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Abstract: A novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid
blood flow incorporating CuO and Al2O3 nanoparticles through a permeable walled diseased artery
having irregular stenosis and an aneurysm is analyzed in this paper. The non-Newtonian behavior of
blood flow is addressed by the Casson fluid model. The effective viscosity and thermal conductivity
of nanofluids are calculated using the Koo-Kleinstreuer-Li model, which takes into account the
Brownian motion of nanoparticles. The mild stenosis approximation is employed to reduce the
bi-directional flow of blood to uni-directional. The blood flow is influenced by an electric field
along with a magnetic field perpendicular to the blood flow. The governing mathematical equations
are solved using Crank-Nicolson finite difference approach. The model has been developed and
validated by comparing the current results to previously published benchmarks that are peculiar
to this study. The results are utilized to investigate the impact of physical factors on momentum
diffusion and heat transfer. The Nusselt number escalates with increasing CuO nanoparticle diameter
and diminishing the diameter of Al2O3 nanoparticles. The relative % variation in Nusselt number
enhances with Magnetic number, whereas a declining trend is obtained for the electric field parameter.
The present study’s findings may be helpful in the diagnosis of hemodynamic abnormalities and
the fields of nano-hemodynamics, nano-pharmacology, drug delivery, tissue regeneration, wound
healing, and blood purification systems.

Keywords: KKL correlations; Casson fluid; stenosis and aneursym; nanoparticles; radiation

1. Introduction

The World Health Organization (WHO) reports that 68 percent of deaths are caused
by non-communicable diseases, of which cardiovascular disorders account for one-third.
According to evidence from various physiological studies, disorders of the blood arteries
and the heart, such as heart attacks and strokes, are the major cause of mortality globally.
Atherosclerosis, a condition that results in plaque building up in the artery lumen and
manifesting as stenosis, causes these events because it prevents blood from reaching
distant body cells. An aneurysm may be caused by multiple factors that result in the
breaking down of the well-organized structural components (proteins) of the aortic wall
that provide support and stabilize the wall. The exact cause has yet to be fully discovered.
Atherosclerosis is thought to play an essential role in aneurysmal disease. Numerous
researchers ([1–7]) have theoretically and experimentally explored the mechanics of blood
circulation via stenosed arteries. The physical characteristics of EMHD of the bloodstream
through an artery in the presence of electroosmotic forces with both aneurysm and stenosis
are theoretically investigated by Abdesalam et al. [8]. Zhang et al. [9] studied the impacts
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of nanoparticle volume fraction on plaque disintegration during transit by employing a
two-phase mixing approach. By assuming that blood viscosity is hematocrit-dependent,
Poonam et al. [10] analyzed the impact of hybrid nanoparticles on hemodynamical blood
flow parameters via a curved artery with aneurysm and stenosis. Basha et al. [11] examined
the fluid transport behavior of Au-Cu/Blood hybrid nanofluid via an artery having the
inclination and irregular stenosis. Using computational fluid dynamics (CFD) in COMSOL
Multiphysics, Waqas et al. [12] investigated the numerical modeling of hybrid nanofluid
with nanoparticles such as gold and silver over a stenotic artery.

A novel class of functional fluids known as ”nanofluids” has been produced by the
colloidal combination of these nanoparticles in the conventional base fluid, having less
effective thermophysical properties. As a result, the nanofluid generated has increased
thermal conductivity, thermal diffusivity, viscosity, and convective heat transfer coeffi-
cient, among other thermophysical properties. These nanoparticles, or nanofluids, have
been used strategically in numerous heat transfer applications with outstanding success.
However, more biomedical engineering applications, such as drug transport, tissue regener-
ation, wound healing, and biomagnetic nano-pharmacodynamics, are beginning to emerge.
Badfar et al. [13] used Fe3O4 nanoparticles coated with a drug to carry out the magnetic
drug targeting in the vessel’s stenosis region. They also investigated how the wire’s lo-
cation as a magnetic source affected the MDT. In their numerical simulation of magnetic
nanoparticle-based medication delivery, Varmazyar et al. [14] used two cases: one with a
slight obstruction and the other with two mild and severe blockages. Ramadan et al. [15]
analyzed the blood flow incorporating gold nanoparticles via a stenosed tapering artery
using the Phan-Thien-Tanner fluid model to treat the terrible cancer disease. In order to ac-
curately characterize the blood flow, including TiO2 and Ag nanoparticles, Saeed et al. [16]
used a couple-stress fluid model. Sharma et al. [17] carried out entropy analysis for blood
flow with temperature-dependent viscosity through a tapered artery having multiple-
stenosis incorporating hybrid nanoparticles. Mekheimer et al. [18] used biomedical models
of drug distribution via nanoparticles to address the issue of synovitis in sick tissues.
Khanduri et al. [19] investigated the influence of Hall and ion slips on MHD blood flow
through a catheterized artery with multiple stenosis and thrombosis while suspending
Au and GO nanoparticles in the blood. Sharma et al. [20] analyzed the effects of heat
transfer and body acceleration on unsteady MHD blood flow through a curved artery
in the presence of stenosis and aneurysm using hybrid nanoparticles. Dolui et al. [21]
investigated the combined influence of non-linear thermal radiation and externally induced
magnetic field to graphically evaluate the flow characteristics of tri-hybrid (Cu–Ag–Au),
hybrid (Cu–Au), and single (Au) nanofluids flowing through arteries with composite
stenosis. Karmakar et al. [22] formulated a mathematical framework for the hemody-
namical characterization of blood circulation containing trihybrid nanoparticles inside an
eccentric endoscopic artery canal with a flexible wall in the presence of buoyancy and
electro-osmotic pressures.

The majority of the research described above treated blood as a Newtonian fluid and
investigated the relationship between arterial stenosis and blood flow dynamics. The
blood behaves in the larger-diameter arteries with an assertive Newtonian behavior when
shear rates are greater than 100 s−1. However, because blood is a suspension of cells, it is
widely known that arteries with smaller diameters and lower shear rates exhibit remarkable
non-Newtonian blood behavior. The Casson fluid flow model has recently become more
well-known attributable to its intriguing applications in everyday life. The Casson fluid
flow model is widely used in modern science. Casson fluid exhibits yield stress charac-
teristics. The Casson fluid changes into the Newtonian fluid when the yield stress is high
enough. Walawender et al. [23] showed that blood can be modeled using Casson fluid by
measuring pressure drop and volumetric flow rate experimentally. Sarifuddin et al. [24]
used the Marker and Cell approach to numerically solve the equations as they investi-
gated the effect of two-dimensional blood flow while supposing blood to be Casson fluid
flowing through an unsteady stenosed artery. Using the Casson model to describe the
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liquid’s non-Newtonian viscosity, Debnath et al. [25] investigated the effects of a 1st-order
homogeneous-heterogeneous chemical reaction in an annular pipe. Darcy’s law was ap-
plied by Ali et al. [26] to examine the Casson fluid flow behavior in a 2-D porous channel
using a vorticity-stream function method. Das et al. [27] explored solute dispersion via a
stenotic tube with an absorptive wall in their study with Casson fluid characterizing the
rheology of blood. Padma et al. [28] aimed to investigate how yield stress affected the
EMHD motion of Casson fluid and nanoparticles as they flow via a mildly blocked inclined
tapering artery.

