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S1. Dynamics of photoluminescence and differential transmission at T = 5 K and 295 K

The comparison between photoluminescence (PL) dynamics (spectrally integrated over the PL line) and differential
transmission dynamics at T = 5 K and 295 K is shown in Figure S1(a-f). Both PL and differential transmission
dynamics are multi-exponential. The fast component of the transmission and PL exhibits the same decay times of
10−20 ps. However, the slow transmission component (> 1−2 ns) is considerably longer than that of PL (100−500 ns).
Furthermore, the long dynamics of differential transmission are composed of several components (with decay times of
1−2 ns and longer than 10 ns) and the amplitude of the longest component becomes negative for decreased detection
energy (Figure S1b). On the other hand, at room temperature, such a dependence of differential transmission on
spectral energy is not observed, and there is a long decay time of several nanoseconds for all dynamics (Figure S1e).

The difference in the behavior of ∆T/T and PL dynamics is related to the fact that the PL results from the radiative
recombination of excitons, while ∆T/T is sensitive to the presence of the excitons and charge carriers. ∆T/T has
contributions from bleaching for a large number of carriers, which reduces the optical transition oscillation strength.
Another contribution to ∆T/T comes from the redistribution of oscillator strengths between neutral exciton and
charged exciton (trion) transitions, when the photogeneration of charge carriers, which are not bound to excitons,
results in the appearance of the trion resonance in the absorption spectrum. This leads to an increase of ∆T/T
at exciton energy and a decrease at trion energy. This redistribution of oscillator strengths explains the change in
the sign of ∆T/T when changing the photon energy (Figure S1b). Thus, the fast component of ∆T/T , similar to
PL, results from the recombination of photoexcited carriers. The slow components, including those that appear as a
negative background in Figure S1b, correspond to the decay of the concentration of spatially separated charge carriers.
In NPLs, a charge separation effect was observed previously, with predominant hole capture to the NPL surface [S1].
positive component with a few ns decay time presumably corresponds to the non-radiative Auger recombination of
electrons with holes captured to the surface [S2]. Some holes are separated even further, leaving uncompensated
electrons, which presumably give rise to the long-lasting negative component in Figure S1b. At high temperatures,
as shown in Figure S1e, the same scenario applies; however, trion and exciton resonances are blurred, and a negative
signal is no longer observed at lower photon energies. This indicates that although spatial separation of carriers still
occurs, the rate of their recombination is significantly increased. Thus, the observed ns-long spin dynamics obviously
correspond to the resident electrons rather than to electrons bound in excitons.
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Figure S1. Dynamics of PL and differential transmission in 3 ML CdSe NPLs measured at T = 5 K (a-c) and 295 K (d-
f). Respective PL spectra are shown in panels (a,d). Here, arrows mark spectral energies, where the differential 
transmission is measured. PL dynamics in panels (c,f) are spectrally integrated. Note the logarithmic scale for signal 
intensity in panels (c) and (f) and the linear scale in panels (b) and (e).



S3

S2. Spectral dependences of spin parameters in 3 ML NPLs

Figure S2 shows the spectral dependencies of the spin parameters (g-factor and spin-dephasing time T ∗
2 ) measured

by TRFR in 3 ML NPLs. Experiments are performed at T = 5 K in a magnetic field of B = 270 mT applied in Voigt
geometry. Panel (a) shows the PL spectrum and dependence of the FR amplitude on the laser photon energy. At
an energy of 2.74 eV, the phase of the oscillations changes by π, which corresponds to the negative amplitudes. The
spectral dependence of T ∗

2 shows the threshold-like behavior changing from 0.6 ns at low energies to 0.3 ns at high
energies. The change takes place in the range coinciding with the spin precession phase change. The electron g-factor
also shows weak changes around this energy increasing from 1.81 to 1.87, with an increase in the spectral energy. We
attribute the changes in the g-factor and T ∗

2 to the localization of the resident electrons: at low energies, we probe
localized electrons, while at higher energies, we probe almost-free electrons.
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Figure S2. Spectral dependencies of the spin dynamic parameters in 3 ML CdSe NPLs at T = 5 K and B = 270 mT. (a) PL 
spectrum (red solid line) and the dependence of the amplitude of the TRFR signal oscillations (blue circles) on laser energy. The 
vertical dashed line marks the maximum FR amplitude. The spectral dependencies of the g-factor (b) and spin-dephasing time T2

∗ 

(c).

