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Abstract: Kinetic factors that facilitate carbon nanotube (CNT) migration in a polymer blend from a
high-density polyethylene (HDPE) phase to a poly (p-phenylene ether) (PPE) phase were studied,
with the objective to induce CNT migration and localization at the interface. Herein, a CNT filler was
pre-localized in an HDPE polymer and then blended with PPE at different blend compositions of
20:80, 40:60, 60:40, and 80:20 of PPE/HDPE at a constant filler concentration of 1 wt%. The level of
CNT migration was studied at different mixing times of 5 and 10 min. The electrical conductivity
initially increased by 2–3 orders of magnitude, with an increase in the PPE content up to 40%, and
then it decreased significantly by up to 12 orders of magnitude at high PPE content up to 100%. We
determined that the extent of migration was related to the difference in the melt viscosity between the
constituent polymers. A triblock copolymer styrene-ethylene/butylene-styrene (SEBS) was used to
improve the blend miscibility, and 2 wt% copolymer was found to be the optimum concentration for
the electrical properties for the two blend compositions of 20:80 and 80:20 of PPE/HDPE, at a constant
filler concentration of 1 wt%. The introduction of the SEBS triblock copolymer significantly increased
the conductivity almost by almost four orders of magnitude for PPE/HDPE/80:20 composites
with 1 wt% CNT and 2 wt% SEBS compared to the uncompatibilized blend nanocomposite. The
mechanical strength of the compatibilized blend nanocomposites was found to be higher than the
unfilled compatibilized blend (i.e., without CNT), uncompatibilized blend nanocomposites, and the
pristine blend, illustrating the synergistic effect of adding nanofillers and a compatibilizer. SEM and
TEM microstructures were used to interpret the structure–property relationships of these polymer
blend nanocomposites.

Keywords: kinetics; interface; high-density polyethylene; poly phenylene ether/oxide; carbon
nanotube; SEBS; migration; compatibilization; electrical conductivity; tensile properties;
structure–property relationship