In their study of blood flow through stenosed arteries, most researchers assumed the
artery walls to be impermeable. The primary function of an endothelial wall in the human
body is to prevent the exchange of substances between moving tissues and blood. In actual-
ity, the endothelium wall is permeable due to the presence of ultramicroporous structures.
Increased permeability is caused by the accumulation of cholesterol, fatty acids, dilated
artery walls, and arterial wall injury. Beaver and Joseph’s [29] experimental work revealed
that Darcy’s law would not always satisfy the governing equations near the wall. So, they
also formulated a boundary condition at the permeable wall. Mishra et al. [30] analyzed
the influence of the wall’s permeability via an artery having composite stenosis. Ijaz and
Nadeem [31] discussed how the blood flows through a permeable walled stenosed artery
is affected by copper nanoparticles. Akbar et al. [32] formulated a mathematical model to
simulate blood flow through a composite stenosed artery with permeable walls. Shahzadi
and Bilal [33] investigated the flow of blood in a stenosed bifurcated artery containing
Copper and its oxide as a drug to reduce the stress and lesions of an atherosclerotic artery.
They considered the artery to be permeable as well as compliant. A mathematical model
for medication delivery employing gold and alumina nanoparticles via a porous artery
with stenosis was developed by Gandhi et al. [34]. In their computational analysis through
a curved stenosed permeable artery, Sharma et al. [35] took into account the blood flow
in two phases - the core and the plasma region, respectively. Further, Kumawat et al. [36]
examined the entropy generation with a chemical reaction through a permeable curved
artery. Sharma and Gandhi [37] investigated unsteady heat and mass transmission through
a stretching surface immersed in a Darcy-Forchheimer porous medium.

None previously mentioned research assessed the KKL model for the effective thermal
conductivity and viscosity models. The primary focus of engineers, physicians, and biol-
ogists is on improving the working fluid’s thermal performance. The nanosized particle
dispersion in the base fluid is one of the current methods. Now, it is a well-known truth
that nanoparticles of one sort or more are trustworthy agents for improving the thermal
performance of the working fluid. There are several documented relationships between
the thermal characteristics of the base fluid, nanofluid, and solid nanoparticles. One set
of relationships has more restrictions than another, though. The role of nanoparticles in
drug delivery mechanisms is the most effective technique to cure several problems such as
atherosclerosis, aneurysms, angina, or heart attacks. Also, the main concern of physicians
during any surgery is to regulate the human body temperature in the presence of external
factors such as radiation, heat source, etc. The literature survey reveals that the KKL correla-
tions ([38–40]) take temperature, volume fraction, and nanoparticle size into account when
calculating how Brownian motion would affect a fluid’s thermal performance. To replicate
the nanofluid flow between two parallel plates—one of which is heated from the outside
and the other into which coolant fluid is injected, Kandelousi [41] used KKL correlations.
Mehmood et al. [42] used the KKL model to assess the effective thermal conductivity and
dynamic viscosity of the alumina-water nanofluid in a porous cavity under the influence
of an inclined magnetic field. By combining the Cattaneo-Christov flux model with KKL
correlations and considering the dispersion of CuO and Al2O3 nanoparticles in blood, Rana
and Nawaz [43] examined the improvement of heat transmission. Utilizing the KKL model,
Malik et al. [44] thoroughly examined fluid flow between two vertical rotating plates with
permeable surfaces, including nanoparticles. Shahzad et al. [45] investigated the behavior
of Sutterby nanofluid passing through a sloping sheet considering copper oxide-engine oil
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(CuO-EO). They determined the effective viscosity and thermal conductivity using the KKL
model. Ramzan et al. [46] investigated the heat transmission of MHD water-based nano
liquid flow across a permeable stretched curved surface affected by an induced magnetic
field by employing KKL correlations for dynamic viscosity and thermal conductivity.

The literature survey shows that no work has been published yet that addresses op-
timizing heat transfer utilizing the Casson fluid model and KKL correlations along with
temperature-dependent viscosity through the irregular stenotic artery with an aneurysm.
Therefore, the present study aims to study the blood flow through a stenotic artery with
an aneurysm affected by the magnetic field, electric field, Joule heating, radiation, and
viscous dissipation. The present work is divided into five main sections: The first part is the
introduction concerning KKL correlations and other parameters considered in this work.
Secondly, we have the mathematical modeling part, which initially describes KKL correla-
tions for the simulation of nanofluid. Afterward, the model’s geometrical representation
and governing equations are presented, followed by non-dimensionalization and radial
coordinate transformation. The third section deals with the numerical solution, which
firstly discusses the discretization of governing equations and then the validation of the
employed Crank-Nicolson finite difference scheme. The validation of the present work is
divided into two parts: (i) mesh independence and (ii) validation with existing literature.
The following section is the results and graphical analysis, which discusses the influence
of various influential parameters involved in the flow. The novelty of the present work is
expressed as:

• KKL correlations are employed for modeling nanofluid flow through a permeable
stenosed artery.

• EMHD Casson fluid flow is considered along with Joule heating, radiation, and
viscous dissipation.

• The relative % variation for the Nusselt number has been calculated and portrayed
using bar graphs.

2. Mathematical Formulation

An unsteady, incompressible, laminar, viscous, electrically conducting EMHD blood
flow through a permeable artery with irregular stenosis and aneurysm is under considera-
tion. A cylindrical coordinate system (r∗1 ,θ̃,z∗1) is employed with r∗1 and z∗1 as radial and axial
directions, respectively. The axial symmetry of the artery corresponds to the independence
of flow in the azimuthal (θ̃) direction. The blood behavior is assumed non-Newtonian and
is represented using Casson fluid model. The KKL-correlations are used to address variable
thermal conductivity and viscosity. A uniform magnetic field B0 along with an electric field
E0 is applied perpendicular to the axial direction (z∗1-direction) of blood flow. The magnetic
Reynold’s number is assumed to be very small (ReM � 1); therefore, the induced magnetic
field is neglected compared to the applied magnetic field.

2.1. Mathematical Representation of the Stenosis and Aneursym

The geometry of the stenosis and aneursym is assumed as ([47,48]):

R(z∗1) =



R0 − 2δ

[
cos
(

2π
L0

(
z∗1−d

2 − L0
4

))
− 7

100 cos
(

32π
L0

(
z∗1 − d− L0

2

))]
,

d ≤ z∗1 ≤ d + L0,

R0 + 2δ

[
cos
(

2π
L0

(
z∗1−d

2 − L0
4

))
− 7

100 cos
(

32π
L0

(
z∗1 − d− L0

2

))]
,

d + 2L0 ≤ z∗1 ≤ d + 3L0,

R0, otherwise.

(1)
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2.2. Governing Equations

The velocity and temperature fields are represented as:

Ṽ∗ = Ṽ∗[u∗1(r
∗
1 , z∗1 , t∗1), 0, w∗1(r

∗
1 , z∗1 , t∗1)] , T̃∗ = T̃∗(r∗1 , z∗1 , t∗1)

due to the bidirectional flow of blood through a stenosed artery with aneurysm (Figure 1).

Figure 1. Physical sketch of artery with time variant stenosis and aneurysm.

Under the above assumptions and invoking the Boussinesq approximation, the gov-
erning equations for the flow are represented as ([34,48]):
Continuity Equation:

1
r∗1

∂(r∗1u∗1)
∂r∗1

+
∂w∗1
∂z∗1

= 0, (2)

Momentum Equation:
r∗1 -direction:

ρn f

[
Du∗1
Dt

]
= −

∂p∗1
∂r∗1

+
1
r∗1

∂

∂r∗1
(r∗1τr∗1 r∗1

) +
∂τz∗1r∗1

∂z∗1
−

τθ̃θ̃

r∗1
, (3)

z∗1 -direction:

ρn f

[
Dw∗1
Dt

]
= −

∂p∗1
∂z∗1

+
1
r∗1

∂

∂r∗1
(r∗1τr∗1 z∗1

) +
∂τz∗1 z∗1

∂z∗1
+ (ργ)n f g(T̃∗ − T̃∗1 )− σn f (B2

0w∗1 − E0B0), (4)

Energy Equation:
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(ρCp)n f

[
∂T̃∗

∂t∗1
+ u∗1

∂T̃∗

∂r∗1
+ w∗1

∂T̃∗

∂z∗1

]
= ke f f

[
1
r∗1

∂

∂r∗1

(
r∗1

∂T̃∗

∂r∗1

)
+

∂2T̃∗

∂z∗21

]
− ∂q∗r

∂r∗1
+ σn f (B0w∗1 − E0B0)

2 + φ∗. (5)

The Casson fluid model’s rheological equation of state for an incompressible flow is as
follows ([26]):

τ∗ij =


2
(

µ∗b +
p∗y√
2π∗

)
e∗ij, π∗ > π∗c

2
(

µ∗b +
p∗y√
2π∗c

)
e∗ij, π∗ ≤ π∗c

(6)

where π∗ = e∗ij.e
∗
ij is the product of deformation rate with itself, π∗c is a critical value based

on the non-Newtonian model, µ∗b is the plastic dynamic viscosity of the non-Newtonian
fluid, and p∗y is the yield stress of the fluid.