S3. The magnetic field dependence of the spin-dephasing time at room temperature

Figure S3a plots TRFR traces of CdSe NPLs in a solution at room temperature and magnetic field strengths from
0 mT to 330 mT. Fitting with Eq. (2) allows us to determine the spin-dephasing time T ∗

2 , which decreases from
approximately 0.5 ns at the minimal magnetic field to 0.2 ns at the maximal field. We can rewrite Eq. (3) as

1

T ∗
2

=
1

T ∗
2 (0)

+
∆g

g
ωL . (S1)

The dependence of time T ∗
2 on the Larmor precession frequency (which serves as a measure of the magnetic field) is

shown in Figure S3b. Fitting the experimental points using Eq. (S1) yields ∆g = 0.08 for 3 ML NPLs, which agrees
well with the low-temperature result, ∆g = 0.06. For 4 ML NPLs, ∆g = 0.17 is twice larger than that for 3 ML
NPLs.
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Figure S3. (a) Spin dynamics measured in 3 ML NPLs at room temperature in different magnetic fields. Laser photon energy is 
2.638 eV (470 nm). (b) Dependence of the spin-dephasing time T2

∗ for 3 ML (blue circles) and 4 ML (green triangles) NPLs on the 
Larmor frequency. The solid lines show fits of the data using Eq. (2) with parameters ∆g = 0.08 and ∆g = 0.17, respectively.

S4. Longitudinal spin relaxation times T1

Table S1 shows the longitudinal spin relaxation time T1 and the inhomogeneous spin-dephasing time T ∗
2 at T = 10 K

and T = 295 K obtained from fitting the TRFR traces using Eq. (4) in the main text. The magnetic field of 50 mT
is directed at an angle α = 35◦ to the substrate normal. Time T ∗

2 decreases with temperature from 1 ns to 0.7 ns
for 3 ML NPLs and from 1.4 ns to 0.3 ns for 4 ML NPLs. Longitudinal relaxation has two components: T short

1 and
T long
1 . Time T short

1 decreases with temperature from 1.9 ns to 0.7 ns for 3 ML NPLs and from 6.7 ns to 1.1 ns for
4 ML NPLs. T long

1 is always longer than 10 ns for NPLs of both thicknesses, even at room temperature.

T = 10 K T = 295 K
T ∗
2 (ns) T short

1 (ns) T long
1 (ns) T ∗

2 (ns) T short
1 (ns) T long

1 (ns)
3 ML 1 1.9 ≫ 10 0.7 0.7 >∼ 10
4 ML 1.4 6.7 ≫ 10 0.3 1.1 >∼ 10

Table S1. Longitudinal spin relaxation times T1 and inhomogeneous ensemble spin-dephasing times T2
∗ for the 3 ML and 4 ML 

CdSe NPLs measured at T = 10 K and 295 K. The magnetic field of 50 mT tilted by α = 35◦ to the substrate normal.

S5. Trion binding energies

Splitting between the exciton (X) and negative trion (T) lines, as shown in Figure 1a in the main text, corresponds 
to the trion binding energy. These splittings are: 20 ± 1 meV for 5 ML, 24 ± 1 meV for 4 ML, and 42 ± 3 meV for 
3 ML CdSe NPLs. Their comparison with trion binding energies from Ref. [S3] is shown in Figure S4.
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Figure S4. Splitting between the exciton (X) and negative trion (T) lines as a function of NPL thickness (blue squares). 
Data for the trion binding energies from Ref. [S3] are shown by magenta circles.

S6. Spin–flip Raman s cattering i n 4  ML NPLs

Figure S5 shows the SFRS spectra of 4 ML NPLs. Figure S5a demonstrates co- and cross-circular polarized 
SFRS, while Figure S5b demonstrates co- and cross-linear polarized SFRS; both are measured under excitation at 
Eexc = 2.541 eV in the Faraday magnetic field B  =  5  T . S tokes ( positive R aman s hifts) a nd a nti-Stokes (negative 
Raman shifts) areas of the spectra contain lines with energy around ±0.45 meV. These lines are attributed to the 
electron spin–flip Raman s cattering. The e lectron spin–flip li ne is  more pronounced in  co -circular po larizations (σ+ 

excitation and σ+ detection) and in cross-linear polarization configurations (horizontal polarization of excitation and 
vertical polarization of detection).

