protocol as for the SiO2 f reference sample.

An example of the experimental U and BBv signal recording is presented in Figure 5.
The five steps on the curve correspond to the measurements on the SiO2 f reference
sample, and the last five steps correspond to the measurements on the studied alumina
calibration sample.

Figure 5. Work flow of measurement sequence of U probe (cyan solid line) and BBv (orange dotted
line) signals: five successive landings on the SiO2 f reference sample following by five successive
landings on the studied sample (alumina sample in this example). For each sample (reference and
studied) the first three landings are performed on the same location and the last two on different
locations. Measurement values used for R computation are identified in red for the SiO2 f reference
sample and in blue for the studied sample. The residual drift is highlighted with the red dashed line
for U “out of contact” measurements.

We obtain eleven BBre f
v and eleven Ure f measurement data (five in “in contact” config-

uration and six in “out of contact” configuration) on a SiO2 f reference sample associated
with, respectively, eleven BBsample

v and eleven Usample measurement data on the studied
sample. Using this measurement data, for each sample (reference and studied samples),
we calculate eleven electrical resistance values for the probe following Equation (3) (five in
“in contact” configuration and six in “out of contact” configuration). Then, we determine
ten resistance differences per sample as defined in Equation (4). A regular residual drift is
observed both on U and BBv measurements, mainly visible for “out of contact” data (repre-
sented by the red dashed line in Figure 5). This residual drift is induced by the electronics



Nanomaterials 2023, 13, 2424 10 of 34

of the SThM (i.e., the motors of the piezoelectric stage). In order to reduce the influence of
this drift of signals, we compute the ym,i (i from 1 to 10) measured quantity values from
each individual data in a chronological way (Ure f and BBv,re f data from the first landing on
the reference sample associated to Usample and BBv,sample data from the first landing on the
studied sample and so one for next data. By this way, we obtain ten measurement results
Ym,i, which are used to calculate the resulting Y intermediate measurand as the mean value
following Equation (8).

To check the potential influence of landing or withdrawal conditions, we identified
two types of resistance differences. The first one, ∆Rlanding, identified as “landing”, corre-
sponds to the resistance difference between measurements performed in the “out of contact”
condition before the contact and the measurements performed during the “in contact”
configuration. The second one, ∆Rwithdrawal , identified as “withdrawal”, corresponds to the
resistance difference between measurements performed in the “out of contact” condition
after the contact and the measurements performed during the “in contact” configuration.

∆Rlanding = Roc,Be f ore Contact − Ric (9)

∆Rwithdrawal = Roc,A f ter Contact − Ric (10)

In conclusion, we compute ten measured quantity values ym,i for the intermediate
measurand Y with repeatability and reproducibility conditions. The first six successive
measurements. ym,i with i from one to six, are performed on the same location; the last
four measurements, ym,i with i from seven to ten, are performed on two other locations in
order to evaluate the potential influence of heterogeneity of the sample (reproducibility
conditions). In addition, we also studied the potential influence of landing measurement
conditions associated with odd i indexes and withdrawal measurement conditions associ-
ated with even i indexes. Measurement conditions and identification are summarized in
Table 1.

Table 1. Identification of the ten measured values ym,i from various conditions of measurement
indexed from i = 1 to i = 10 relative to the chronological acquisition, odd i indexes relative to landing
measurement condition, even i indexes relative to withdrawal measurement condition.

Locations Landing Condition Withdrawal Condition

location n°1
ym,1 ym,2
ym,3 ym,4
ym,5 ym,6

location n°2 ym,7 ym,8

location n°3 ym,9 ym,10

2.3. SThM Calibration Protocol

Two ways are available in order to link the intermediate measurand Y to the thermal
conductivity of the studied sample. The first solution is to establish a physical model
describing heat transfers between the probe and the surface sample. Unfortunately, it
is challenging to develop rigorous physical models at the nanoscale because the values
of the influencing parameters are difficult to evaluate at these scales and not always
reliable. Another solution is to establish a calibration curve based on materials with
thermal conductivities measured at the macroscopic scale [23,24,27,28,35–37]. However,
this method is based on a strong assumption, as highlighted in Section 1, that the heat
transfer conditions are the same during both the calibration and sample measurement
steps. Since calibration is performed at the macroscopic scale, heat transfers are diffusive.
Particular care must be taken when measuring nanomaterials with a mean free path higher
than the size of the studied structure (involving ballistic heat transfers).
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The calibration function is mainly based on phenomenological study, and the calibra-
tion parameters are identified with Bayesian inversion from the experimental values and
the mathematical model.

2.3.1. Definition of the Calibration Model

Based on phenomenological studies [24,28,38], a mathematical link has been estab-
lished between the variation of the probe electrical resistance when it is put in contact with
the material and the thermal conductivity of the material. These studies are based on the
heat transfer from the hot probe (heated by the Joule effect) to the “cold” sample.

The thermal conductances involved in the probe-sample system during measurements
are the thermal conductance relating to the probe heat losses through convection and
radiation Genv, the thermal conductance relating to the probe heat transfer through the
cantilever Gcant, the effective thermal conductance of the thermal contact between the
probe and the sample (solid-solid thermal conduction, air and water meniscus thermal
conduction Gcontact and the thermal conductance of the sample Gsample.

During “out of contact” measurement, the total thermal conductance Gtot,oc of the
probe-sample system is:

Gtot,oc = Genv,oc + Gcant. (11)

During “in contact” measurement, the total thermal conductance Gtot,ic of the probe-sample
system is:

Gtot,ic = Genv,ic + Gcant +
Gcontact.Gsample

Gcontact + Gsample
. (12)

The variation of the thermal conductance of the probe-sample system between “oc” and
“ic” configurations is consequently:

Gtot,ic − Gtot,oc =
Gcontact.Gsample

Gcontact + Gsample
+ (Genv,ic − Genv,oc). (13)

Assuming that heat flow in the sample is diffusive, that means that the mean-free path Λ
of the energy carriers, defined as the average distance between two successive inelastic
shocks of energy carriers, is lower than the radius b of the thermal contact between the
probe and the sample; the thermal conductance Gsample is given by:

Gsample = 4βkb (14)

with β a specific coefficient corresponding to the influence of the shape of the thermal
contact. As a result, the variation of thermal conductance ∆Gtot can be written as:

∆Gtot =
Gcontact · k
Gcontact

4βkb + k
+ ∆Genv (15)

Therefore, the variation of the electrical resistance of the probe between “oc” measurement
and “ic” measurement can be described as:

Roc − Ric =
aRk

bR + k
+ cR (16)

where aR, bR and cR are parameters relative to the different thermal conductances involved
during measurements. As RSiO2 f

oc − RSiO2 f
ic does not depend on sample thermophysical

properties, the k dependence of
∆RSample
∆RSiO2 f

remained unchanged when divided by a constant

value. The calibration law of the intermediate measurand Y obeys thus the following law:

Y =
∆RSample

∆RSiO2 f
=

ak
b + k

+ c (17)
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Parameters a, b and c are estimated using Bayesian identification in order to estimate the
uncertainty associated with these coefficients, which take into account the uncertainty
associated with both the thermal conductivity of known materials and the intermediate
measurand considered in this paper.

A representation of the calibration curve is provided in Figure 1, and the corresponding
calibration model is identified as Equation (17).