When π∗ ≤ π∗c , Equation (6) can be expressed as:

τ∗ij = 2µ∗b

(
1 +

1
β

)
e∗ij (7)

where β =
µ∗b
√

2π∗c
p∗y

is the Casson fluid parameter.
On incorporating the Casson fluid properties mentioned in Equation (7), the governing

Equations (2)–(5) become:
Continuity Equation:

∂u∗1
∂r∗1

+
u∗1
r∗1

+
∂w∗1
∂z∗1

= 0, (8)

Momentum Equation:
r∗1 -direction:

ρn f

[
∂u∗1
∂t∗1

+ u∗1
∂u∗1
∂r∗1

+ w∗1
∂u∗1
∂z∗1

]
= −

∂p∗1
∂r∗1

+
1
r∗1

∂

∂r∗1

[
µe f f

(
1 +

1
β

)
r∗1

∂u∗1
∂r∗1

]
+

1
2

∂

∂z∗1

[
µe f f

(
1 +

1
β

)(
∂w∗1
∂r∗1

+
∂u∗1
∂z∗1

)]
− µe f f

(
1 +

1
β

)
u∗1
r∗21

, (9)

z∗1 -direction:

ρn f

[
∂w∗1
∂t∗1

+ u∗1
∂w∗1
∂r∗1

+ w∗1
∂w∗1
∂z∗1

]
= −

∂p∗1
∂z∗1

+
1
2

1
r∗1

∂

∂r∗1

[
µe f f

(
1 +

1
β

)
r∗1

(
∂u∗1
∂z∗1

+
∂w∗1
∂r∗1

)]
+

∂

∂z∗1

[
µe f f

(
1 +

1
β

)
∂w∗1
∂z∗1

]
+ (ργ)n f g(T̃∗ − T̃∗1 )− σn f (B2

0w∗1 − E0B0), (10)

Energy Equation:

(ρCp)n f

[
∂T̃∗

∂t∗1
+ u∗1

∂T̃∗

∂r∗1
+ w∗1

∂T̃∗

∂z∗1

]
= ke f f

[
1
r∗1

∂

∂r∗1

(
r∗1

∂T̃∗

∂r∗1

)
+

∂2T̃∗

∂z∗21

]
− ∂q∗r

∂r∗1
+ σn f (B0w∗1 − E0B0)

2 + φ∗, (11)

where

q∗r = −4σe

3ke

∂T̃4

∂r∗1
, (12)
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and

φ∗ = 2µe f f

(
1 +

1
β

)[(
∂u∗1
∂r∗1

)2

+

(
u∗1
r∗1

)2

+

(
∂w∗1
∂z∗1

)2

+
1
2

(
∂u∗1
∂z∗1

+
∂w∗1
∂r∗1

)2]
. (13)

It is assumed that there are minimal temperature changes within the blood flow.
Therefore, T̃4 in Equation (12) is linearized by disregarding higher-order terms and is
expanded using Taylor series around T̃∗1 :

T̃∗4 = 4T̃∗31 T̃ − 3T̃∗41 ,

Hence, Equation (12) becomes

q∗r = −
16T̃∗31 σe

3kek f

∂T̃
∂r∗1

.

The boundary conditions are ([31,48]):

∂w∗1
∂r∗1

= 0,
∂T̃∗

∂r∗1
= 0 at r∗1 = 0, (14)

w∗1 = ws,
∂w∗1
∂r∗1

=
α√
k∗1

(ws − wporous), T̃∗ = T̃∗w at r∗1 = R, (15)

where wporous is the velocity in the permeable boundary, k∗1 is the permeability of the
medium, α is the slip parameter that is dimensionless and characterizes the structure of the
permeable material within the boundary region depending on the material parameters.

The initial conditions of the flow are assumed as:

w∗1 |t∗1=0 = 0, T̃∗|t∗1=0 = 0. (16)

2.3. Koo-Kleinstreuer-Li (KKL) Correlation for Nanofluid Simulation

The fluid’s thermal conductivity is strongly influenced by Brownian motion. In order
to account for effective thermal conductivity, Koo and Kleinstreuer [38] assumed that it
consists of two parts: the general static part given by Maxwell correlation and the other
is the Brownian motion part. The implications of particle size, particle volume fraction,
temperature dependency, and combinations of base fluid and particles are all taken into
account by this thermal conductivity model.

ke f f = kst + kBr, (17)

kst

k f
= 1 +

3
(

kp
k f
− 1
)

φ(
kp
k f

+ 2
)
−
(

kp
k f
− 1
)

φ

, (18)

Koo [39] inserted two empirical functions (β1 and f̃ ) to incorporate the interaction
among nanoparticles and the temperature influence in the model, resulting in:

kBr = 5× 104β1φ(ρCp) f

√
κbT
ρpdp

f̃ (φ, T). (19)

The significance of the interfacial thermal resistance acting among base fluids and
nanoparticles has been increasingly emphasized in recent years. The thin layer acting as a
barrier is crucial in reducing the effective thermal conductivity of the nanoparticle, and it is
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thought that the thermal interfacial resistance (also known as Kapitza resistance) exists in
the neighboring layers of the two distinct materials.

Li [40] reexamined the approach used by Koo and Kleinstreuer [49] and integrated the
function f̃ and β1 to create a new function F̃ that accounts for the particle volume fraction,
diameter, and temperature. The empirical function F̃ depends on the type of nanofluid [40].
Additionally, a new kp,e f f has been introduced and therefore kp in Equation (18) is replaced
by kp,e f f which is given by:

R f +
dp

kp
=

dp

kp,e f f
, (20)

where R f is interfacial thermal resistance and has value 4× 10−8 km2/W.
For CuO-Blood and Al2O3-Blood nanofluids, F̃ is defined as follows ([43]):

F̃(φ, T, dp) = (b1 + b2ln(dp) + b3ln(φ) + b4ln(φ)ln(dp) + b5ln(dp)
2)ln(T).

+ (b6 + b7ln(dp) + b8ln(φ) + b9ln(φ)ln(dp) + b10ln(dp)
2),

φ ≤ 0.04, 300K ≤ T ≤ 325K (21)

with the coefficients bi (i = 1...10) are based on the type of nanoparticles used in the analysis.
The Koo-Kleinstreuer-Li (KKL) correlation is finally written as ([49]):

kBr = 5× 104φF̃(φ, T, dp)(ρCp) f

√
κbT
ρpdp

. (22)

The effective viscosity of the nanofluid is given as ([49]):

µe f f = µst + µBr = µst +
kBr
k f
×

µ f

Pr
, (23)

where,

µst =
µ f

(1− φ1)2.5 .