Figure S5. SFRS in 4 ML NPLs measured in (a) circular and (b) linear polarizations. The magnetic field B = 5 T is 
applied in Faraday geometry. T = 2 K. Polarization properties of SFRS agree with those of the 3 ML sample (Figure 4a in 
the main text) and with the selection rules described in Ref. [S11].
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S7. Calculation of the electron g-factor dispersion caused by the dispersion of NPL lateral sizes

To identify the origin of the g-factor spread evaluated from the magnetic field dependence of the spin-dephasing time
T ∗
2 (Figure 2 in the main text), we calculated the electron g-factor in NPLs of fixed thicknesses but different widths,

5, 7, 9 nm. The length of the NPL is about 30 nm and its dispersion does not play any role in the renormalization
of the g-factor. For this purpose, we use the kp-model described in Ref. [S4]. The result of the calculation and
the comparison with the experimental data are shown in Figure 5. The dashed lines in Figure 5 show the results
of the calculation for infinite quantum box confinement potential, and the solid lines denote the harmonic oscillator
potential. These two potentials differ by the localization of the electron wave function near the center of the NPL.
For the infinite quantum box potential calculated g-factor, one can see that values are far below the experimental
data points. We note that spherical CdSe NC calculations with this confinement potential are in excellent agreement
with the experimental g-factor values [S5]. For the infinite quantum box confinement potential, we find ∆g = 0.015
for 3 ML NPLs and ∆g = 0.02 for 4 ML NPLs. These values are several times smaller as compared to the ∆g values
determined experimentally.

For the harmonic oscillator potential (solid lines), we find better agreement between the calculated and experimental
g-factors. The harmonic oscillator potential provides stronger localization near the center of the NPL. We suggest that
it could be related to the dielectric confinement effect, resulting in the repulsion of the electron from its image charge.
However, due to the larger quantization energy of the electron, the effect of the NPL width dispersion on the spread
of electron g-factors becomes even smaller, as one can see in Figure 5. From that, we conclude that the dispersion of
NPL lateral sizes is not sufficient to explain the origin of T ∗

2 observed experimentally. Likely, the spread of g-factors
is caused by the variation of dielectric confinement or strain effects for the NPLs in the ensemble. Moreover, the
calculated g-values for the parabolic potential confining the electron better describe the experimental data than those
for the box-like potential profile. This may point to the specific localization of resident electrons in the NPL, and the
spread of g-factors observed in the TRFR can be attributed to fluctuations in the localization conditions.

The calculation results shown in Figure 5 neglect the quantization of the electron along the length of an NPL. In
Figure S6, we show the difference between the dependencies of the g-factor on the NPL thickness for NPLs with a
width of 9 nm and either infinite or 30 nm length. The g-factor difference is determined as g(l = ∞, w = 9 nm)−g(l =
30 nm, w = 9 nm). The solid line corresponds to the harmonic oscillator potential; the dashed line corresponds to
the infinite quantum box potential. One can see that the g-factor difference is negligible, and the 30 nm NPL length
can be safely treated as infinite. The influence of electron quantization along the NPL width is shown by blue lines,
which are calculated as g(l = ∞, w = ∞) − g(l = ∞, w = 9 nm). One can see that, even in this case, the g-factor
difference is smaller than the experimental ∆g values.
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Figure S6. The difference in the electron g-factor for NPLs of different thicknesses and a 9 nm width, having either infinite 
or 30 nm length, is depicted by the red lines. The difference between NPLs of 9 nm width and infinite length and NPLs of 
infinite width and length is illustrated by the blue lines. Solid lines correspond to the harmonic oscillator localization 
potential, while the dashed line corresponds to the infinite quantum box localization potential.
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S8. Theory of TRFR in CdSe NPLs

A detailed microscopic analysis of the TRFR for an ensemble of singly charged (In,Ga)As epitaxial quantum dots
can be found in Refs. [S6, S7]. The microscopic mechanism of the TRFR proposed in Ref. [S6] is based on the excitation
of a negatively charged trion (a heavy hole plus two electrons with opposite spins) in a quantum dot charged by one
resident electron. The idea of the trion mechanism is as follows: A circularly polarized pump pulse directed along
the quantization axis of a negatively charged quantum dot excites the singlet state of trions in quantum dots where
the electron has a spin opposite to that of the photocreated electron. This occurs due to strict selection rules for
the interaction of circularly polarized photons with heavy hole-based trions. After the fast spin relaxation of a heavy
hole in a trion, followed by the radiative recombination of the trion, the electron spin polarization in these quantum
dots becomes random. However, the entire ensemble becomes spin-polarized after excitation due to the quantum dots
having electron spins parallel to those of the photocreated electrons, which remain unaffected by the excitation pulse
due to the aforementioned selection rules.