1. Introduction

Polymer blending is a creative pathway to combine the strengths of different mate-
rials and help improve the deficient properties of a particular material [1–3]. Due to the
macromolecular nature of polymers, they tend to have low entropy of mixing; hence, they
show phase separation and poor properties. This is mostly because of long chains of two
or more polymers that are not able to adhere together during processing at a molecular
level [4]. The widely applied strategy to improving the structural properties of an im-
miscible polymer blend is addition of block copolymers, which has been shown in many
research studies to refine and help stabilize the morphology of immiscible blends [5]. The
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inherent properties of constituent polymers in a blend can be used to systematically manip-
ulate the final composite by tailoring the interphase of the multiphase system, a strategy
that has shown to improve the interfacial properties, especially in the polymer blending
process. In addition, the introduction of carbon nanotube filler (NC7000), an outstanding
nanofiller that has many applications [6], contributes also to the final blend properties as
each constituent polymer has a different level of affinity towards this nanofiller; hence, its
final localization can be determined either by thermodynamic and kinetic [7] properties
and, at same time, affect the final blend morphology. In terms of the thermodynamics,
the interfacial relationship between different components in the blend, helps to predict
the nanofiller localization, using the wettability parameter. The high interfacial tension
during processing and poor interfacial interactions in the macromolecular state contributes
to a poor composite performance [7–11]. While for kinetics, the general processing con-
ditions, the viscosity mismatch of the individual polymers in the blend, determines the
selective localization of the nanofiller in blend composites. In a dispersed morphology
of an immiscible blend, the droplets are usually irregular, resulting in a weak interphase,
thus, when force is applied on the material, a fracture results on the interphase between
the phases [9–13]. Introducing nanomaterial into this morphological structure; a possible
filler migration between polymer phases occurs, which impacts the domain size and the
interfacial properties. Fiona and Esmail studied the effect of Janus silica nanoparticles
on the rheological and mechanical properties of a droplet-matrix blend configuration of
polystyrene/poly(methyl methacrylate), PS/PMMA, and reported that the Janus particle
improved the processability of the blend by decreasing their viscosity and consequently
increasing the tensile modulus as result of the localization of the particle at the blend
interphase [14]. Some research also shows that in a dispersed morphology, the presence of
the droplets results in an improvement in the blend elasticity at low frequencies caused
by stresses as result of the shape relaxation of the droplets induced by interfacial tension
between the phases [15–19]. On the other hand, in a co-continuous morphology, each
individual polymer simultaneously contributes to the end use properties, especially in melt
mixing. To achieve optimum properties in a co-continuous structure, it is important to
synergistically control the filler migration and other processing conditions, focusing on the
conditions that establish morphology stability [20]. In this microstructure, the rheological
and interfacial interaction depends on the constitute phases, which usually exist in the
intermediate compositions; hence, they can limit the target properties [21]. Subsequently,
the addition of nanofillers in a co-continuous structure helps to stabilize the microstruc-
ture, such that the interfacially localized nanofillers reduce the interfacial tension in the
polymer blend [22], enhance the continuity of the minor phase, and, at the same time,
decrease the percolation threshold. Jianwen C. et al., in their work, achieved a low perco-
lation threshold by controlling carbon nanotube (CNT) filler migration at the interphase
of the PS/PMMA blend, through the balance of the π-π and the dipole–dipole interaction
in co-continuous morphology [23]. Bose et al., on the other hand, employed a reactive
modifier that enhanced the formation of the CNT network structure in a co-continuous
structure of nylon6/acrylonitrile–butadiene–styrene (PA6/ABS); they reported a significant
refinement of the morphological structure and a well uniformed dispersion of the modified
nanofiller in the PA6 phase [24]. Furthermore, the filler movement in an immiscible blend
can situate at the interphase or, on either phase, can be systematically tuned depending
on the target application. Individual polymer properties contribute to the kinetics of the
blend processing, specifically for high viscous polymers such as poly (p-phenylene ether)
(PPE) that are relatively difficult to process and are blended with other polymers such
as polystyrene, nylons, and polyolefins [23–26]. The high viscosity of this PPE polymer
can be useful in controlling nanofillers migration due to the high shear rate caused by the
phase viscosity; hence, in a given blend with PPE, it can be utilized to limit nanofillers
migration and subsequently trap them at the interphase. Many research [27–29] works
have studied PPE systems with other polymers such as nylon66 (PA66) to enhance their
processability and, at the same time, tune CNT migration. Chang Jae Lee et al. showed
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different sequences of mixing (PPE/PS)/PA66/CNT blend nanocomposites, in which CNTs
dispersion and localization were induced by PA66 that has a high affinity for the nanofillers;
they inferred that CNTs migrated from an unfavorable PS/PPE phase to a more favorable
PA66 phase in a “filler-transfer-induced dispersion” mechanism [29]. Moreover, the effect
of CNT dispersion in a miscible PPE/PS blend, studied by Qiyan Zhang et al., attributed
the melt viscosity in relation to the PS amount, in which an optimum balance in the break-
age of CNT agglomerate between the intrusion of polymer(matrix) molecules into CNT
agglomerates and disintegrates the agglomerates by shear stress, contributing to a better
dispersion and subsequently increased electrical conductivity [30]. Bing Du et al. investi-
gated the blend of SAN/PPE filled with a functionalized multi-walled carbon nanotube, in
which a pristine multi-walled carbon nanotube (MWCNT) remained in the pre-localized
styrene-acrylonitrile (SAN) phase, while the functionalized MWCNT migrated to the PPE
phase due to the grafted PS on the nanofillers surface [31].

In this work, we investigate the extent of CNT migration, kinetically induced in a
compatibilized PPE/HDPE (high-density polyethylene) polymer blend nanocomposite
as it narrows the interphase through trapping the filler there. In details, the PPE/HDPE
blend of different blend compositions are studied at different mixing times in the melt
mixing process, adding to the high viscosity difference, which was employed to manipulate
CNT migration. PPE polymer basically has vast engineering applications in automotive
and construction industries, but it has a drawback in its usage due to its high viscosity
in the melt state; hence, it is blended with other polymers to improve its processability.
Herein, we selected polyolefin, a HDPE, because it is relatively cheap and has a good
chemical resistance, and a widely used household polymer. However, the PPE/HDPE
blend is highly immiscible, so in our study, we added a styrene–ethylene butylene–styrene
(SEBS) triblock copolymer as a compatibilizer. Minho Lee et al. studied the effect of
polyphthalamide (PA6T) as a compatibilizer in a PA66/PPE blend nanocomposites; they
inferred that due to the high affinity of CNT for PA6T, it improved the filler dispersion and,
subsequently, the electrical conductivity of the PA66/PA6T/PPE/CNT composites [30].
Our study is uniquely focused on improving the processing of PPE polymer by blending
with the HDPE/CNT masterbatch, with the SEBS copolymer to improve and stabilize the
different phase morphologies at different mixing times being examined.