Here, the Reynold’s viscosity model [50] is considered to address the fluid’s viscosity
µ f given by:

µ f (θ̃) = µ0e−β0 θ̃ = µ0[1− β0θ̃] where β0 << 1. (24)

Therefore,

µe f f =
µ0(1− β0θ̃)

(1− φ1)2.5 +
kBr
k f
× µ0(1− β0θ̃)

Pr

µe f f = µ0(1− β0θ̃)

(
1

(1− φ1)2.5 +
kBr

k f Pr

)
. (25)

Thermophysical Features of Nanofluid

The density (ρn f ), heat capacity ((ρCp)n f ), electrical conductivity (σn f ) and thermal
expansion coefficient (γn f ) of nanofluid are given by the usual relations as follows ([34,51]):

ρn f = (1− φ)ρ f + φρp (26)

(ρCp)n f = (1− φ)(ρCp) f + φ(ρCp)p (27)

σn f = σf

(
1 +

3(σ− 1)φ
(σ + 2)− (σ− 1)φ

)
, σ =

σp

σf
. (28)
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γn f = (1− φ)(γ) f + φ1(γ)p (29)

2.4. Nanoparticle and Base Fluid Features

Table 1 lists the thermophysical characteristics of the blood and nanoparticles utilized
in the study, and Table 2 provides the coefficient values of copper oxide and aluminum ox-
ide.

Table 1. Thermophysical properties of nanoparticles ([43]).

Thermophysical Properties Blood CuO Al2O3
Density [ρ(kg/m3)] 1060 6500 3970
Thermal Conductivity [K(W/mK)] 0.492 18 25
Electrical Conductivity [σ(S/m)] 0.667 1 × 10−10 3.5 × 107

Thermal Expansion Coefficient [γ× 10−5(K−1)] 0.18 0.5 0.85
Heat Capacitance [Cp(J/kgK)] 3770 540 765
dp – 47 29

Table 2. The coefficient values of CuO and Al2O3 nanoparticles ([43]).

Coefficient CuO Al2O3
b1 −26.593310846 52.813488759
b2 −0.403818333 6.115637295
b3 −33.3516805 1 0.6955745084
b4 −1.915825591 4.17455552786 × 10−2

b5 6.42185846658 × 10−2 0.176919300241
b6 48.40336955 −298.19819084
b7 −9.787756683 −34.532716906
b8 190.245610009 −3.9225289283
b9 10.9285386565 −0.2354329626
b10 −0.72009983664 −0.999063481

2.5. Non-Dimensional Analysis

The governing equations given by (8)–(11) need to be transformed into dimension-
less form so that a numerical solution is obtained. The non-dimensional variables are
introduced as:

r̄∗1 =
r∗1
R0

, w̄∗1 =
w∗1
U0

, ū∗1 =
L0u∗1
δ∗U0

, t̄∗1 =
U0t∗1
R0

, z̄∗1 =
z∗1
L0

, p̄∗1 =
R2

0 p∗1
U0L0µ f

, θ̃ =
T̃∗ − T̃∗1
T̃∗w − T̃∗1

, R̄ =
R
R0

,

α =
α∗L0

R0
, d̄ =

d
L0

, w̄s =
ws

U0
, Re =

U0ρ f R0

µ f
, M2 =

σf B2
0R2

0

µ f
, Gr =

ρ f R2
0gγ f (T̃∗w − T̃∗1 )

µ f U0
,

Ec =
U2

0
Cp(T̃∗w − T̃∗1 )

, Pr =
µ f Cp

k f
, Nr =

16σeT̃∗31
3k f ke

. (30)

The insertion of the above non-dimensional parameters mentioned in (18), disregard-
ing the bars and using the mild stenotic hypotheses that the maximal stenosis height is less
than the artery’s radius, i.e., δ(= δ∗/R0) << 1, and the artery’s radius and the stenotic
region’s length are proportionate, i.e., ε(= R0/L0) = O(1) leads to the modified form of
governing Equations (8)–(11), which are as follows:
Continuity Equation:

∂w∗1
∂z∗1

= 0, (31)

Momentum Equation:
r-direction:

∂p∗1
∂r∗1

= 0, (32)
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z-direction:

Re
ρn f

ρ f

∂w∗1
∂t∗1

= −
∂p∗1
∂z∗1

+
1

2r∗1

∂

∂r∗1

[
µe f f

µ0

(
1 +

1
β

)
r∗1

∂w∗1
∂r∗1

]
+

(ργ)n f

(ργ) f
Grθ̃ −

σn f

σf
M2(w∗1 − E∗1 ), (33)

Energy Equation:

(ρCp)n f

(ρCp) f

∂θ̃

∂t∗1
=

1
RePr

ke f f

k f

[
∂2θ̃

∂r∗21
+

1
r∗1

∂θ̃

∂r∗1

]
+

Nr
RePr

∂2θ̃

∂r∗21
+

σn f

σf

EcM2

Re
(w∗1 − E∗1 )

2

+
µe f f

µ0

(
1 +

1
β

)
Ec
Re

[(
∂w∗1
∂r∗1

)2]
. (34)

The geometry of stenosis, aneurysm and boundary conditions in the dimensionless
form can be described as ([48]):

R(z∗1) =



[
1− 2δ∗

[
cos
(

2π

(
z∗1−d

2 − 1
4

))
− 7

100 cos
(

32π

(
z∗1 − d− 1

2

))]]
, d ≤ z∗1 ≤ d + 1,

[
1 + 2δ∗

[
cos
(

2π

(
z∗1−d

2 − 1
4

))
− 7

100 cos
(

32π

(
z∗1 − d− 1

2

))]]
, d + 2 ≤ z∗1 ≤ d + 3,

1, otherwise.

(35)

∂w∗1
∂r∗1

∣∣∣∣
r∗1=0

= 0, w∗1(r
∗
1 , t∗1)|r∗1=R = ws,

∂w∗1
∂r∗1

∣∣∣∣
r∗1=R

=
α√
Da

(ws − wporous), (36)

where
wporous = −

Da
µn f

dp
dz

.

Blood flows through the cardiovascular system due to the heart’s pumping motion,
causing a pressure gradient across the vascular network. The pressure gradient is separated
into two parts: non-fluctuating (continuous) and fluctuating (pulsatile) [52] as given below:

−
∂p∗1
∂z∗1

= A0 + A1cos(wpt∗1), t∗1 > 0, (37)

where, A0 and A1 signify the amplitudes of the steady-state and pulsatile pressure gradient
components, respectively, and wp = 2π fp, fp depicts the heart pulse frequency.

On the substitution of dimensionless variables in (37), the modified equation for the
pressure gradient becomes:

−
∂p∗1
∂z∗1

= B1[1 + ecos(c1t∗1)], (38)

where

e =
A1

A0
, B1 =

A0R2
0

µ0U0
, c1 =

2πR0 fp

U0
. (39)

Using Equation (38) in Equation (33), we have:

Re
ρn f

ρ f

∂w∗1
∂t∗1

= B1[1 + ecos(c1t∗1)] +
1

2r∗1

(
1 +

1
β

)(
1

(1− φ1)2.5 +
kBr

k f Pr

)
∂

∂r∗1

[
(1− β0θ̃)r∗1

∂w∗1
∂r∗1

]
+

(ργ)n f

(ργ) f
Grθ̃ −

σn f

σf
M2(w∗1 − E∗1 ). (40)
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2.6. Radial Coordinate Transformation

The physical geometry taken into account in the formulated problem is cylindrical, i.e.,
a cylindrical coordinate system is considered. However, in order to use the computational
approach, the considered geometry needs to be transformed into a rectangular domain

by employing the transformation
(

x∗1 =
r∗1

R(z∗1)

)
. On applying this transformation, the

Equations (40) and (34) become:

Re
ρn f

ρ f

∂w∗1
∂t∗1

= B1[1 + ecos(c1t∗1)] +
1

2R2

(
1 +

1
β

)(
1

(1− φ1)2.5 +
kBr

k f Pr

)
×
[
(1− β0θ̃)