Further, the initialized electron spin polarization precesses in the transverse magnetic field. When there is electron
spin polarization along the quantum dot’s quantization axis (z-axis), the probe pulse linearly polarized along the x-
axis of the laboratory frame creates dielectric polarization along the y-axis of the laboratory frame in the quantum dot
layer. This dielectric polarization along the y-axis results in the appearance of the y-polarized electric field component
for the transmitted probe pulse. In other words, the rotation of the polarization plane of the transmitted probe pulse
occurs.

Later, the trion mechanism was extended for the case of spherical colloidal nanocrystals with a zinc blende crystal
structure [S8]. Due to zero splitting between the heavy and light hole states in these NCs, a circularly polarized photon
excites a coherent superposition of trions formed by the heavy hole and light hole. The most striking difference from
the epitaxial quantum dots considered in Ref. [S6] involves theoretically predicted sign-reversal Rabi oscillations of
the electron spin polarization created by the pump pulse [S8].

Colloidal CdSe nanoplatelets are analogous to epitaxial quantum dots due to close lateral dimensions and the
presence of a quantization axis, which leads to a large 200 − 300 meV [S9] splitting between heavy holes and light
holes. However, the quantization axis in the NPL ensemble is oriented randomly or may have several preferential
orientations [S10, S11]; in contrast, epitaxial quantum dots have strict orientation. The random orientation is also
valid for spherical colloidal wurtzite CdSe nanocrystals with a large (compared to the Zeeman splitting) splitting
between heavy and light holes induced by the crystal field (≈ 25 meV). These nanocrystals have been extensively
studied by TRFR since 2002 [S12, S13, S5].

In such colloidal ensembles of NPLs or NCs, the direction of the magnetic field and the direction of the incident
light do not have strictly defined orientations with respect to the anisotropy axis. This does not allow one to provide a
direct analysis of the experimental data for colloidal CdSe NPLs or CdSe NCs using the theory developed in Ref. [S6].
Partially, the random orientation effect of NCs is considered in Ref. [S14] for lead halide perovskite NCs. However,
this paper does not consider the selection rules for optical transitions involving a heavy hole, which are of decisive
importance in the case of CdSe NPLs.

Here, we extend the theory from Ref. [S6] and analyze the difference in pump–probe Faraday rotation studies for:
(i) an ensemble of NPLs with two predominant orientations (lying flat and standing on the edge, see Figure S7a); (ii)
an ensemble of NPLs forming a “fish scale” stacking (see Figure S7b). It is assumed that the deviation of the NPL
plane in the ensemble from the plane of the substrate is uniformly distributed in the range from 0 to 30 degrees. (iii)
An ensemble of NPLs with random orientations of the anisotropy axis; see Figure S7c. The essential approximations
of our theoretical model are as follows. We assume that the observed TRFR signal is based on the trion mechanism.
This assumption is consistent with the experimental fact that the maximum of the TRFR signal coincides with the
maximum of the trion PL band. Next, we consider singlet negative trions formed by two electrons and a heavy hole.
For these trions, the interaction of carriers with light is determined by a two-dimensional electric dipole lying in the
NPL plane. The trion dipole moment directed out of the NPL plane is equal to zero, i.e. there is no interaction of
trions with the corresponding light component, as assumed in Ref. [S6].

Coordinate systems

We start by finding the correspondence between the coordinate system associated with the experimental setup
(laboratory frame) and the coordinate system associated with the nanoplatelet (NPL frame). We introduce the
laboratory frame axes X = (x, y, z) and the NPL frame axes X ′ = (x′, y′, z′). The direction of the pump and probe
laser pulses coincides with the z-axis of the laboratory frame. The laboratory frame and the NPL frame are related
by X

′
= RX, with the matrix R:
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Figure S7. Schematics of nanoplatelet ensembles with different types of orientation on the substrate: (a) bimodal distribution with 
two orientations, (b) “fish scale” stacking, and (c) random orientation. Panel (d) shows the relative orientation of the laboratory 
and NPL frames. Pump and probe pulses are directed along the z-axis. The magnetic field is directed along the x-axis. Angles φ, θ, 
γ are nutation, precession, and intrinsic angles for the z − y − z Euler rotation sequence.