2.3.2. Calibration Materials

Drawing on the results from the Quantiheat project [32], the choice of the calibra-
tion samples was based on their thermophysical properties, assuming that the thermal
conductivity measured at the macroscale and at the nanoscale are comparable in terms
of their mechanical stability and low roughness. To ensure the traceability of measure-
ments, the materials have been chosen so that their thermal conductivity can be measured
using traceable techniques. This requires them to be homogeneous and isotropic. Twelve
samples of twelve different bulk materials (polymers, ceramics, and pure metals) with
thermal conductivity k ranging from 0.1 W m−1 K−1 to 100 W m−1 K−1 have been selected
for this study: poly(methyl methacrylate) (PMMA), poly-oxymethylene in copolymer
(POM-C), borosilicate glass, two different grades of fused silicon dioxide (SiO2 f ) and
(SiO2 − NEGS1), zircon oxide (ZrO2), titanium oxide (TiO2), alumina (poly crystal alu-
minium oxide Al2O3 p), sapphire (α− Al2O3), germanium (Ge), p doped silicon (Sip ++),
and zinc (Zn). All samples were mirror-polished to minimise roughness. The polymers
were prepared by ultramicrotomy (cryogenic cutting). Table 2 presents materials, dimen-
sions, structures, providers, measured thermal conductivity, and measured roughness of
selected materials. Each sample is in the shape of a disc with a 10 mm diameter, except for
the two polymer samples, which have a flat surface prepared by ultramicrotomy of around
1 mm2.

Table 2. Thermal conductivity k (relative expanded uncertainty estimated to 5%) and roughness Ra
of calibrated materials measured at 23 °C. The sample thickness is identified as: 1 *, 2 ** and 5 *** mm.

Sample Structure Provider k [Wm−1K−1] Ra [nm]

PMMA *** Polymer Goodfellow 0.187 5.04
POM− C *** Polymer Radiospare 0.329 11.7

Borosilicateglass ** Amorphous Neyco 1.11 <0.5
SiO2 f ** Amorphous Neyco 1.28 0.56

SiO2−NEGS1 ** Amorphous Neyco 1.40 <1
ZrO2 ** Single crystal Neyco 1.95 <0.5
TiO2 ** Single crystal Neyco 9.15 <0.5

Al2O3 p ** Poly crystal Neyco 29.8 7.52
Sapphire * Single crystal Crystal GmbH 36.9 <0.5

Germanium ** Single crystal Crystal GmbH 52.0 <0.5
Sip++ ** Semiconductor Goodfellow 93.4 0.75
Zinc ** Metal Neyco 117 8.14

The thermal conductivity of each material was determined at 23 °C on bulk specimens
(a few mm thick) using an indirect and traceable method. This method is based on the
measurements of the thermal diffusivity by the laser flash method [39,40], the specific
heat by differential scanning calorimetry, and the density by the Archimedean method.
The expanded uncertainty associated with the measurement of thermal conductivity by
this indirect method has been estimated at 5% [41].

2.4. Method for the Evaluation of the Uncertainty Associated with the Estimation of the
Intermediate Measurand

The intermediate measurand Y considered in this paper is the ratio of the resistance
difference for the tested sample between the “ic” and “oc” configurations and the same
difference obtained for the reference sample SiO2 f (see Equation (8)). In order to evaluate
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dedicated uncertainty from repeatability and reproducibility conditions, Y is obtained as
the combination of individual quantity measured values ym and their associated uncertain-
ties. Based on the protocol described in Section 2.2.3, we obtained ten ym,i values for various
conditions as described in Table 1. Some of these values are obtained from repeatability
conditions (measurements at the same location), and others from reproducibility conditions
(measurements at different locations or with two different configurations: landing or with-
drawal conditions). In this way, we study the individual contribution of each uncertainty
source (instrumental, repeatability, and reproducibility) in Section 3.2.

The estimated value of the intermediate measurand Y and its associated uncertainty
include repeatability and reproducibility conditions influences. The different steps in the
evaluation of the measurement uncertainty associated with Y are presented in Figure 6.

The following sections (Sections 2.4.1–2.4.3) describe the evaluation of measurement
uncertainty on each individual measurand Ym, based on works (calculation, procedures,
and conclusions) performed previously at LNE by Ramiandrisoa et al. [30], in which the
evaluation of the measurement uncertainty associated with a single ∆R was considered.
Then the next section (Sections 2.4.4) describes the combination of ym,i measurements and
uncertainty to report the intermediate measurand Y value for various conditions with
associated standard uncertainty.

Figure 6. Main steps for the evaluation of measurement uncertainty: In a first step: Modelling
the measurement process for Ym from Section 2.4.1, Evaluating input quantities with associated
Probability Distribution Functions for Ym in Section 2.4.2, Propagating with Monte Carlo method
(MCM) in Section 2.4.3 to report single quantity measured values ym with its associated uncertainty
u(ym). In a second step: Use ym,i input quantities measured under various conditions indexed
by i (i from 1 to 10) with measurement model described in Section 2.2.2 then combine the ten ym,i

measurements and the associated uncertainties in Section 2.4.4 to report the ȳ mean value with
standard uncertainty u(ȳ).

2.4.1. Modelling the Measurement Process for Individual Measurand

Four resistance measurements are involved in the mathematical model of the in-
dividual measurand Ym value as described in (7), each being determined thanks to the
Wheatstone bridge in Figure 3. As a result, the expression for one of these four resistances
(denoted as j from 1 to 4) is:

Rj =
Uj

Rv+R2
RvR1

(
R2

Rv+R2
Uj −

BBj
A

) (18)
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Uj is the voltage (in V), BBj is the bridge balance (in V), R1 is a fixed resistance of the bridge,
given by the technical specifications (in Ω), R2 is a fixed resistance of the bridge, given by
the technical specifications (in Ω),

A =
R10k
R1k

R′1k + R′10k
R′′1k

(19)

is the amplification factor of the electrical chain (in Ω) and

Rv = R f + Rv,min +
BBk− BBkmin

BBkmax − BBkmin
(Rv,max − Rv,min) (20)

is the variable resistance (in Ω). BBk = 125 denotes the graduation of the know, with mini-
mum and maximum graduations respectively denoted as BBkmin = 0.5 and BBkmax = 1003.
All three quantities have a negligible contribution to the uncertainty and are consequently
considered as fixed.

2.4.2. Evaluating Input Quantities for Individual Measurand

In order to perform the Monte Carlo simulation, it is required to assign a Probability
Density Function (PDF) to each input quantity in the mathematical model. The following
subsections describe the choice made for every single input quantity.

Voltages:

The voltage measurements are denoted as U and BBv in Figure 3. Two 34401A multi-
meters measured one U voltage and the other one BBv voltage. Three errors are considered
to be the most influential ones: the trueness, the quantification, and the repeatability.

• Trueness of the multimeters: This error is the same for each measurement of a volt-
age, whether the sample is in or out of contact, and whether the unknown sample
or the reference sample is measured, but is specific for each multimeter. Available
information about the trueness error comes from the calibration certificate of each mul-
timeter. These calibration certificates provide trueness corrections Utrue and BBv,true
with an associated expanded uncertainty U(Utrue) = U(BBv,true) = 2.5 µV, using a
coverage factor k = 2. This correction is applied to the measurements, and a Gaussian
probability distribution is assigned with a zero mean and

u(Utrue) =
U(Utrue)

k
= 1.25× 10−6 V (21)

and

u(BBv,true) =
U(BBv,true)

k
= 1.25× 10−6 V (22)

as standard deviations.
• Quantification of the multimeters: The multimeters have the same quantification step

q = 1 µV in the studied range. As a consequence, the quantification error lies in
the interval

[
−5× 10−7; 5× 10−7]. A rectangular probability distribution is assigned.

However, this (unknown) error may be different for each voltage measurement. As a
result, we define a different input quantity for each different voltage measurement.

• Repeatability: In order to evaluate the repeatability of the voltage measurement,
our measurement corresponds to the mean values Ū and ¯BBv of the respective U
voltage and BBv voltage for 100 measuring points (corresponding to a period of 100 s)
associated with their respective standard deviations.