(
∂2w∗1
∂x∗21

+
1
x∗1

∂w∗1
∂x∗1

)
− β0

∂θ̃

∂x∗1

∂w∗1
∂x∗1

]
+

(ργ)n f

(ργ) f
Grθ̃ −

σn f

σf
M2(w∗1 − E∗1 ), (41)

(ρCp)n f

(ρCp) f

∂θ̃

∂t∗1
=

1
RePr

ke f f

k f

(
1

R2

)[
∂2θ̃

∂x∗21
+

1
x∗1

∂θ̃

∂x∗1

]
+

(
1

R2

)
Nr

RePr
∂2θ̃

∂x∗21
+

σn f

σf

EcM2

Re
(w∗1 − E∗1 )

2

+
1

R2

(
1 +

1
β

)(
Ec
Re

)
(1− β0θ̃)

(
1

(1− φ1)2.5 +
kBr

k f Pr

)(
∂w∗1
∂x∗1

)2

. (42)

The wall shear stress (WSS), volumetric flow rate, and resistance impedance are
expressed as:

τw = − 1
R

(
∂w∗1
∂x∗1

)
x∗1=1

, (43)

Q1 = 2πR2
∫ 1

0
w∗1 x∗1dx∗1 , (44)

λ =

L
(

∂p∗1
∂z∗1

)
Q1

. (45)

3. Numerical Procedure

The partial differential Equations (41) and (42) are coupled differential equations,
therefore obtaining an analytic solution is too difficult. On the other hand, numerical
approaches can yield a highly accurate solution. An unconditionally stable implicit finite
difference (Crank–Nicolson) approach is used in this case. The superscripts and subscripts
are not taken into account throughout the discretization process for Equations (41) and (42).

3.1. Discretization

On employing the values of thermophysical features of nanofluid and discretizing
the governing Equations (41) and (42) using Crank-Nicolson scheme, the desired form of
equations is:
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[
(1− φ) + φ

ρp

ρ f

]
Re
[

wk+1
i − wk

i
dt

]
= B1[1 + ecos(c1tk)] +

1
2

(
1 +

1
β

)(
1

R2

)
(1− β0θ̃k

i )

×
(

1
(1− φ1)2.5 +

kBrownian
k f Pr

)
×
[

1
2

(wk+1
i+1 − 2wk+1

i + wk+1
i−1

dx2 +
wk

i+1 − 2wk
i + wk

i−1
dx2

)

+
1

2x(i)

(wk+1
i+1 − wk+1

i−1
2dx

+
wk

i+1 − wk
i−1

2dx

)]
− β0

2R2

(
1 +

1
β

)(
1

(1− φ1)2.5 +
kBr

k f Pr

)

×
[(

θ̃k+1
i+1 − θ̃k+1

i−1
4dx

+
θ̃k

i+1 − θ̃k
i−1

4dx

)(wk+1
i+1 − wk+1

i−1
4dx

+
wk

i+1 − wk
i−1

4dx

)]
+

[
(1− φ) + φ

(ργ)p

(ργ) f

]
Grθ̃k

i −
1
2

σn f

σf
M2(wk

i + wk+1
i ) +

σn f

σf
M2E∗1 , (46)

[
(1− φ) + φ

(ρCp)p

(ρCp) f

][
θ̃k+1

i − θ̃k
i

dt

]
=

1
RePr

kn f

k f

(
1

R2

)[
1
2

(
θ̃k+1

i+1 − 2θ̃k+1
i + θ̃k+1

i−1
dx2

+
θ̃k

i+1 − 2θ̃k
i + θ̃k

i−1
dx2

)
+

1
2x(i)

(
θ̃k+1

i+1 − θ̃k+1
i−1

2dx
+

θ̃k
i+1 − θ̃k

i−1
2dx

)]
+

(
1

2R2

)
Nr

RePr

(
θ̃k+1

i+1 − 2θ̃k+1
i + θ̃k+1

i−1
dx2 +

θ̃k
i+1 − 2θ̃k

i + θ̃k
i−1

dx2

)
+

(
1 +

1
β

)(
1

R2

)
×
(

1− β0

2
(θ̃k+1

i + θ̃k
i )

)(
1

(1− φ1)2.5 +
kBr

k f Pr

)[
1
2

(wk+1
i+1 − wk+1

i−1
2dx

+
wk

i+1 − wk
i−1

2dx

)]2

+
σn f

σf

EcM2

Re

[
1
2

(
wk+1

i + wk
i

)
− E∗1

]2

. (47)

The Crank-Nicolson scheme employed in the current analysis is, however, stable for
all values for dt and dx still, a minimal value is considered with great precision as dt = 10−4

and dx = 10−4. It is noticed that no further change occurs in the values of hemodynamical
parameters studied in the research with decreasing values of dt and dx. A total of N + 1
grid points have been considered in the spatial direction, with x = 1/(N + 1) being the
step size, whereas M + 1 grid points are considered temporal. The value at any time
instant tk is given as tk = (k − 1)dt, dt being a small increment in time. As the scheme
employed is an implicit one; therefore a system of equations is obtained, and it is in the
form of a tri-diagonal system which can be solved with the Tri-diagonal Matrix Algorithm
(TDMA) [53].

Equation (46) corresponds to a tri-diagonal system, which is given by

Ak
i wk+1

i−1 + Bk
i wk+1

i + Ck
i wk+1

i+1 = A
′k
i wk

i−1 + B
′k
i wk

i + C
′k
i wk

i+1 + Dk
i , (48)

where

Ak
i = −

(
1+ 1

β

)(
(1−β0 θ̃k

i )

(1−φ)2.5 + kBr
k f Pr

)(
1

4R2

)(
dt

dx2 − 1
2x(i)

dt
dx

)
− β0

8R2

(
dt
dx

)(
1+ 1

β

)(
1

(1−φ1)2.5 +

kBr
k f Pr

)
×
(

θ̃k+1
i+1 −θ̃k+1

i−1
2dx +

θ̃k
i+1−θ̃k

i−1
2dx

)
,

Bk
i = Re

[
(1− φ) + φ

ρp
ρ f

]
+

(
1

2R2

)(
dt

dx2

)(
1 + 1

β

)(
(1−β0 θ̃k

i )

(1−φ)2.5 + kBr
k f Pr

)
+ dt

2
σn f
σf

M2 ,

Ck
i = −

(
1+ 1

β

)(
(1−β0 θ̃k

i )

(1−φ)2.5 + kBr
k f Pr

)(
1

4R2

)(
dt

dx2 +
1

2x(i)
dt
dx

)
+ β0

8R2

(
dt
dx

)(
1+ 1

β

)(
1

(1−φ1)2.5 +

kBr
k f Pr

)
×
(

θ̃k+1
i+1 −θ̃k+1

i−1
2dx +

θ̃k
i+1−θ̃k

i−1
2dx

)
,
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A
′k
i =

(
1 + 1

β

)(
(1−β0 θ̃k

i )

(1−φ)2.5 + kBr
k f Pr

)(
1

4R2

)(
dt

dx2 − 1
2x(i)

dt
dx

)
+ β0

8R2

(
dt
dx

)(
1 + 1

β

)(
1

(1−φ1)2.5 +

kBr
k f Pr

)
×
(

θ̃k+1
i+1 −θ̃k+1

i−1
2dx +

θ̃k
i+1−θ̃k

i−1
2dx

)
,

B
′k
i = Re

[
(1− φ) + φ

ρp
ρ f

]
−
(

1
2R2

)(
dt

dx2

)(
1 + 1

β

)(
(1−β0 θ̃k

i )

(1−φ)2.5 + kBr
k f Pr

)
− dt

2
σn f
σf

M2 ,

C
′k
i =

(
1 + 1

β

)(
(1−β0 θ̃k

i )

(1−φ)2.5 + kBr
k f Pr

)(
1

4R2

)(
dt

dx2 +
1

2x(i)
dt
dx

)
− β0

8R2

(
dt
dx

)(
1 + 1

β

)(
1

(1−φ1)2.5 +

kBr
k f Pr

)
×
(

θ̃k+1
i+1 −θ̃k+1

i−1
2dx +

θ̃k
i+1−θ̃k

i−1
2dx

)
,

Dk
i = dtB1[1 + ecos(c1tk)] + dt

[
(1− φ) + φ

(ργ)p
(ργ) f

]
Grθ̃k

i + dt
σn f
σf

M2E∗1 .