R =

 cosφ cos γ cos θ − sinφ sin γ cos γ cos θ sinφ+ cosφ sin γ − cos γ sin θ
− cos γ sinφ− cosφ cos θ sin γ cosφ cos γ − cos θ sinφ sin γ sin θ sin γ

cosφ sin θ sinφ sin θ cos θ



Matrix R corresponds to a z− y− z rotation sequence transforming the laboratory frame into the NPL frame. The
Euler precession (θ) and nutation (φ) angles are the polar and azimuthal angles of the NPL anisotropy axis z′ in the
laboratory frame, so that the first two rotations completely define the random orientation of the NPL c-axis. The
third rotation around the c-axis by the intrinsic angle γ is added for the convenience of calculations. It is chosen to
satisfy the condition that the y′ axis of the NPL frame is lying in the yz plane of the laboratory frame. One can choose
the y′-axis in such a way if the NPLs are axially symmetric with respect to the quantization axis, or if the in-plane
anisotropy of the NPLs does not strongly affect the energy states of electrons and trions. Under this assumption, one
can express the angle γ in terms of the angles θ and φ using the condition that the projection of the x-axis onto the
y′-axis is equal to zero, i.e., cos γ sinφ = − cosφ cos θ sin γ. We note that the final results do not depend on the angle
γ, which confirms the validity of our approach.

For the chosen coordinate systems, the magnetic field directed along the x-axis of the laboratory frame (Voigt
geometry) Bx = B has the following components in the NPL frame:

Bx′ = B(cosφ cos γ cos θ − sinφ sin γ) = B

√
1− cos2 φ sin2 θ, (S2)

By′ = 0,

Bz′ = B cosφ sin θ.

We also need to find projections on the NPL frame for the circularly polarized pump pulse directed along the z-axis
of the laboratory frame. We further consider only the σ+ polarized pump pulse. The approach for the σ− polarized
pump pulse can be made in a similar way [S6]. The σ+ polarized pump pulse in the laboratory frame is described
by Eσ+(r, t) = E(r, t)(ox + ioy)/

√
2, where ox,y are unit vectors directed along the x and y-axes of the laboratory

frame. The amplitude E(r, t) is proportional to eiωpt with ωp being the frequency of photons in the pump pulse. In
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the NPL frame, the pump pulses have both σ± components with the following amplitudes:

Eσ+(r, t) = E(r, t)
1 + cos θ

2
ei(φ+γ)ox′ + ioy′

√
2

, (S3)

Eσ−(r, t) = −E(r, t)
1− cos θ

2
ei(φ−γ)ox′ − ioy′

√
2

. (S4)

Here, we neglected the linearly polarized component of the pump pulse Ez(r, t) in the NPL frame since the trion
dipole moment along the z′-axis is equal to zero.

Finally, we find the components Ex′,y′,z′ of the probe pulse Epr(r, t) = E(r, t)ox linearly polarized along the x-axis
of the laboratory frame. Components Ex′,y′,z′ can be written in a similar way to the magnetic field components:

Ex′(r, t) = E(r, t)

√
1− cos2 φ sin2 θox′ , (S5)

Ey′(r, t) = 0,

Ez′(r, t) = E(r, t) cosφ sin θoz′ .

Again, the zero dipole moment of the trion transition allows us to consider only the Ex′ component of the electric field.
Hence, for the probe pulse, the only important effect arising from the arbitrary orientation of the NPL quantization
axis is the renormalization of its Ex′ .

Initialization of electron spin polarization

Following Ref. [S6], we consider the action of a short σ+ polarized laser pulse with frequency ωp close to the trion
resonance frequency, ω0. The pulse duration τp is considered short compared to the spin relaxation times of the
electron and trion, the trion radiative lifetime, and the spin precession period of an electron and a hole in an external
magnetic field. The interaction of an NPL with the electromagnetic wave is described by the Hamiltonian [S6]:

V̂ (t) = −
∫
[d̂+(r)Eσ+

(r, t) + d̂−(r)Eσ−(r, t)]d
3r, (S6)

where d̂±(r) = [d̂x(r) ± id̂y(r)]/
√
2 denotes the circularly polarized components of the dipole moment density op-

erator, and Eσ±(r, t) denotes the circularly polarized components of the electric field of a quasi-monochromatic
electromagnetic wave.

The pump pulse induces the optical transition between the electron state and the trion state. As a result, the
coherent superposition of these states is created. It is convenient to introduce a four-component wave function:

Ψ = (ψ1/2, ψ−1/2, ψ3/2, ψ−3/2), (S7)

where the ±1/2 subscripts denote the electron spin projection and ±3/2 refers to the spin projection of a hole in a
negative trion. The electron spin polarization is expressed in terms of ψ±1/2 as follows:

Sz′ = (|ψ1/2|2 − |ψ−1/2|2)/2, Sx′ = Re(ψ1/2ψ
∗
−1/2), Sy′ = −Im(ψ1/2ψ

∗
−1/2). (S8)

In the rotating-wave approximation, the action of a short σ+ pump pulse on the negatively charged NPL is described
by the following equations:

ih̄ψ̇3/2 = h̄ω0ψ3/2 + V+(t)ψ1/2, (S9)

ih̄ψ̇1/2 = V ∗
+(t)ψ3/2,

ih̄ψ̇−3/2 = h̄ω0ψ−3/2 + V−(t)ψ−1/2,

ih̄ψ̇−1/2 = V ∗
−(t) + V ∗

+ψ−3/2.