• Measurement model for voltages: As a result, the measurement model used for each
voltage measurement (in contact/out of contact) is:

Ūi = Utrue + Uiq + UiR (23)
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and
B̄Bv,i = BBv,true + BBv,iq + BBv,iR (24)

where i is either equal to ic for the “in contact” voltage or to oc for the “out of
contact” voltage, Utrue and BBv,true are the trueness corrections, Uiq and BBv,iq are the
quantification errors and, UiR and BBv,iR are the repeatability errors. An example of
corresponding parameters are summarised in Table 3 for the PMMA sample.

Resistances involved in the Wheatstone bridge

In the mathematical model of the measurement process, 9 resistances are involved
(R1, R2, R f , Rv,max, R10k, R1k, R1k′ , R′′1k and R′10k). In this section, we present the general
mathematical model used to evaluate the uncertainty associated with a resistance, and we
provide the summary for each considered resistance.

A resistance R is obtained as a reading with an associated trueness error, with a
dilatation correction factor taking into account the difference between the temperature TL
in the laboratory and the reference temperature Tre f = 25 °C:

Ri = R0 + TCR · (TL − Tre f ) · R0 = R0 + TCR · ∆T · R0 (25)

The trueness of the resistance is evaluated thanks to the technical specifications:
R0 = Rnom ± a %, where Rnom is the nominal value of the resistance. As a consequence,
R0 is assigned a rectangular probability distribution over the interval [Rnom − a/100 ·
Rnom; Rnom − a/100 · Rnom]. The Temperature Coefficient Ratio (TCR) is considered a fixed
value. Regular measurements of the temperature in the laboratory show that it lies between
20.3 °C and 20.5 °C. As a consequence, ∆T is assigned a rectangular probability distribution
over the interval [−4.5;−4.7].

In addition to the known resistances involved in the mathematical process, there is a
parasitic resistance Rparasitic that is the sum of the parasitic resistances of the probe Rpprobe
and that of the bridge Rpbridge. This latter can be decomposed as the sum uncertainty
sources: the reproducibility RpbR and the quantification error Rpbq:

Rparasitic = Rpprobe + Rpbridge = Rpprobe + RpbR + Rpbq (26)

However, they are not considered in our mathematical model as they do not have
any significant contribution to the uncertainty of the intermediate measurand when we

consider the SThM indication to be
∆RSample
∆RSiO2 f

.

An example of assigning probability distributions to all input quantities involved in
ym measurement process is given in Table 3 in Section 3.1.

2.4.3. Propagating Distributions for Individual Measurand

The evaluation of associated uncertainty ym measurement is performed using the
Monte Carlo method (MCM), according to the principles of Supplement 1 to the GUM
(Guide to the Expression of Uncertainty in Measurement) [22,42]. The previous quantifica-
tion of the input quantities, described in Section 2.4.2, consisted in the choice of suitable
Probability Distribution Functions (PDFs) based on the work of Ramiandrisoa [30]. Im-
plementation of the propagation of these distributions is performed using LNE-MCM
software-v2017 [43], with M = 106 simulations in order to get an overview of the PDFs for
ym measured quantity value (with a best estimate, a standard uncertainty, and a coverage
interval).

As a result, each individual measured quantity value ym is characterised, and the
associated uncertainty of individual ym is evaluated.
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2.4.4. Combining Reproducibility Measurements

In this study, the reproducibility measurements (ym,i, u(ym,i))i=1,...,10 are combined
using the random effects model defined as

ym,i = µ + λi + εi (27)

where µ is the overall arithmetic mean response, the {λi}i=1,...,10 are the effects of the
reproducibility conditions (which are assumed to have a Gaussian distribution with mean
0 and standard deviation τ), the {εi}i=1,...,10 are random effects assumed Gaussian with
mean 0 and standard deviation the reported standard uncertainties {u(ym,i)}i=1,...,10, the λi
and the εi are assumed to be independent.

Such a model is generally used to combine heterogeneous data, e.g., from inter-
laboratory studies or meta-analyses, where the λi are referred to as "laboratory effects".
The parameter τ is often called "dark uncertainty" and is used to capture excess variability
in the measurements with respect to the reported uncertainties.

In this application, we aim to identify all sources of uncertainty during measurements
under both repeatability and reproducibility conditions. We suspect other influencing
factors than material heterogeneity or landing/withdrawal conditions. The main suspected
factor is the variation in force applied from one measurement to another, which could not
be quantified within the scope of this study. In our case, "dark uncertainty" has a physical
meaning related to underestimated u(ym,i) uncertainties.

In this study, the parameters µ are τ are estimated using the Bayesian approach of [44]
with a non informative prior on µ, π(µ) ∝ 1 and the following prior for τ as recommended
in the NIST Consensus Builder [44]: τ ∼ HalfCauchy(mad({ym,i}i)), where mad is the
median absolute deviation.

2.5. Bayesian Approach to Estimate the Thermal Conductivity from SThM Measurements
2.5.1. Error-in-Variables Representation

In this section, we denote X = (X1, . . . , XN) the vector of random variables modelling
the thermal conductivities measured for the bulk materials and Y = (Y1, . . . , YN) the
vector of random variables modelling the corresponding SThM measurements. Due to
the normality arising from the GUM uncertainty propagation for both SThM and thermal
conductivity measurements, the following error-in-variables representation (a regression
model that accounts for measurement errors in the independent variables) is used:

xi ∼ N(Xi, u(xi)), (28)

yi ∼ N(Yi, u(yi)), (29)

where xi and yi are respectively the reported estimates of the thermal conductivity and the
SThM measurement for material i, u(xi) and u(yi) are their associated
uncertainties respectively.

The relationship (17) between Y and X can be expressed as

Yi = hθ(Xi), i = 1, . . . , N, (30)

where hθ is the calibration curve and θ = (a, b, c).
Denote X∗ the random variable representing the unknown thermal conductivity of a

material under test and Y∗ the random variable modelling the reported SThM measurement
result y∗ and its associated uncertainty u(y∗). Similarly to (29) and (30), we have

y∗ ∼ N(Y∗, u(y∗)), (31)

Y∗ = hθ(X∗). (32)
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In the following, we denote µ, the vector containing all the reported SThM measurements

µ = (Y∗, Y1, . . . , YN) = (hθ(X∗), hθ(X1), . . . , hθ(XN)). (33)

It is important to note that this approach can be readily extended to multiple (say M)
new SThM measurements y∗ = (y∗1 , . . . , y∗M) in which case Y∗ and X∗ read as the vectors
Y∗ = (Y∗1 , . . . , Y∗M) and X∗ = (X∗1 , . . . , X∗M) respectively.

2.5.2. Bayesian Paradigm

In the Bayesian paradigm [45], all quantities involved, namely X∗, θ, X, Y, Y∗, are
viewed as parameters to be jointly updated in the inference process by the information
contained in the measurements. It is important to note that, contrary to classical approaches
to inversion, the SThM measurements performed on unknown materials y∗ are used to
update knowledge on all parameters and are not only used for the prediction of X∗. In other
words, using a Bayesian approach allows us to simultaneously estimate the parameters θ
of the calibration curve and make predictions from the curve.

According to (30), Yi explicitly depends on θ and Xi, so that its posterior distribution
can be obtained as a by-product of the Bayesian analysis from the samples of the joint
posterior distribution of θ and Xi. For this reason, we chose to remove Y and Y∗ from the
Bayes formula.

Denoting x = (x1, . . . , xN) and y = (y∗, y1, . . . , yN), the Bayes formula gives the joint
posterior distribution π(X∗, θ, X|x, y) of all the quantities involved as

π(X∗, θ, X|x, y) ∝ l(x, y|X∗, θ, X)π(X∗, θ, X), (34)

where l(x, y|X∗, θ, X) is the likelihood of the data and π(X∗, θ, X) is the prior distribution
of the parameters.