The tri-diagonal system corresponding to Equation (47) is given by

Pk
i θk+1

i−1 + Qk
i θk+1

i + Sk
i θk+1

i+1 = P
′k
i θk

i−1 + Q
′k
i θk

i + S
′k
i θk

i+1 + Fk
i , (49)

where

Pk
i = − 1

RePr

(
1

2R2

)[
kn f
k f

(
dt

dx2 − 1
2x(i)

dt
dx

)
+ Nr dt

dx2

]
,

Qk
i =

[
(1− φ) + φ

(ρCp)p
(ρCp) f

]
+ 1

RePr
1

R2
dt

dx2

(
kn f
k f

+ Nr
)
+ dt β0

(1−φ)2.5

(
1 + 1

β

)
Ec
Re

(
1

2R2

)
×
[

1
2

(
wk+1

i+1−wk+1
i−1

2dx +
wk

i+1−wk
i−1

2dx

)]2

,

Sk
i = − 1

RePr

(
1

2R2

)[
kn f
k f

(
dt

dx2 +
1

2x(i)
dt
dx

)
+ Nr dt

dx2

]
,

P
′k
i = 1

RePr

(
1

2R2

)[
kn f
k f

(
dt

dx2 − 1
2x(i)

dt
dx

)
+ Nr dt

dx2

]
,

Q
′k
i =

[
(1− φ) + φ

(ρCp)p
(ρCp) f

]
− 1

RePr
1

R2
dt

dx2

(
kn f
k f

+ Nr
)
− dt β0

(1−φ)2.5

(
1 + 1

β

)
Ec
Re

(
1

2R2

)
×
[

1
2

(
wk+1

i+1−wk+1
i−1

2dx +
wk

i+1−wk
i−1

2dx

)]2

,

S
′k
i = 1

RePr

(
1

2R2

)[
kn f
k f

(
dt

dx2 +
1

2x(i)
dt
dx

)
+ Nr dt

dx2

]
.

Fk
i = dt

σn f
σf

EcM2

Re

[
1
2

(
wk+1

i + wk
i

)
− E∗1

]2

+ dt
(

1 + 1
β

)(
1

(1−φ)2.5 +
kBrownian

k f Pr f

)
Ec
Re

(
1

R2

)
×
[

1
2

(
wk+1

i+1−wk+1
i−1

2dx +
wk

i+1−wk
i−1

2dx

)]2

.

3.2. Validation of the Employed Numerical Scheme

The Crank-Nicolson finite difference method has been applied in the present work.
To check the accuracy of the applied numerical scheme, two methods have been adopted.
Firstly, a mesh independence test is performed, which includes both grid independence as
well as time independence. Also, validation has been performed with the existing model of
Zaman et al. [54].

3.2.1. Mesh Independence

A “grid-independency test” is used to optimize the suggested grid system for the
current study, allowing for the selection of a mesh density that is both computationally
accurate and economically acceptable. Table 3 lists the ideal grid size (100 × 100) that
achieves enough precision; any other mesh size refinement does not provide an increase
in accuracy. In accordance with Table 4, the “time-independency test” provides the best
time-step size of dt = 0.01.
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Table 3. Grid Independence.

Grid Size Wall Shear Stress (τw)
25 × 25 0.0082
50 × 50 0.0035
70 × 70 0.0022

100 × 100 0.0018
200 × 200 0.0018

Table 4. Time Independence.

Time Step Size (dt) Wall Shear Stress (τw)
0.1 0.0035

0.08 0.0038
0.05 0.0042
0.02 0.0045
0.01 0.0044

3.2.2. Validation with Existing Literature

The accuracy of our results has been verified by validating it with the existing model of
Zaman et al. [54]. The effect of EMHD, Joule heating, viscous dissipation, and radiation has
been neglected to verify the results with the simplest existing model of Zaman et al. [54].
As the Casson fluid parameter in the current work approaches infinity (β → ∞), the
current model approaches the Newtonian model in [54]. The KKL scheme adopted for
variable viscosity and thermal conductivity is also replaced by a generalized model for
nanofluids. The results have been compared for Al2O3 nanoparticles, which are common
in both research work. For verification, Figure 2a,b have been plotted. A comparison
with the existing literature [54] reveals a good agreement to support the validity of the
present solutions.
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(b)
Figure 2. Comparison results (a) non-dimensional velocity for Gr = 0.5, (b) non-dimensional temper-
ature for φ2 = 0.01.

4. Results and Graphical Analysis

In this section, the impact of various flow parameters such as electric field parameter
(E∗1 ), viscosity parameter (β0), volume fractions of both the nanoparticles (φ1, φ2), Casson
fluid parameter (β), radiation parameter (Nr), Eckert number (Ec), and Prandtl number (Pr)
on non-dimensional velocity, wall shear stress, flow rate, non-dimensional temperature,
and Nusselt number is analyzed. A comparison of CuO-Blood and Al2O3-Blood nanofluid
has been conducted. The default values of the emerging parameters are mentioned in
Table 5, and the range of non-dimensional parameters considered in the present analysis
are depicted in Table 6.
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Table 5. Default Values of emerging parameters ([48]).

Parameters φ1 φ2 d B1 c1 e δ β0 ws β α

Value 0.03 0.03 0.56 1.41 1 0.2 0.1 0.5 0.1 2 0.1

Table 6. Range of influential flow parameters.

Flow Parameter Range References
Magnetic Field Parameter (M2) 0–5 [37]

Casson fluid Parameter (β) 1–10 [29]
Grashof number (Gr) 0–0.5 [34,36]
Eckert number (Ec) 0–1 [36]
Prandtl number (Pr) 14–25 [46]

Radiation Parameter (Nr) 0–2 [18,25]

4.1. Nusselt Number and Enhancement Ratio

The ratio of thermal energy conducted in the fluid to thermal energy undertaken in
the fluid is expressed by the Nusselt number. It represents the convective heat transfer
taking place at the surface and is equivalent to the dimensionless temperature gradient at
the surface. Therefore, the Nusselt number is mathematically represented as:

Nu =
√

Re
ke f f

k f
(1 + Nr)

1
R

(
∂θ̃

∂x∗1

)
x∗1=1

. (50)

The temperature plays a vital role during any treatment or surgery; therefore, regulat-
ing it is the primary concern of physicians. The two types of nanoparticles are considered in
the present study, namely CuO and Al2O3 nanoparticles. They both have opposing effects
on the temperature profile. Therefore, a relative % variation has been performed to decide
which nanoparticle will be suitable in the required situation and is given by:

Relative % Variation =
Nu(Al2O3)− Nu(CuO)

Nu(Al2O3)
× 100 (51)

Figures 3–5 show relative % error for various influential parameters, namely Magnetic
number M2, electric field parameter E∗1 , Eckert number Ec, radiation parameter Nr, Casson
fluid parameter β, and Prandtl number Pr. Figure 3a depicts that a decreasing trend in
Nusselt number is analyzed with increasing values of M2 whereas the relative % variation
show enhancement as M2 varies from 1 to 5. The Nusselt number and relative % variation
decline with increasing E∗1 values as shown in Figure 3b. Figure 4 illustrates that relative
% variation declines with rising Eckert number values. In contrast, an opposite trend is
analyzed with proliferating radiation parameter values, i.e., relative % variation booms
with mounting Nr values. The Nusselt number inclines whereas relative % variation
declines with enlarging β values as indicated by Figure 5a. Figure 5b exhibits an increase in
Nusselt number and relative % variation with ascending values of Prandtl number.
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(a) (b)
Figure 3. Relative % variation for (a) Magnetic number (i) M2 = 1, (ii) M2 = 3, (iii) M2 = 5, and
(b) Electric field parameter (i) E∗1 = 0.1, (ii) E∗1 = 0.3, (iii) E∗1 = 0.6.