2. Materials and Methods

The polymers used in this study are high viscosity PPE NorylTM (640-111) supplied by
SABIC and HDPE Novapol® TR-0740-U provided by Nova Chemicals. The SEBS triblock
copolymer (A1535HU), with a 60 wt% styrene content, was provided by KratonTM Corpo-
ration. Multi-walled carbon nanotubes (MWCNTs) NanocylTM NC 7000 were procured
from Nanocyl S.A (Sambreville, Belgium) and were used as the nanofiller.

2.1. Blend Preparation

The PPE/HDPE blend nanocomposites were prepared in a two-step melt mixing
process. The HDPE was mixed with 10 wt% CNT in a Process 11 mini extruder to make a
masterbatch (MB). The extrusion was performed at 50 rpm speed and a temperature range
of 140–200 ◦C and was subsequently fed into a pelletizer to make pellets 2–4 mm in size.

The HDPE-MB was then diluted using a pure HDPE polymer and then mixed with
a PPE polymer, to obtain the PPE/HDPE/ 1 wt% CNT blend composition in the second
step of mixing. The PPE/HDPE/CNT were processed at four different blend compositions,
20:80, 40:60, 60:40, and 80:20 of PPE/HDPE, simultaneously, in a mini batch mixer and
an Alberta Polymer Asymmetric mini mixer (APAM) [32] at 260 ◦C and a 200 rpm speed.
The mixing was done at two different mixing times of 5 and 10 min to study the extent of
CNT migration from the pre-localized phase to the HDPE and the PPE phase. Furthermore,
the blend compositions were scaled up using our internal mixer, Thermo Fisher HaakeTM

Rheomix series 600® with roller rotors, which are used predominately for thermoplastics
polymers. The chamber size is 64 cm3 and it has a 70% filling capacity; this was used to
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make enough samples for mechanical test. There has been an extensive study [33,34] of
the effect of the scale-up in morphology and, consequently, the properties. If the mixing
equipment has enough similarity to the scaled-up equipment, then the morphology can
be scaled up. Compatibilized composites were prepared at different concentrations of
SEBS triblock copolymer, 1, 2, and 3 wt%, and the final properties compared with the
uncompatilized composites. The sample concentrations are summarized in Table 1 below.

Table 1. Blend compositions and processing conditions.

Samples Blend Compositions Filler Copolymer Mixing Time

HDPE-MB 0:100 10 wt% - -
PPE/HDPE/CNT 80:20, 20:80 1 wt% - 5, 10 min

PPE/HDPE/CNT/SEBS 20:80, 40:60, 60:40, 80:20 1 wt% 1, 2, 3 wt% 5, 10 min
Pure PPE/HDPE 20:80, 80:20 - - 5, 10 min

PPE/HDPE 20:80, 80:20 - 2 5, 10 min

2.2. Sample Characterization and Testing

The phase morphology of all the blend nanocomposites was captured using SEM,
Quanta FEG 250 VP-FESEM from FEI Company, Hillsboro, OR, USA. The backscattered
and secondary electron images were acquired under high vacuum conditions with an
accelerating voltage of 10 kV. Backscatter images were collected using a two-segment
Si photodiode-type detector, while secondary electron images were acquired using an
Everhart–Thornley detector. Prior to SEM, all the samples were cryo fractured using liquid
nitrogen and then etched with chloroform to extract the PPE phase.

Transmission electron microscopy was carried out to study the CNT migration across
the polymer phases and the impact of the copolymer. An ultrathin section of composites,
approximately 50 nm, was cut using a Leica EM FC6 ultra microtome (Leica Bio systems©,
Nussloch, Germany) after trimming the sample surface and then sectioning with a diamond
knife under liquid nitrogen at −120 ◦C. The TEM image was then obtained using a Tecnai
F20 TEM microscope at 200 KV, attached with an FEI eagle camera.

The CNT dispersion and distribution was visualized using optical microscopy (OM).
The samples were first sectioned to a 1 µm thickness using the EM FC6 ultramicrotome
under liquid nitrogen, and then the sections were placed under a microscope glass slide
and viewed with an Olympus® BX60 optical 176 microscope (Olympus Inc., Tokyo, Japan)
connected to an Olympus DP80 camera.