Here, ψ̇ = ∂ψ/∂t, V± = −
∫
d(r)Eσ±(r, t)ei(φ±γ)(cos θ ± 1)/2, ω0 is the trion resonance frequency. From Eq. (S9),

one can see that the σ+ pump pulse creates both trion states ψ±3/2, in contrast to the case of epitaxial QDs [S6].
The effective transition dipole d(r) equals [S6]:

d(r) = ⟨1/2| d̂−(r) |3/2⟩ = ⟨−1/2| d̂+(r) |−3/2⟩ = −i epcv
ω0m0

F(r, r), (S10)
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which is the matrix element of the operators d̂±(r) calculated between the wave functions of the valence band |±3/2⟩
and the conduction band, |±1/2⟩, all taken in the electron representation. In Eq. (S10), e is the electron charge,
m0 is the free electron mass, and pcv = ⟨S| p̂x |X⟩ = ⟨S| p̂y |Y⟩ = ⟨S| p̂z |Z⟩ is the interband matrix element of the
momentum operator taken between the conduction- and valence-band Bloch functions at the Γ point of the Brillouin
zone, S, and (X,Y,Z), respectively.

However, the pump pulse does not mix all states of the electron–trion system, only pairs ψ1/2/ψ3/2 and ψ−1/2/ψ−3/2.
Thus, one can find the relationship between the electron components of the wave function Ψ after (ψ±1/2(∞)) and
before (ψ±1/2(−∞)) the pump pulse action in the way proposed in Ref. [S6]. The solution has the following form:

ψ±1/2(∞) = Q±e
iΦ±ψ±1/2(−∞). (S11)

Here, the real coefficients Q± satisfy the condition 0 ≤ Q± ≤ 1, and phases Φ± can be chosen in the range between
−π and π. The explicit forms of Q± and Φ± depend on the parameters of the pump pulse. In what follows, we
consider smooth pulses of the shape proposed by Rosen and Zener [S15]:

f(t) =
µ

cosh(πt/τp)
, (S12)

where the coefficient µ is a measure of the pulse electric field strength, and τp is the pulse duration. The effective
area of the pulse is Θ = 2µτp. For the Rosen–Zener pump pulse parameters, Q± and Φ± take a form similar to that
in Ref. [S8]:

Q± =

√
1− sin2(Θ±/2)

cosh2 πχ
, (S13)

Φ± = arg

[
Γ2( 12 − iχ)

Γ( 12 − Θ±
2π − iχ)Γ( 12 + Θ±

2π − iχ)

]
, (S14)

where Θ± = Θ(1 ± cos θ)/2, and χ = (ωp − ω0)τp/2π denotes the dimensionless detuning between the pump pulse
and trion frequencies.

The electron spin polarization components after the pump pulse are as follows:

S+
z′ =

Q2
+ −Q2

−
4

+
Q2

+ +Q2
−

2
S−
z′ , (S15)

S+
x′ = Q+Q−(S

−
x′ cos(Φ+ − Φ−) + S−

y′ sin(Φ+ − Φ−)),

S+
y′ = Q+Q−(S

−
y′ cos(Φ+ − Φ−)− S−

x′ cos(Φ+ − Φ−)).

These equations are similar to the equations for spherical NCs from Ref. [S8], and for θ = 0, which is the case of
epitaxial quantum dots, Q− = 1 and Φ− = 0; thus, we arrive at Eq. 16(a-c) from Ref. [S6].