The overall objective of estimating the thermal conductivity from SThM measure-
ments consists in estimating the so-called marginal posterior distribution of X∗ given all
the measurements which reads π(X∗|x, y) and is mathematically obtained from (34) as
the integral

π(X∗|x, y) =
∫

θ

∫
X

π(X∗, θ, X|x, y)dθdX. (35)

2.5.3. Likelihood

The likelihood can be factorized as

l(x, y|X∗, θ, X) = l(x|X)× l(y|X∗, θ, X), (36)

where l(x|X) and l(y|X∗, θ, X) are defined thereafter.
Denoting Σx the covariance matrix of the Gaussian vector x, we have x ∼ NN(X, Σx)

and the associated part of the likelihood writes

l(x|X) ∝
1√

det Σx
exp

(
−1

2
(x− X)TΣ−1

x (x− X)

)
. (37)

Denoting Σy the covariance matrix of the Gaussian vector y, we have y ∼ NN+1(Y, Σy)


y∗

y1
...

yN

 ∼ NN+1




hθ(X∗)
hθ(X1)

...
hθ(XN)

,


u2(y∗) 0 0 . . . 0

0 u2(y1) 0 . . . 0
... 0

. . . u2(yN−1) 0
0 0 0 0 u2(yN)


, (38)



Nanomaterials 2023, 13, 2424 18 of 34

and the associated part of the likelihood writes

l(y|X∗, θ, X) ∝
1√

det Σy
exp

(
−1

2
(y− µ)TΣ−1

y (y− µ)

)
, (39)

where µ is defined in (33).
In this paper, we assume that the covariance matrices Σx = diag(u2(x1), . . . , u2(xn))

and Σy = diag(u2(y1), . . . , u2(yn)) are diagonal (meaning no covariance).

2.5.4. Prior Distribution

The joint prior distribution π(X∗, θ, X) of all quantities involved can be expressed as
the product

π(X∗, θ, X) = π(θ)π(X∗)π(X), (40)

where π(θ) = π(a)π(b)π(c) expresses prior information on the parameters of the calibra-
tion curve a, b, c, π(X∗) expresses prior belief on the sought thermal conductivity X∗ and
π(X) represents the joint prior belief on the thermal conductivity measurements results
stored in the vector X. If all measurements are assumed to be independent from each other,
then π(X) can be factorised as the product of the individual densities of probability π(Xi).

A variety of distributions can be used to represent prior beliefs, ranging from poorly
informative to informative [45]. In this study (see Section 3.3), we choose to use non-
informative Jeffrey’s priors for π(X) namely π(Xi) ∝ 1, and mildly informative priors for
π(a), π(b), π(c), and π(X∗) as Gaussian distributions with large variance.

2.5.5. Computing Posterior Distributions

Since analytical formulas for (34) and (35) are usually intractable, it is widely accepted
to tackle the estimation of quantities of interest for these distributions (mean, standard
deviation, coverage interval) using Markov Chain Monte Carlo (MCMC) simulations [46],
from which estimations of the posterior distributions using histograms or kernel-based
density estimates can also be obtained.

MCMC sampling is performed in software such as R or Python (among others),
e.g., using RStan [47] as in this paper and requires statistical expertise for the tuning of the
algorithms and the analysis of the results (correlation, convergence of Markov chains, etc.).
A review of convergence diagnosis tools can be found in [48]. In this paper, we concentrate
on the effective sample size and the Gelman-Rubin diagnostic (Rhat). In brief, the effective
sample size gives the number of independent samples equivalent to a set of correlated
Markov chain samples, and the output of the Gelman-Rubin diagnostic is the so-called
potential scale reduction factor, which should be close to 1 and is computed from at least
two chains running with over-dispersed starting points w.r.t. the posterior distribution.
The great advantage of MCMC is that at each iteration, a sample from the joint posterior
distribution is produced, while the collection of samples for each parameter is distributed
according to its marginal posterior distribution.

3. Results

In this section, we implement the calibration methodology to obtain traceable estimates
of the thermal conductivity using the SThM measurements and a Bayesian inversion
procedure described in Section 2. We highlight that the calibration procedure is necessarily
developed on bulk materials at macroscale, for which traceable thermal conductivity
measurements can be obtained, and that the traceability at micrometric and nanometric
scales is ensured by the SThM technique, provided that heat transfer regimes are the same
between calibration and measurement, as will be discussed in Section 4.3. In Section 3.1, we
display the measurement results obtained with the SThM on the calibration bulk materials
presented in Table 2 according to the methodology developed in Section 2.2. In Section 3.2,
we discuss the effect of the reproducibility conditions (landing and withdrawal conditions,
heterogeneity of the sample) on the resulting SThM uncertainty. In Section 3.3, we illustrate
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the Bayesian methodology for both the identification of the parameters of the calibration
curve and the prediction of traceable thermal conductivity. The approach is applied to the
estimation of three thermal conductivities in the range [0.1–10] W m−1 K−1.

3.1. Experimental Measurements on Calibration Materials

Measurements have been performed on the twelve calibration samples presented in
Table 2. As described in Section 2.2, a run of 5 measurements is performed on the SiO2 f
reference sample before each run of 5 measurements on the studied calibration sample.

Measurements of Input Quantities for Individual Measured Quantity and Their
Associated PDFs

All input quantities (BBV , U, BBk, . . .) have been measured as described in Section 2.4.2,
and each measured quantity ym,i and the associated Probability Distributions Functions
(PDFs) have been determined following the method described in Section 2.4.3. Table 3
summarises the PDFs assigned to the input quantities obtained for the ym,1 measurement
on the PMMA sample as an example.

Table 3. Summary of PDFs assigned to measured quantity value ym,1 for the PMMA sample.

Input Quantity Unit Probability
Distribution Mean Value Standard Deviation Lower Bound Upper Bound

Utrue V Gaussian −0.004 1.25× 10−6 − −
Us

oc,q V Rectangular − − −5× 10−7 5× 10−7

Ure f
oc,q V Rectangular − − −5× 10−7 5× 10−7

Us
ic,q V Rectangular − − −5× 10−7 5× 10−7

Ure f
ic,q

V Rectangular − − −5× 10−7 5× 10−7

Us
oc,R V Gaussian 0.37547698 4.57× 10−6 − −

Ure f
oc,R

V Gaussian 0.37546387 4.08× 10−6 − −
Us

ic,R V Gaussian 0.37529628 4.13× 10−6 − −
Ure f

ic,R
V Gaussian 0.37520403 4.03× 10−6 − −

BBv,true V Gaussian −0.04 1.25× 10−6 − −
BBs

v,oc,q V Rectangular − − −5× 10−7 5× 10−7

BBre f
v,oc,q V Rectangular − − −5× 10−7 5× 10−7

BBs
v,ic,q V Rectangular − − −5× 10−7 5× 10−7

BBre f
v,ic,q

V Rectangular − − −5× 10−7 5× 10−7

BBs
v,oc,R V Gaussian 9.5697× 10−3 5.66× 10−5 − −

BBre f
v,oc,R

V Gaussian 8.2624× 10−3 10.24× 10−5 − −
BBs

v,ic,R V Gaussian −6.2327× 10−3 5.07× 10−5 − −
BBre f

v,ic,R
V Gaussian −14.4252× 10−3 3.51× 10−5 − −

BBk a. u. Rectangular − − 124.5 125.5
BBk,min a. u. Fixed 0.5 − − −
BBk,max a. u. Fixed 1003 − − −

R1 Ω Rectangular − − 999 1001
R2 Ω Rectangular − − 999 1001
R f Ω Gaussian 399.830 0.001 − −

Rv,max Ω Gaussian 198.119 0.001 − −
Rv,min Ω Gaussian 0.0938 0.001 − −

R1k Ω Rectangular − − 999 1001
R′1k Ω Rectangular − − 999 1001
R10k Ω Rectangular − − 9999 10,001
R′10k Ω Rectangular − − 9999 10,001
R′′1k Ω Rectangular − − 999 1001
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Based on these input quantities, we calculated the corresponding ym measured quan-
tity value and determined the associated uncertainty by propagation of distributions as
described in Section 2.4.3. As an example, the histogram for one value of ym,i is represented
in Figure 7. It can be observed that the output quantity can be adequately described with
a Gaussian behaviour. The Spearman study shows that the highest contribution to the
variance on the individual measured quantity ym comes from the BBv measurements in
“out of contact” conditions: BBsample

v,wc and BBre f
v,wc contribute to 65% of instrumental variance

on ym measurement. This highlights the need to properly manage the environmental con-
ditions in order to maintain constant heat transfers between the probe and its surroundings
during measurement.