(a) (b)
Figure 4. Relative % variation for (a) Eckert number (i) Ec = 0.2, (ii) Ec = 0.4, (iii) Ec = 0.6, and
(b) Radiation parameter (i) Nr = 0.5, (ii) Nr = 1, (iii) Nr = 2.

(a) (b)
Figure 5. Relative % variation for (a) Casson fluid parameter (i) β = 1, (ii) β = 2, (iii) β = 10, and
(b) Prandtl number (i) Pr = 14, (ii) Pr = 21, (iii) Pr = 25.

4.2. Influence of Nanoparticle Diameter and Volume Fraction

The impact of nanoparticle diameter and volume fraction for CuO and Al2O3-nanoparticles
on temperature and Nusselt number is represented by Figures 6 and 7. There is a decrement
in the temperature values with increasing volume fraction of CuO nanoparticles, whereas
an increment is observed with the diameter of nanoparticles. In contrast, an opposite trend
for Al2O3-nanoparticles is analyzed, i.e., temperature boosts with increment in nanoparticle
volume fraction and shows declination with enhancement in the diameter of nanoparticles.
Also, the Nusselt number depicts the same variation in both cases, as shown in Figure 7a,b.
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(a) (b)
Figure 6. Variation in temperature with nanoparticle diameter and volume fraction for (a) CuO-
nanoparticles, (b) Al2O3-nanoparticles.

(a) (b)
Figure 7. Variation in Nusselt number with nanoparticle diameter and volume fraction for (a) CuO-
nanoparticles, (b) Al2O3-nanoparticles.

4.3. Velocity Contours

The velocity contours for wall slip velocity and nanoparticle volume fraction are
illustrated by Figures 8–11. It is examined that the velocity rises as the ws values rise. No-
slip velocity is typically considered at the artery wall, which has the least importance. As a
result, the boundary conditions in the current investigation have been used to introduce
wall slip at the artery wall by assuming the walls to be permeable. The area for maximum
velocity first reduces as the ws value rises from ws = 0 to ws = 0.05, then expands as the
value rises to ws = 0.1. Figures 8 and 9 reveal that a similar behavior is noticed for both CuO
and Al2O3 nanoparticles. The velocity shows declination with increasing volume fraction
of both CuO and Al2O3 nanoparticles as depicted by Figures 10 and 11. In the case of CuO
nanoparticles, the maximum velocity region grows as the nanoparticle volume fraction
reaches its maximum value. Additionally, there are more trapped bolus. In contrast, for
Al2O3 nanoparticles, the maximum velocity region first exhibits a drop and subsequently
increases. Additionally, there are fewer trapped bolus.
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Figure 8. Blood flow patterns for wall slip velocity (a) ws = 0.0, (b) ws = 0.05, (c) ws = 0.1 for
CuO-Blood.
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(c)
Figure 9. Blood flow patterns for wall slip velocity (a) ws = 0.0, (b) ws = 0.05, (c) ws = 0.1 for
Al2O3-Blood.
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Figure 10. Blood flow patterns for volume fraction of CuO-nanoparticles (a) φ1 = 0.01, (b) φ1 = 0.02,
(c) φ1 = 0.04.
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Figure 11. Blood flow patterns for volume fraction of Al2O3-nanoparticles (a) φ2 = 0.01, (b) φ2 = 0.02,
(c) φ2 = 0.04.

4.4. Impact of Electric Field Parameter

The velocity and temperature profiles for the electric field parameter are shown in
Figures 12 and 13. With higher electric field parameter E∗1 , there is a rising tendency for
flow velocities and temperature. The electric field adds an accelerating force in the direction
of the applied electric field, which causes the thickness of the momentum boundary layer
to increase and causes the fluid to accelerate. Increased fluid velocity also causes a rise
in velocity gradients, which in turn causes an increase in viscous dissipations. Hence, an
increment in the temperature profiles. Figure 14 represents wall shear stress profiles for
different values of E∗1 . The profiles show an increasing trend with E∗1 . The flow rate and
impedance profiles for E∗1 are depicted in Figures 15 and 16. The flow rate increases with an
increase in E∗1 and, as expected, the opposite behavior for impedance profiles is observed.
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Figure 12. Velocity profiles of electric field parameter E∗1 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles.
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Figure 13. Temperature profiles of electric field parameter E∗1 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles.
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Figure 14. Wall shear stress profiles of electric field parameter E∗1 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles at t∗1 = 1.2.
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Figure 15. Flow rate profiles of electric field parameter E∗1 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles at t∗1 = 1.2.
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Figure 16. Impedance profiles of electric field parameter E∗1 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles at t∗1 = 1.2.

4.5. Effect of Viscosity Parameter

The influence of viscosity parameter β0 is highlighted in Figures 17–21. The velocity
profiles show inclination with increasing values of β0 for both CuO and Al2O3 nanopar-
ticles as conveyed by Figure 17a,b. This is because the resistance among the particles
decreases when the magnitude of β0 increases, indicating a rise in the velocity profiles.
The temperature profiles show declination with enhancing β0 values. An increment of
32.21% in the stenotic zone and 19.77% in the aneurysm zone is noticed when comparing
the results for CuO and Al2O3 nanoparticles shown in Figure 18a,b. Figure 19 displays
the profiles for wall shear stress for various β0 values. As β0 rises, the fluid becomes less
viscous, enhancing the wall shear stress. Figures 20 and 21 display flow rate and impedance
profiles for various values of β0. In the case of nanofluids, the flow rate rises as the value of
β0 rise, showing a viscosity reduction and leading to faster blood flow. Greater β0 values
represent a reduction in viscosity, which lowers impedance values.
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Figure 17. Impact of viscosity parameter β0 on velocity profiles for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles.
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Figure 18. Impact of viscosity parameter β0 on temperature profiles for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles.
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Figure 19. Wall shear stress profiles of viscosity parameter β0 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles at t∗1 = 1.2.
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Figure 20. Flow rate profiles of viscosity parameter β0 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles at t∗1 = 1.2.
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Figure 21. Impedance profiles of viscosity parameter β0 for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles at t∗1 = 1.2.

4.6. Impact of Volume Fraction of Nanoparticles

Figures 22 and 23 depict the velocity and temperature profiles for different volume
fractions of CuO-nanoparticles and Al2O3-nanoparticles, respectively. A higher volume
proportion of nanoparticles reduces the fluid velocity. These flows are hindered by the
growing magnetic viscosity that is related to the velocity dampening. Both the nanoparticles
show a decreasing trend for velocity. However, Al2O3-nanoparticles observe slightly high-
velocity values than CuO-nanoparticles of about 1.02% for the stenotic zone and 0.95% for
the aneurysm region. Also, a comparison between stenotic and aneurysm regions reveals
that velocity values in the aneurysm region are about 28.85% higher than that in the stenotic
region. However, an opposite trend is observed for both the nanoparticle volume fractions
in the case of temperature profiles. The temperature profiles decline with increasing volume
fraction of CuO-nanoparticles, whereas an increment in temperature profiles is there with
Al2O3-nanoparticles volume fraction. Also, the temperature values for the stenotic zone
are higher than that of the aneurysm region.
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Figure 22. Influence of volume fraction of (a) CuO-nanoparticles, (b) Al2O3-nanoparticles on veloc-
ity profiles.
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Figure 23. Influence of volume fraction of (a) CuO-nanoparticles, (b) Al2O3-nanoparticles on temper-
ature profiles.