Since we are interested in the ensemble of NPLs, which differ by their spin polarizations S−
x′,y′,z′ before the arrival

of the pump pulse, averaging over all possible spin polarizations S−
x′,y′,z′ should be performed. The averaging results

in S̃−
x′,y′,z′ = 0. Thus, after the pump pulse, the spin polarization components for an ensemble of NPLs are:

S̃+
z′ =

Q2
+ −Q2

−
4

, S̃+
x′ = 0, S̃+

y′ = 0. (S16)

Larmor precession in magnetic field

In our consideration of the spin precession in the magnetic field, we use the conventional assumption [S6, S8] that the
hole-in-trion spin loses its orientation fast, compared with the radiative lifetime of the trion. In this case, the electron
remaining after the trion recombination is completely depolarized and the electron spin polarization is determined by
equation (S16). In the magnetic field, the electron spin polarization oscillates according to the Bloch equation:

Ṡ + S ×Ω+
S

τs,e
= 0. (S17)
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where S = (Sx′ , Sy′ , Sz′) and Ω = (Ωx′ ,Ωy′ ,Ωz′). Ωx′,y′ = g⊥µBBx′,y′/h̄ and Ωz′ = g||µBBz′/h̄, where g⊥,|| are
electron g-factors in the direction perpendicular and parallel to the NPL quantization axis, respectively.

For the magnetic field directed along the x-axis of the laboratory frame, and under the condition that the initial
spin polarizations after the pump pulse are S̃+ = (0, 0, S̃+

z′), the spin precession is described by the following equation:

S̃z′(t) = S̃+
z′

(
Ω2

z′

Ω2
+

Ω2
x′

Ω2
cosΩt

)
exp(−t/τs,e). (S18)

This equation is written with the assumption of the isotropic spin relaxation time τs,e.

Electron spin readout

The time evolution of the electron spin polarization is detected by the linearly polarized probe pulse. As we
have shown above, the tilt of the NPL anisotropy axis with respect to the probe pulse direction results in the
renormalization of the effective electric field in the NPL frame. The renormalized electric field component Ex′ induces
electric polarization along the x′ and y′ axes of the NPL, as shown in Ref. [S6]. The polarization δPx′ along the x′
axis is proportional to the population of electron state ne = |ψ1/2|2 + |ψ−1/2|2. The polarization δPy′ along the y′

axis is proportional to the electron spin polarizations S̃z′(t). As the TRFR signal is determined by the polarization
induced along the y-axis of the laboratory frame, we project polarizations δPx′ and δPy′ on this axis.

Since we only consider the electron contribution to the TRFR signal, assuming fast trion recombination, the value
of ne remains constant. Thus, the δPx′ in each NPL is also constant. Integration over all possible orientations of the
NPL quantization axis shows that the contribution from δPx′ to the total polarization δPy from all NPLs equals zero.
It is an expected result since the presence of resident electrons with zero net spin polarization should not affect the
polarization plane of the probe pulse. In the case of the δPy′ polarization component, we find that its contribution
to the δPy polarization is proportional to S̃z′(t) cos θ. The total polarization δP ens

y from the ensemble of NPLs can
be found by integration over the random distribution of NPL orientations:

δP ens
y (r, t) = −S

ens
z

h̄
d∗(r)

∫
d3r′

∫ t

−∞
dt′eiω0(t

′−t)d(r′)× Epr
x (r′, t′) + c.c., (S19)

Sens
z =

∫ 2π

φ=0

∫ π/2

θ=0

S̃z′(t) cos θ sin θdθdφ. (S20)

The obtained result is identical to the one in Ref. [S6], with one exception—that the spin polarization Sens
z is

averaged over all possible orientations of NPLs in the ensemble.
We calculated the time evolution of Sens

z for three types of NPL ensembles, as shown in Figure S7. First, we note
that results obtained for a bimodal distribution reproduce the results of Ref. [S6] for epitaxial quantum dots. This
is because of the zero spin polarization S̃z′ created by the pump pulse in vertically standing NPLs, which do not
contribute to TRFR. On the other hand, the sub-ensemble of NPLs lying flat on the substrate is identical to the
ensemble of epitaxial QDs. The bimodal ensemble of NPLs exhibits typical Rabi oscillations of the spin polarization
created by the pump pulse (see Figure S8, black lines). The TRFR signal for the bimodal ensemble precesses at the
transverse frequency Ωx = g⊥µBB/h̄, and its amplitude remains constant for τs,e → ∞.

Let us consider now an ensemble of NPLs with “fish scale” stacking. We model this ensemble by taking the uniform
dispersion of angle θ within 30 degrees. The dependence of the initial spin polarization on the pump pulse area is
similar to the one for flat-lying NPLs, with one exception—that for very large pump areas, there are regions with
opposite signs of electron spin polarization (see Figure S8, blue lines). The time evolution of spin polarization for the
“fish scale” ensemble shows slow damping of the precession amplitude in the absence of spin relaxation τs,e → ∞ (see
Figure S9a). The reason is the spread of the precession frequencies Ω in the ensemble with g⊥ ̸= g||. The precession
frequency is slightly smaller compared to transverse frequency Ωx (compare geff = 1.87 and gSFRS

⊥ = 1.88). The
extracted value of geff does not depend on the magnetic field within the studied range.