(a) (b)
Figure 7. Analyses of propagation of distributions on ym,3 measured quantity value: (a) Probability
density distribution (PDF) for the ym,3 value (b) Spearman’s rank correlation coefficients.

3.2. Study of Influencing Factors Regarding Repeatability and Reproducibility Conditions
of Measurement

In order to estimate the measurement precision, we performed replicate measurements
on each sample under repeatability and reproducibility conditions. Usually, the measure-
ment precision is expressed numerically as the standard deviation of the set of measure-
ments performed under specified conditions. In the process of measuring the same sample,
5 stages of landing/withdrawal are performed, which yields 5 different measurements
in each configuration (in contact/out of contact). It should be noted that, in order to take
account of the potential heterogeneity of the sample, measurements are performed at three
different locations on the sample. In addition, the potential influence of the landing or
withdrawal of the probe has also been studied. As a result, the effects of the supposedly
heterogeneity of the surface of the sample and the influence of probe movement are taken
into account in the dispersion of the measurements.

As a result, we obtain ten measured values ym,i for each calibration sample with
associated uncertainty. An example of ten measured values obtained for the PMMA
sample is given in Table 4. From these results, we discuss in the following Section 3.2
the repeatability and reproducibility conditions, effects, and uncertainty associated with
each Y.
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Table 4. Summary of the ten values obtain on the PMMA sample: the measured quantity value ym,i,
the standard uncertainty (absolute and relative) and the 95% coverage interval are given.

Identification ym,i Value Standard Uncertainty 95% Coverage Interval
Measurement [a. u.] Abs Rel. (%) [a. u.] [a. u.]

ym,1 0.6966 0.0047 0.68 0.6873 0.7058
ym,2 0.6855 0.0033 0.48 0.6789 0.6919
ym,3 0.6737 0.0028 0.42 0.6681 0.6792
ym,4 0.6719 0.0025 0.38 0.6668 0.6768
ym,5 0.6679 0.0026 0.39 0.6628 0.6731
ym,6 0.6713 0.0026 0.38 0.6663 0.6764
ym,7 0.6883 0.0032 0.46 0.6821 0.6944
ym,8 0.6780 0.0034 0.50 0.6714 0.6848
ym,9 0.6737 0.0033 0.49 0.6673 0.6801
ym,10 0.6778 0.0030 0.44 0.6719 0.6836

3.2.1. Evaluation of Measurement Precision under Repeatability Conditions

For each calibration sample, we compute the standard deviation obtained with the
repeatability condition for two sets of measurements: the landing condition measurement
with the set composed of ym,1, ym,3, and ym,5 identified measurements, and the withdrawal
condition measurement with the set composed of ym,2, ym,4, and ym,6 identified measure-
ments ym,i as described in Table 1. Results are presented in Figure 8.

Figure 8. Graphic representation of the standard deviation computed from a set of three measure-
ments performed in repeatability condition for two types of measurement (landing and withdrawal)
and for all the twelve calibration samples).

No specific trend is identified from Figure 8. Two materials (Al2O3 and Zn) show
higher standard deviation values in the repeatability condition (more than 1.5 10−2 [a.u.])
than the other materials. This is probably due to the influence of roughness. Indeed, these
two materials present high roughness (respectively, 7.52 nm for Al2O3 and 8.14 nm for Zn,
see Table 2). Guen [27] has shown that surface roughness alters the mechanical contact
between the tip and the surface sample, reducing the apparent contact radius. When the
roughness of the sample increases, heat transfer through mechanical contact decreases by
30%. As the signal decreases, the signal-to-noise ratio also decreases, and the dispersion of
the measurements, evaluated by the standard deviation, increases with the roughness of
the sample.

Nevertheless, it should be noted that the value of the standard deviation computed
for the two sets of measurements (landing and withdrawal) is high compared with the
instrumental uncertainty contribution. The values reported in Table 5 show that the
relative uncertainty coming from the repeatability condition is at least double the relative
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uncertainty from instrumentation. This excessive dispersion of measurements suggests that
the repeatability conditions are not fully respected. An influencing factor, not taken into
account in this study, changes from one measurement to the next. This source of uncertainty
will be discussed in Section 3.2.4.

Table 5. Comparison of instrumental standard uncertainty value associated to each measured
quantity value to the standard deviation value computed for set of replicated measurements for each
materials. The highest instrumental standard uncertainties (absolute and relative) and the computed
standard deviation (absolute and relative) are given.

Material Measurement Max. Standard Uncertainty Standard Deviation
Sample Condition Abs Rel. (%) Abs Rel. (%)

PMMA landing 0.0047 0.68 0.0152 2.23
withdrawal 0.0034 0.50 0.0080 1.19

POM− C landing 0.0031 0.38 0.0080 0.98
withdrawal 0.0034 0.41 0.0083 1.01

Borosilicate glass landing 0.0045 0.46 0.0083 0.85
withdrawal 0.0045 0.47 0.0068 0.70

SiO2 f landing 0.0049 0.49 0.0075 0.76
withdrawal 0.0043 0.43 0.0078 0.77

SiO2 − NEGS1 landing 0.0051 0.50 0.0105 1.02
withdrawal 0.0044 0.44 0.0074 0.70

ZrO2
landing 0.0052 0.49 0.074 0.70

withdrawal 0.0047 0.46 0.0074 0.72

TiO2
landing 0.0056 0.49 0.0101 0.88

withdrawal 0.0057 0.50 0.0100 0.88

Alumina landing 0.0051 0.45 0.0338 3.00
withdrawal 0.0050 0.45 0.024 2.14

Sapphire landing 0.0038 0.34 0.0061 0.54
withdrawal 0.0039 0.35 0.0096 0.86

Germanium landing 0.0045 0.39 0.0118 1.03
withdrawal 0.0051 0.45 0.0082 0.72

Sip++ landing 0.0042 0.36 0.0082 0.71
withdrawal 0.0041 0.35 0.0094 0.81

Zinc landing 0.0055 0.48 0.0181 1.59
withdrawal 0.0055 0.49 0.0264 2.34

3.2.2. Evaluation of Measurement Precision under Reproducibility Conditions: Study of
Landing and Withdrawal Configurations

For each measurement, we compute the variation of resistance in two ways, as de-
scribed in Section 2.2.3: landing conditions and withdrawal conditions. By this way, we
check the potential influence of landing and withdrawal conditions on our measurements
due to changes in heat transfers between the tip and its surroundings after contact with
the sample (pollution or residual water film on the tip, variation of the surrounding tem-
perature). We computed the mean value ȳm,landing for the landing configuration with
its associated expanded uncertainty and the mean value ȳm,withdrawal for the withdrawal
configuration with its associated expanded uncertainty. Results for the PMMA sample
are presented in Figure 9. We see that there is no significant difference between the land-
ing and withdrawal configurations for individual measurements. The mean values for
ȳm,landing measured quantity value in landing configuration and ȳm,withdrawal in withdrawal
configuration are comparable. The difference is in the same order of magnitude as the
standard deviation, which means that there is no significant difference between landing
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and withdrawal configurations compared with the standard deviation computed from
mean values.