4.7. Effect of Casson Fluid Parameter

The influence of the Casson fluid parameter on the velocity and temperature profiles is
depicted in Figures 24 and 25. The Casson parameter varies inversely with the yield stress
and is associated with the non-Newtonian Casson fluid character. Therefore, boosting β
lowers the fluid’s yield stress, relaxing the fluid and allowing it to move more quickly. The
velocity in the stenotic region is less than that in the aneurysm zone. The temperature
profiles show an enhancement with increasing values of β. The Al2O3 nanofluid profiles are
higher in magnitude by 30.96% than that of CuO- nanofluid. The stenotic zone has a higher
temperature than the aneurysm zone. The wall shear stress profiles increase with rising β
values, as illustrated in Figure 26. In the stenotic zone, CuO-nanofluid shows an increase of
4.18% over Al2O3-nanofluid. The flow rate profiles for β are displayed in Figure 27. The
flow rate profiles follow the same trend as wall shear stress profiles. The fluid flows more
easily as β increases because the yield stress of the fluid is reduced. As a result, there is less
resistance in the fluid’s pathway, and impedance profiles decline as β enhances (Figure 28).
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Figure 24. Velocity profiles of Casson fluid parameter β for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles.
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Figure 25. Temperature profiles of Casson fluid parameter β for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles.
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Figure 26. Wall shear stress profiles of Casson fluid parameter β for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles.
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Figure 27. Flow rate profiles of Casson fluid parameter β for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles at t∗1 = 1.2.
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Figure 28. Impedance profiles of Casson fluid parameter β for (a) CuO-nanoparticles, (b) Al2O3-
nanoparticles at t∗1 = 1.2.

4.8. Effect of Radiation Parameter

The temperature profiles of radiation parameter Nr for CuO and Al2O3 nanoparticles
are displayed in Figure 29a,b. The system seems to radiate the most heat because Nr affects
thermal conductivity in the opposite manner. Radiation acts as a heat source within the
bloodstream, and a spike in radiation exposure causes body temperature to rise. Free
electrons in nanoparticles oscillate when right-wavelength light interacts with them. These
oscillations produce heat that spreads across the surrounding area and kills cancerous
cells. The use of this discovery in thermal therapy is extensive. The temperature values are
higher in the stenotic region than in the aneurysm region. Comparing the temperatures for
CuO and Al2O3 nanoparticles reported an improvement of 13.28% in the stenotic zone and
24.85% in the aneurysm region.
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Figure 29. Influence of radiation parameter Nr on temperature profiles for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles.

4.9. Impact of Eckert Number

The temperature profiles for distinct values of Eckert number for CuO - Blood nanofluid
and Al2O3-Blood nanofluid are illustrated in Figure 30a,b. The temperature profiles rise
with increasing values of Ec. Additionally, compared to Al2O3-Blood nanofluid, CuO-Blood
nanofluid has 30.6% greater magnitudes. The Eckert number connects the kinetic energy
and enthalpy of a fluid. It’s a term to describe how a fluid is affected when it self-heats
due to dissipation effects. The temperature profiles are affected by temperature gradients
at high flow velocities and by dissipation effects resulting from internal friction between
the fluid layers. Self-heating causes temperature profiles to rise, and these effects, in turn,
impact the temperature profiles.
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Figure 30. Temperature profiles of Eckert number Ec for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles.

4.10. Effect of Prandtl Number

Figure 31a,b show the temperature profiles for different values of Prandtl number for
CuO-Blood nanofluid and Al2O3-Blood nanofluid, respectively. An increase in Pr values
accompanies the declination of the temperature profiles. The fluid’s viscosity and thermal
diffusivity determine Pr. This dimensionless quantity links the momentum transport and
the heat transport. The Prandtl number indicates whether heat is distributed more quickly
in a fluid by convection or conduction. The Prandtl number has physical significance
because, when it is less than 1, conductive heat transfer plays a significant role, transferring
a higher percentage of heat than convection. Convective heat transfer takes precedence over
conduction when the Prandtl value is higher than 1. A comparison between CuO-Blood
nanofluid and Al2O3-Blood nanofluid reveals that Al2O3-Blood nanofluid reaches higher
magnitudes for temperature by 23.94%. Also, the temperature values in the stenotic region
are higher than in the aneurysm region.
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Figure 31. Impact of Prandtl number Pr on temperature profiles for (a) CuO-nanoparticles,
(b) Al2O3-nanoparticles.

5. Conclusions

The present model aims to simulate blood flow through a permeable stenosed artery
with an aneurysm subject to the combined effect of electric and magnetic field (EMHD)
using two types of nanoparticles, namely CuO and Al2O3 considering blood as Casson
fluid. The viscosity and thermal conductivity have been modeled using KKL correlations.
The effect of Joule heating, radiation, and viscous dissipation is considered. The governing
equations have been solved using the Crank-Nicolson scheme. The findings have been
validated and are in good agreement with those in the literature. The relative % variation in
the Nusselt number has been calculated. Some of the significant conclusions of the current
study are listed below:
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• The temperature and Nusselt number boost with enhancing diameter of CuO nanopar-
ticles and decreasing diameter of Al2O3 nanoparticles.

• Velocity and temperature profiles show inclination with increasing electric field pa-
rameter E∗1 .

• There is an escalation in velocity and wall shear stress profiles with viscosity parameter β0.
• Flow rate ascends with increment in Casson fluid parameter β.
• Velocity descends with rising volume fraction of both CuO and Al2O3 nanoparticles.
• Temperature profiles elevate with volume fraction of Al2O3 nanoparticles, whereas

declination is observed for CuO nanoparticles volume fraction.
• With increasing magnetic number, the relative % variation in the Nusselt number rises,

but a decreasing trend is analyzed for the electric field parameter.

The application of nanotechnology in biomedicine is a fast-expanding subject with
tremendous promises for enhancing the diagnosis and treatment of human disease. The
ability to combine pharmaceuticals into a functionalized nanoparticle represents a new
beginning for the selective delivery of therapeutics to tissues or cells. The present study’s
findings may be helpful in the diagnosis of hemodynamic abnormalities and the fields
of nano-hemodynamics, nano-pharmacology, drug delivery, tissue regeneration, wound
healing, and blood purification systems.
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Nomenclature

r∗1 Radial direction
Ec Eckert Number
z∗1 Axial direction
Pr Prandtl Number
t∗1 Time
Nr Radiation parameter
u∗1 Velocity component in radial direction
Nu Nusselt number
w∗1 Velocity component in axial direction
Da Darcy number
U0 Reference velocity
Re Reynold’s Number
R Radius of artery in stenotic/aneurysm region
Gr Grashof Number
R0 Radius of artery in non-stenotic region
Q1 Flow Rate
g Acceleration by virtue of gravity
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Greek Letters
T̃∗ Temperature of the base fluid
δ Stenotic depth/Aneurysm height
T̃∗1 Reference temperature
θ̃ Non-dimensional temperature
T̃∗w Temperature at the wall
ρ Density
B0 Uniform Magnetic Field
φ1 Volume fraction of CuO NPs
C̃∗p Specific heat at constant pressure
φ2 Volume fraction of Al2O3 NPs
E0 Uniform Electric field
β0 Viscosity constant
k f Thermal conductivity
λ Resistance Impedance
p∗1 Pressure
µ f Blood’s viscosity
ws Wall slip velocity
µ0 Reference viscosity
B1 Pressure gradient parameter
d Location of stenosis/aneurysm
σ Electrical conductivity
L0 Length of stenosis/aneurysm
τw Shear stress at the wall
L Length of the artery
α Slip parameter
k∗1 Permeability of the medium
β Casson fluid parameter
M2 Magnetic Number
γ Thermal expansion coefficient
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