Finally, we consider an ensemble of randomly oriented NPLs. The most striking feature of this ensemble is the
sign-reversal dependence of the initialized spin polarization on the pump pulse area (see Figure S8, red lines). As
with the case of the “fish scale” ensemble, we find a decrease in the precession amplitude with time, which is more
pronounced in the randomly oriented ensemble (compare Figures S9a and S9b). The typical spin-dephasing time due
to this effect is much longer (3 ns at B = 0.43 T) compared to the experimentally obtained T ∗

2 values. Thus, we
conclude that the observed spin-dephasing does not relate to the random or “fish scale” orientation of NPLs.

It is interesting that, even in the case of the randomly oriented ensemble, the precession frequency is found to be close
to the transverse frequency Ωx. For small magnetic fields, geff = 1.86, while for large fields, we find that geff = 1.87.
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Figure S8. (a) Dependence of the initial spin polarization Sz
ens(t = 0) on the pump pulse area Θ for the bimodal ensemble (black), 

the “fish scale” ensemble (blue), and the randomly oriented ensemble (red) for zero detuning χ = 0. (b-d) The same dependencies 
for three types of NPL ensembles with χ = 0, 0.25, 0.5 shown by solid, dashed, and dotted lines, respectively.

This result is important because pioneer papers on TRFR in ensembles of wurtzite CdSe NCs claimed that, in the 
case of the randomly oriented ensemble, one should observe either two precession frequencies [S16] corresponding to 
longitudinal and transverse g-factors, or a single frequency corresponding to the average g-factor [S13].

The last (but not the least) feature of the randomly oriented ensemble of NPLs is a pronounced asymmetric 
precession signal with respect to the zero level. It is provided by a non-oscillating component. The amplitude of 
the non-oscillating component is rather large, 1/4 of the oscillating component amplitude. The reason for this non-
oscillating component is that the dielectric polarization is proportional to the average value of the electron spin along 
the anisotropy axis, and not along the direction of propagation of the probe pulse. If the anisotropy axis is tilted 
from the direction of the pump and probe pulses, and the magnetic field i s a pplied i n t he Voigt g eometry, then 
the projection of the electron spin on the anisotropy axis has a constant contribution due to the presence of the 
longitudinal component of the magnetic field i n t he N PL f rame. T he n on-oscillating T RFR c omponent, observed 
in wurtzite CdSe NCs [S5], was associated with the frozen spin polarization of heavy holes. Our result shows that 
electrons could be the origin of the non-oscillating component in randomly oriented ensembles of NPLs or NCs with 
large splitting between heavy and light holes.

The presented theoretical consideration shows that, in the case of anisotropic electron g-factor, the spin precession 
frequency for the ensemble of CdSe NPL is determined mostly by the transverse component of the g-factor, regardless 
of the spatial orientation of NPLs in the ensemble. We also show that the dependence of the initialized spin polarization
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Figure S9. Time dependence of the Sz
ens for the “fish scale” ensemble (a) and the randomly oriented ensemble (b) for zero detuning 

of the pump pulse χ = 0. The magnetic field used for the calculation equals (from the bottom to the top) 45, 90, 180, 270, 360, 430 
mT.

on the area of the pump pulse can be used as a marker of the NPL orientation in the ensemble.

Tilted magnetic field

In the main text of the manuscript for the fitting of the TRFR signal in the tilted magnetic field, we used the 
following equation:

S(t) = S0 sin
2 α cos(ωLt) exp(−t/T ∗

2 ) + S0 cos
2 α exp(−t/T1). (S21)

This equation suggests the isotropic electron g-factor. In the case of the anisotropic g-factor, one should use the
following general equation:

Sz(t) = S0
Ω2

x

Ω2
cosΩt exp(−t/T ∗

2 ) + S0
Ω2

z

Ω2
exp(−t/T1), (S22)

with Ωz = g|| cosαµBB/h̄, Ωx = g⊥ sinαµBB/h̄, and Ω =
√

Ω2
x +Ω2

z. In Figure S11, we compare the dependencies
for S(t), calculated according to these two equations, using T1 and T ∗

2 values determined in the main text. One can
see a minor difference between the two calculated dependencies. This difference only affects the ratio between the
oscillating and non-oscillating components, which we do not discuss. Thus, Equation (4) in the main text provides
an accurate estimation of the T1 and T ∗

2 times for the studied CdSe NPLs.
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