Figure 9. Graphic representation of the three quantity measured values of ym,i,landing (i = 1; 3 and 5),
measured at the same location, computed in landing configuration and the three quantity measured
values of ym,i,withdrawal (i = 2; 4 and 6) computed in withdrawal configuration. Each data is indicated
with its associated absolute uncertainty (coefficient k = 1) represented by black error bars. The blue
circles correspond to landing measurement points and the orange square to withdrawal measurement
points. The blue solid line represents the mean value for the landing configuration with its associated
standard deviation (blue dashed lines) and the orange dash-dotted line represents the mean value for
the withdrawal configuration with its associated standard deviation (orange dotted lines).

The same analysis has been performed for all calibration samples in order to check
if there is a significant trend in mean values or standard deviation between the landing
configuration and the withdrawal configuration. The data are gathered in Figure 10.
No significant trend has been observed either for the mean values or for the standard
deviation values.

Figure 10. Comparison of mean values and the standard deviation (black error bars) obtained in
landing condition (blue rectangles) and withdrawal condition (orange rectangles) for all calibra-
tion samples.

3.2.3. Evaluation of Measurement Precision under Reproducibility Conditions: Study of
Heterogeneity of The Sample

Another influence factor that can induce an additional contribution to the uncertainty
is the heterogeneity of the sample, which can be due to variations in roughness from
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one location to another, non-uniformity (variation of structure, size grain), oxide film, or
pollution. In order to identify if the heterogeneity of our samples has a significant impact on
our measurement spread, for each sample, we compare in Figure 11 the standard deviation
obtained for the three measurements performed at the same location and standard deviation
obtained for the measurements performed at three different locations.

Figure 11. Comparison of standard deviation obtained in repeatability conditions (same location)
and reproducibility conditions (different locations).

No significant trend indicates that sets of points measured under reproducibility
conditions have a higher contribution to the standard deviation than sets of points measured
under repeatability conditions. To conclude, with our measurement protocol, no significant
contribution to the standard deviation has been established either from the landing or
withdrawal configuration or from the heterogeneity of the sample. That means other
sources of uncertainty not clearly evaluated of the purpose of the previous experiments
have to be considered.

3.2.4. Combination of Measurements in Repeatability and Reproducibility Conditions

For each studied sample, we obtained ten quantity-measured values Ym,i from the
repeatability and reproducibility conditions. As discussed in previous sections, the varia-
tions in repeated observations of the measurand under apparently identical conditions in
highlight underestimated the uncertainty associated with the measured quantity values.
As a result, we computed all the ten values measured for each sample and determined the
associated uncertainty by performing Bayesian consensus estimation of the mean value of
each Ym,i as described in Section 2.4.4. In this way, we integrate all influencing factors, even
non-identified uncertainty sources, as the variation of the force applied by the cantilever
between each measurement or random variation of environmental conditions. As we
perform landings without the laser, we have no feedback of the deflection of the cantilever,
which means no fine control of the applied force. This can induce a strong variation in the
interface thermal resistance between the tip and the surface of the sample and a strong
variation in the thermal contact area. This could be the main influencing factor regarding
our measurement protocol. Figure 12 presents the ten quantity measured values Ym,i ob-
tained for the PMMA sample with their associated uncertainty as well as the mean value
identified as the intermediate measurand y with its associated uncertainty.

The mean values and their associated uncertainty have been computed by performing
Bayesian consensus estimation for each of the twelve calibration materials. Table 6 presents
results, including intermediate measurand y, absolute uncertainty, and relative uncertainty.
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Figure 12. Ten measured quantity values for PMMA sample.

Table 6. Summary of the experimental measurements on calibration samples: the intermediate
measurand mean value Y, the standard uncertainty u(Y) (absolute and relative).

Sample Thermal Conductivity Y Intermediate Measurand u(Y) Standard Uncertainty
(Wm−1K−1) Mean Value (a.u.) Abs Rel. (%)

PMMA 0.187 0.6780 0.0029 0.4
POM− C 0.329 0.8145 0.0055 0.7

Borosilicate glass 1.11 0.9780 0.0023 0.2
SiO2 f 1.28 1.0019 0.0048 0.5

SiO2 − NEGS1 1.40 1.0173 0.0038 0.4
ZrO2 1.95 1.0457 0.0072 0.7
TiO2 9.15 1.1316 0.0057 0.5

Alumina 29.8 1.1140 0.0091 0.8
Sapphire 36.9 1.1241 0.0045 0.4

Germanium 52.0 1.1460 0.0035 0.3
Sip++ 93.4 1.1548 0.0044 0.4
Zinc 117 1.1158 0.0111 1.0

As a result, our measurement protocol enables us to reach a relative standard un-
certainty of 1.0% at most. The highest values of uncertainty (≥0.7%) are obtained for
materials with the highest roughness (Zn, Alumina, and POM-C). Regarding ZrO2, even if
the roughness value of its surface is quite low (<0.5 nm), the relative standard uncertainty
associated with the determination of YZrO2 is estimated to be 0.7%. A study of rough
data shows that there was a variation in the thermal drift (discussed in Section 3.1 and
illustrated on Figure 5) between the measurements performed on the reference SiO2 sample
and those performed on the ZrO2 sample that increased the contribution of reproducibility
to the uncertainty value. That confirms that special attention is required to the stability of
environmental conditions during measurements in order to avoid increasing uncertainty.

3.3. Bayesian Identification of the Parameters

The Bayesian analysis proposed in Section 2.5 is carried out using the following poorly
informative prior distributions for the parameters of the calibration curve: π(a) ∼ N(1, 10),
π(b) ∼ N(1, 10), and π(c) ∼ N(1, 10).
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The posterior distributions of the parameters a, b, and c of the calibration curve are
presented in Figure 13. The corresponding calibration curve is illustrated in Figure 14 with
its 95% coverage intervals.

Figure 13. Posterior distributions of the parameters a, b, c of the calibration curve.

Figure 14. Calibration curve (in black) obtained from the experimental data from Table 6 analysed
with the Bayesian approach. Points are represented with their associated expanded uncertainty
(k = 2) for both axes. Red dashed lines represent the 95% coverage intervals associated with the
(estimated) calibration curve for each conductivity.

The calibration curve provided in Figure 14 suggests that the SThM technique is a
promising technique for the determination of traceable thermal conductivities lower than
10 W m−1 K−1 in the best case. Due to the shape of the calibration curve, the sensitivity of
the technique highly decreases for thermal conductivity higher than 10 W m−1 K−1, which
means that uncertainties on measurement for high thermally conductive materials should
be significant values that will be discussed in Section 3.4.

3.4. Predictions and Associated Uncertainty Using the Calibration Curve

In this section, we study predictions of the thermal conductivity and their associated
uncertainties X∗ using the calibration curve for arbitrary intermediate measurand Y∗.
In order to cover the range [0.1, 10] W m−1 K−1 of thermal conductivity, the following
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three artificial y∗ measurements are chosen to illustrate the prediction using the Bayesian
methodology: y∗1 = 0.7, y∗2 = 1.11, and y∗3 = 1.12. In this case, the vectors of SThM
measurements Y∗ and predictions X∗ of the thermal conductivity write Y∗ = (Y∗1 , Y∗2 , Y∗3 )
and X∗ = (X∗1 , X∗2 , X∗3 ) respectively (see Section 2.5.1).

The following poorly informative prior distributions are chosen for the predictions
π(X∗1 ) ∼ N(0.5, 10), π(X∗2 ) ∼ N(5, 100), π(X∗3 ) ∼ N(10, 100) and non informative Jeffrey’s
prior distributions are chosen for the Xi: π(Xi) ∝ 1 for i ∈ 1, . . . , N.