To measure the polymers viscosities, a rheological evaluation was carried out using an
Anton-Paar MCR 302 rheometer at 260 ◦C, using a 25 mm diameter parallel-plate geometry
with gap size of 1 mm, under nitrogen to minimize the degradations of the polymers
during the test. Each sample was compression molded into a disk of a 25 mm diameter
and 1 mm thickness, and the measurement was done using this sample sandwiched in the
parallel plates.

The DC electrical conductivity of the compression molded samples of dimensions
22 mm × 1 mm × 1 mm were measured under an applied voltage of 90 V using a Loresta
GP resistivity meter (MCP-T610 model, Mitsubishi Chemical Co., Tokyo, Japan), connected
with an ESP four-pin probe to eliminate the influence of contact resistance. Three molded
samples were analyzed for each blend composite system, and three readings were taken
from each sample face; the results were averaged, and the average was recorded as the
electrical conductivity.

The mechanical testing for composites was done using an Instron tensile tester (Model
no 5965-Norwood, MA, USA) at a crosshead speed of 50 mm/min. Four molded samples
prepared according to ASTM D638 type IV specifications were tested and the results were
averaged for each blend system.
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3. Results
3.1. Blend Morphology

The blend morphology was studied by etching the PPE phase with chloroform sol-
vent; this provided micrographs that showed that by increasing the PPE concentration in
the blend, the blend structure changes from a dispersed morphology to a co-continuous
morphology. Figure 1 shows the different morphologies at a different blend composition
with 1 wt% CNT for 5 min and 10 min of mixing. The images show approximately the same
morphological changes for the two different mixing times, though a more irregular and
deformed droplet domain was evident at 10 min of mixing for the PPE/HDPE/40:60 blend
composition in Figure 1f. With CNT pre-localized in the HDPE matrix phase, the force
exerted from the CNT filler during processing was countered by the high viscosity of the
PPE droplet phase, leading to breakup and irregular domain sizes (Figure S1). In addition,
owing to the high viscosity of the PPE phase (shown in Figure 2), the droplets breakup and
transition to co-continuous morphology as the increase in the PPE concentration is delayed.
This is particularly true in the absence of any interphase modifier (SEBS), as shown in
Figure 3c,g. At 60% PPE, the co-continuous morphology is not pronounced. Though the
shear forces acting on the droplets result in their deformation, these forces are countered
by the restorative forces, such as the droplet elasticity and interfacial tension between the
phases [35]. Conversely, the addition of the SEBS triblock copolymer results in a substantial
decrease in the droplet size when comparing the morphologies of Figures 1 and 3 for all
the blend compositions at both mixing times.
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The presence of the copolymer connects more with the PPE phase as it is miscible
with styrene segments of the copolymer; thus, there is more migration of the copolymer to
the interphase, bridging between the PPE and HDPE, hence the reduction in the droplet
size and stabilization of the morphology shown in the analysis in Figure S2. The solvent
extraction of PPE was carried out on both the uncompatibilized and compatibilized blend
system and the result shows that PPE has a higher tendency to percolate in the HDPE
matrix in the presence of the SEBS copolymer (Figure S3).
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3.2. Electrical Conductivity

The establishment of a conductive pathway is one paramount factor for achieving
high electrical conductivity, and the conductive pathway corresponds to a CNT network
structure within the matrix. To achieve this, both an optimum dispersion and distribution
are important, i.e., not necessarily the greatest amount of dispersion and distribution
but an optimum level. In a blend system, polymer–filler interaction affects the extent of
filler dispersion [36], and the level of each constituent polymer’s affinity towards CNT is
governed by thermodynamic factors. However, the system can be tuned in such a way that
the CNT migrates to the targeted phase in the blend composites. The blend morphologies