In this study, we consider two uncertainty levels for y∗, namely u(y∗) = 0.005, which
corresponds to the median of observed uncertainties obtained with the SThM on the
bulk materials in this study, and u(y∗) = 0.002, which corresponds to the lowest ob-
served uncertainty. Since all parameters are jointly updated (see Section 2.5.2), we show
that the uncertainty level of y∗ used for prediction has an effect on the estimations of
all the parameters, in particular on those of the calibration curve, which is a desirable
feature of the Bayesian inference. Summaries of the posterior distributions of all param-
eters (a, b, c, X1, . . . , XN , X∗1 , X∗2 , X∗3 , Y1, . . . , YN , Y∗1 , Y∗2 , Y∗3 ) with N = 12 are displayed in
Appendix A Tables A1 and A2 for u(y∗) = 0.005 and u(y∗) = 0.002, respectively.

The effect of a lower uncertainty u(y∗) = 0.002 on the predictions from the calibration
curve is displayed in Section 4.1. The posterior distributions of the predictions and their
associated 95% coverage interval obtained for y∗1 = 0.7, y∗2 = 1.11, and y∗3 = 1.12 are
presented in Figure 15 for the two uncertainty levels u(y∗) = 0.002 and u(y∗) = 0.005.
It should be noted that the posterior distributions of the predictions are not symmetric
PDFs, in particular for the highest conductivity. The predicted values are given with their
associated 95% coverage interval. The highest density value for the predicted value is
not located at the centre of the coverage interval. Therefore, it is not correct to attribute
a standard uncertainty (absolute or relative) to the predicted value. Only the coverage
interval provides a rigorous assessment of the uncertainty.

Figure 15. Cont.
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Figure 15. Posterior distributions of the predictions and their associated 95% coverage interval
obtained for (a) Y = y∗1 , (b) Y = y∗2 and (c) Y = y∗3 for the two uncertainty levels u(y∗) = 0.002 and
u(y∗) = 0.005.

4. Discussions
4.1. Sensitivity of the Measurement Method

The calibration curve provided in Figure 14 suggests that the SThM technique is a
promising technique for the determination of thermal conductivities lower than
10 W m−1 K−1. In this section, we propose to illustrate this finding with three different
values of the Y measurements. Table 7 provides the results of the prediction obtained from
simulation techniques based on MCMC for the three chosen values of the Y intermediate
measurand. Two levels of standard uncertainty associated with Y measurements have been
tested: 0.002 and 0.005.

Table 7. Prediction of the thermal conductivity for different values of the direct measurement.
The indications of the standard uncertainty (absolute and relative) are given only for the order
of magnitude, only the coverage interval give the rigorous estimation of the uncertainty level as
discussed in previous section (Section 3.4).

y0 u(y0)
k0 u(k0) u(k0) 95% Coverage Interval

Wm−1K−1 Wm−1K−1 (%) Wm−1K−1

0.7 0.005 0.20407 0.00753 3.7 [0.18923; 0.21897]
0.7 0.002 0.20390 0.00560 2.7 [0.19296; 0.21493]
1.1 0.005 6.69603 1.29795 19.4 [4.83485; 9.77990]
1.1 0.002 6.25423 0.51752 8.3 [5.36013; 7.39395]
1.2 0.005 11.01500 5.21046 47.3 [6.48843; 22.57146]
1.2 0.002 9.07703 1.13082 12.5 [7.28483; 11.65243]

As expected, the uncertainty associated with the thermal conductivity increases as the
Y intermediate measurand approaches the top of the rising part of the calibration curve
in Figure 14. It appears that, currently, for values of Y higher than 1.2, which corresponds
to a thermal conductivity of 10 W m−1 K−1, the model does not enable the prediction of a
thermal conductivity value with a sufficiently low uncertainty. The second important result
presented in Table 7 is that the control of the uncertainty associated with the intermediate
measurand Y is crucial. The simulation performed for a Y value of 1.2 with an associated
uncertainty of 0.005 instead of 0.002 shows that it becomes impossible to determine the
thermal conductivity with a sufficiently low uncertainty.

4.2. Improvement of Measurement Precision

As discussed in Section 3.2, the main contribution to the standard uncertainty is the
dispersion of values in readability and reproducibility conditions. This statistical spread
between measurements could be explained by heterogeneities at the surface of the sample
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(the contribution of reproducibility error to the variance seems to decrease a little bit when
the roughness of materials decreases, see Tables 2 and 6). Nevertheless, given the small
decrease in the contribution of the reproducibility (at best, one point), it seems that the
spread is also impacted by changes in the thermal probe-sample contact between each
measurement (thermal interface resistance, thermal contact area, etc.). Since we follow the
“dark mode” protocol to avoid the overheating induced by the laser, we do not manage
accurately the applied tip force from one measurement to the next. Variations in applied
tip force between measurements could induce changes in thermal interface resistance and
thermal contact area. The next step of this work is to improve the reproducibility of our
measurements by improving the management of the applied tip force.

4.3. Application to Nanomaterials

Estimating the thermal conductivity of an unknown material from the calibration
curve requires that the heat transfer conditions are the same during the calibration and
measurement. As the calibration curve has been established with bulk materials, the heat
flows are mainly diffusive, which means that thermal conductivity can be directly identified
only for nanostructures or materials whose dimensions are consistent with the Fourier
regime with local thermodynamic equilibrium [49]. In the probe-sample-environment
system, at least three dimensions have to be checked: the smallest dimension of the sample
dmin (such as the diameter of the nanowire or the thickness of the membrane), the mean-free
path Λ of the studied material, and the effective solid-solid contact radius be f f between the
probe and the sample.

For systems where at least one of the dimensions dmin or be f f is lower than the mean-
free path Λ, heat transport is completely different from that experienced in macroscopic
systems. In that case, identification of the thermal conductance requires the development of
specific model describing all heat transfers from the probe to the sample (including ballistic
effects). To build the model, it is necessary to have a complete knowledge of the geometry
of the probe (depending on the probe type, probe generation, or wear of the probe) [49,50],
information about the thermal and electrical properties of the materials of the probe, and a
perfect knowledge of the contact between the tip and the sample (surface roughness, water
meniscus, boundary resistance, . . . ) [15]. Unfortunately, it is really challenging to quantify
all quantities involved in the measurement of the thermal conductivity of material and
in the heat transfer model [50]. Indeed, measuring the thermal or electrical properties of
the material constituents of the probe is tricky due to their small sizes. In addition, some
parameters of the model and heat transfer mechanisms at a lower scale than the mean-free
path are still the subject of fundamental research.

5. Conclusions

This work provides the first complete uncertainty assessment of thermal conductivity
measurements by the SThM technique based on a calibration curve established with bulk
calibration materials. This study shows that following the proposed protocols, it is possible
to perform quantitative and traceable thermal conductivity measurements for materials
with low thermal conductivity (under 10 W m−1 K−1) with the SThM technique under
specific conditions. Traceability is ensured by using calibration materials whose thermal
conductivity measurements are themselves traceable. As traceability is established at the
macroscale on bulk calibration materials, the measurement conditions must be the same
between calibration and measurements (i.e., diffusive heat transfer regime). By ensuring
strictly steady-state environmental conditions, minimising the roughness of studied ma-
terial (ideally less than Ra < 1 nm), and minimising the dispersion of measurements to
limit uncertainty on the measured quantity value to 0.2%, it is possible to reach an uncer-
tainty value of less than 10% for the identified thermal conductivity value. For thermal
conductivity greater than 10 W m−1 K−1, the current uncertainty values are too high from
a metrological point of view to justify traceable measurement using the protocol developed
for this study.
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Regarding nanostructured materials, traceable measurement could be performed using
the calibration and measurement protocols described in this paper when the heat transfer
regimes stay the same between calibration and measurement, that is, in the diffusive
regime. For a probe-sample system with one dimension lower than the mean-free path of
the studied material, a dedicated model has to be developed, as highlighted in ref. [50].
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Nomenclature

Measurement
Result

Measured
Quantity

Value
Uncertainty Description

Ym ym u(ym) individual measurand

Ym,i ym,i u(ym,i)
individual measurand indexed by

environmental measurement conditions

Y y u(y) mean value of measurand

Appendix A. Bayesian Estimates

Table A1. Posterior point estimates of all the quantities updated in the Bayesian inference for
u(Y) = 0.005.

Mean SD 2.50% 25% 50% 75% 97.50% n_eff Rhat

a 0.75248 0.02123 0.71332 0.73791 0.75154 0.76631 0.79741 18891 1.000
b 0.29479 0.01695 0.26192 0.28337 0.29456 0.30605 0.32837 18534 1.000
c 0.39178 0.02189 0.34578 0.37749 0.39274 0.40688 0.43207 18832 1.000

X1 116.98244 2.93226 111.14404 115.03346 116.97302 118.97162 122.66783 18263 1.000
X2 93.51105 2.33664 89.00636 91.91874 93.49173 95.09355 98.13226 18588 1.000
X3 52.08016 1.30062 49.51823 51.21204 52.08048 52.94909 54.64027 19055 1.000
X4 36.81147 0.92839 34.99854 36.18567 36.81277 37.44119 38.65114 19178 1.000
X5 29.77573 0.73586 28.33211 29.28152 29.77346 30.26941 31.23389 19163 1.000
X6 9.19203 0.22784 8.74616 9.03959 9.18998 9.34594 9.63890 18822 1.000
X7 1.95029 0.04671 1.85811 1.91892 1.95029 1.98190 2.04136 19503 1.000
X8 1.41600 0.03044 1.35605 1.39574 1.41594 1.43636 1.47612 18841 1.000
X9 1.27543 0.02837 1.21952 1.25637 1.27541 1.29451 1.33108 18796 1.000
X10 1.06069 0.02177 1.01842 1.04592 1.06073 1.07540 1.10332 18052 1.000
X11 0.34749 0.00670 0.33456 0.34297 0.34752 0.35199 0.36062 19347 1.000
X12 0.18227 0.00451 0.17349 0.17918 0.18223 0.18534 0.19105 19384 1.000
X∗1 0.20387 0.00760 0.18887 0.19872 0.20396 0.20896 0.21867 19061 1.000
X∗2 6.69274 1.31602 4.80659 5.79299 6.46207 7.33991 9.85410 17246 1.000
X∗3 11.09852 5.61346 6.44979 8.35621 9.83874 12.09348 22.99046 15898 1.000
Y1 1.14237 0.00220 1.13801 1.14090 1.14236 1.14386 1.14668 17798 1.000
Y2 1.14190 0.00220 1.13756 1.14043 1.14190 1.14338 1.14620 17817 1.000
Y3 1.14003 0.00216 1.13575 1.13860 1.14004 1.14148 1.14427 17747 1.000
Y4 1.13829 0.00212 1.13409 1.13687 1.13830 1.13971 1.14244 17864 1.000
Y5 1.13689 0.00210 1.13272 1.13548 1.13689 1.13830 1.14100 17859 1.000
Y6 1.12090 0.00191 1.11714 1.11962 1.12091 1.12217 1.12462 17463 1.000
Y7 1.04558 0.00275 1.04010 1.04375 1.04559 1.04744 1.05089 19108 1.000
Y8 1.01479 0.00265 1.00958 1.01300 1.01477 1.01658 1.01997 19042 1.000
Y9 1.00319 0.00305 0.99713 1.00114 1.00321 1.00529 1.00906 18628 1.000
Y10 0.98086 0.00209 0.97674 0.97949 0.98087 0.98226 0.98490 18485 1.000
Y11 0.79942 0.00389 0.79171 0.79685 0.79940 0.80204 0.80706 18576 1.000
Y12 0.67998 0.00289 0.67432 0.67804 0.67999 0.68191 0.68565 19186 1.000
Y∗1 0.70005 0.00503 0.69018 0.69666 0.70009 0.70344 0.70986 16720 1.000
Y∗2 1.11155 0.00517 1.10141 1.10807 1.11154 1.11503 1.12171 17568 1.000
Y∗3 1.12256 0.00540 1.11209 1.11894 1.12240 1.12612 1.13366 19017 1.000
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Table A2. Posterior point estimates of all the quantities updated in the Bayesian inference for
u(Y) = 0.002.

Mean SD 2.50% 25% 50% 75% 97.50% n_eff Rhat

a 0.75257 0.02113 0.71390 0.73786 0.75145 0.76632 0.79607 18663 1
b 0.29500 0.01698 0.26260 0.28346 0.29471 0.30641 0.32894 18710 1
c 0.39177 0.02181 0.34678 0.37757 0.39288 0.40693 0.43158 18633 1

X1 116.98164 2.94698 111.28035 114.99642 116.94231 118.95543 122.83754 19253 1
X2 93.50339 2.32200 88.98024 91.94296 93.52646 95.04895 98.07742 18317 1
X3 52.06313 1.30199 49.49339 51.17531 52.07019 52.94611 54.60207 18996 1
X4 36.81481 0.92593 34.98734 36.18401 36.81396 37.43419 38.62662 18505 1
X5 29.75853 0.74063 28.29387 29.25888 29.76038 30.25958 31.20828 18635 1
X6 9.19174 0.22802 8.74244 9.03749 9.19330 9.34511 9.63806 18499 1
X7 1.95060 0.04698 1.85851 1.91921 1.95035 1.98212 2.04297 19210 1
X8 1.41630 0.03024 1.35708 1.39610 1.41610 1.43617 1.47689 18904 1
X9 1.27500 0.02860 1.21919 1.25568 1.27521 1.29422 1.33215 18075 1
X10 1.06051 0.02194 1.01763 1.04562 1.06045 1.07525 1.10400 19529 1
X11 0.34759 0.00669 0.33440 0.34305 0.34761 0.35208 0.36065 18154 1
X12 0.18230 0.00448 0.17364 0.17924 0.18230 0.18531 0.19120 18516 1
X∗1 0.20390 0.00560 0.19296 0.20014 0.20390 0.20767 0.21493 18498 1
X∗2 6.25423 0.51752 5.36013 5.89422 6.21048 6.56798 7.39395 18765 1
X∗3 9.07703 1.13082 7.28483 8.28182 8.93303 9.72300 11.65243 18740 1
Y1 1.14245 0.00218 1.13822 1.14096 1.14245 1.14393 1.14673 18174 1
Y2 1.14197 0.00217 1.13775 1.14049 1.14198 1.14344 1.14623 18172 1
Y3 1.14010 0.00213 1.13597 1.13865 1.14011 1.14155 1.14428 18083 1
Y4 1.13836 0.00210 1.13428 1.13693 1.13836 1.13979 1.14247 18160 1
Y5 1.13696 0.00207 1.13292 1.13554 1.13697 1.13836 1.14103 18196 1
Y6 1.12096 0.00188 1.11730 1.11969 1.12097 1.12222 1.12463 18463 1
Y7 1.04560 0.00276 1.04017 1.04375 1.04561 1.04748 1.05101 19187 1
Y8 1.01480 0.00267 1.00960 1.01301 1.01480 1.01659 1.02002 18771 1
Y9 1.00313 0.00306 0.99707 1.00106 1.00317 1.00523 1.00903 18424 1
Y10 0.98081 0.00209 0.97675 0.97939 0.98081 0.98223 0.98490 19062 1
Y11 0.79938 0.00387 0.79179 0.79677 0.79937 0.80202 0.80693 17955 1
Y12 0.67991 0.00290 0.67425 0.67792 0.67989 0.68183 0.68559 19199 1
Y∗1 0.70004 0.00202 0.69606 0.69867 0.70002 0.70141 0.70400 19015 1
Y∗2 1.11027 0.00200 1.10633 1.10894 1.11026 1.11160 1.11422 19024 1
Y∗3 1.12034 0.00204 1.11636 1.11896 1.12033 1.12170 1.12432 18750 1
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