Nanomaterials 2023, 13, 1039 7 of 14

induced by kinetics in our system resulted in an improvement in the electrical conductivity
in Figure 4.
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From our result, the impact of the mixing time between 5 and 10 min is minor, as the
morphology and electrical properties follow the same variations as the blend concentration.
Based on the rule of mixtures, we would expect the electrical conductivity to steadily
decrease with the increase in the PPE content. By having CNT pre-localized in the HDPE
phase, the CNT can migrate to the interface of PPE/HDPE blends and create percolated
structures that are stronger than the pure HDPE nanocomposite. At a very high concen-
tration of PPE, we observe a low electrical conductivity due to the lack of CNT network
structure in the composites. The optical microscopy images in Figure 5 show large CNT
agglomerates in the pure PPE nanocomposite (Figure 5a). This is believed to be due to the
high viscosity of the polymer which limits CNT migration and dispersion; hence, we see a
high amount of nanofiller agglomeration. On the other hand, the addition of a 2 wt% SEBS
(2 wt% was selected as the optimum from the results shown in Figure S4) compatibilizer in
Figure 5(a1,b1) shows a better CNT dispersion in the polymers PPE and HDPE, respectively.
This relates to a substantial increase in conductivity in the blend system of approximately
four orders of magnitude in Figure 4b. This can be explained by using Figure 5(a1), where
we see a very different dispersion of CNT compared to Figure 5a for the same sample;
that is, we do not have a homogenous distribution of CNT in this nanocomposite in the
absence of a compatibilizer. Comparing the “a” image to the “a1” image, shows a significant
reduction in the CNT agglomeration with the addition of the SEBS compatibilizer.

Moreover, the extent of the CNT network structure in the polymer matrix is limited
by a poor distribution and insufficient interfacial interaction between the nanofillers and
polymer interface [37,38]. The addition of SEBS in our system shows an improved CNT
dispersion and distribution leading to the significant increase in conductivity even for
the PPE nanocomposite. However, it should be noted that some CNT agglomeration
can be useful for electrical and mechanical properties. For example, they can be tuned
in such a way as to achieve a systematic non-homogenous distribution, resulting in the
formation of segregated structures, which are needed to improve the mechanical properties
of CNT-reinforced polymer composites [34,35]. In Figure 6, optical micrographs for the
different blend compositions are shown at low and high PPE concentrations. The optical
densities of constitute phases can be used to differentiate them, i.e., based on the refractive
index, the polymer with a higher refractive index is the darker phase. Figure 6a shows that
for the 20:80 PPE/HDPE blend system, i.e., at a low PPE concentration, the PPE droplets
show some detachment from the HDPE matrix as result of a lack of miscibility between
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the two polymers. However, the CNT did not migrate to the PPE phase; the filler remains
localized in the HDPE matrix phase. With the addition of SEBS in Figure 6(a1), PPE droplets
break into smaller droplets, increasing the interfaces, while the CNT filler shows some
redistribution, and we can see CNT has migrated to the PPE phase. This is also shown in the
TEM image in Figure 7a. Even though PPE is the thermodynamically preferred phase based
on the wettability calculation using Young’s equation [39], see File S1 of the Supplementary
Materials, we still have CNT localized in the HDPE phase. The interfacial tensions were
first calculated using the harmonic and geometric mean, developed by Wu et al. [40]; see
Table S1 for the result. The surface energies of the polymers used at 260 ◦C are shown
in Table 2.
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Table 2. Dispersive and polar components of and total surface tension for PPE, HDPE, and MWCNT
at 260 ◦C.

Materials Total Surface Tension
(mN/m) γT

Dispersive Surface
Tension (mN/m) γd

Polar Surface Tension
(mN/m) γp

References

PPE 28.4 22.2 6.2 [41,42]
HDPE 22 22 0 [43]

MWCNTs 27.8 17.6 10.2 [41]

Moreover, Figure 6b shows that at higher PPE concentration (80:20/PPE/HDPE), the
HDPE minor phase percolates within the PPE matrix, and this agrees with the work of
Wang et al. [43]. This shows the ability of the HDPE to form a continuous phase even at
low concentrations. Nevertheless, the CNTs in the HDPE are not able to form a network
structure, perhaps due to the highly stretched continuous HDPE phase, which leads to some
gaps between the individual CNT filler. In addition, there were some CNT agglomerates
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formed (Figure 7b) that could reduce the level of percolation. However, with the addition
of the SEBS triblock copolymer, the stretching of the HDPE phase was reduced and the
triblock possibly also reduced the viscosity of the PPE phase, allowing for CNT migration,
as shown in Figure 7c. The schematic in Figure 8 shows the mechanism of CNT movement
in the uncompatibilized and compatibilized blends. This migration in the presence of the
SEBS copolymer can be attributed to its ability to reduce the melt viscosity of the PPE
polymer, allowing for CNT localization at the interphase and across the interphase into the
PPE phase, as shown in the TEM image in Figure 7c.
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3.3. Mechanical Properties of the Blend System

The major determining factor for the impact of CNT nanofillers in the polymer ma-
trix is the bonding and strength of the interface, which correlates to the interfacial load
transmission from the matrix to the filler surface [37]. In our system, the PPE polymer is
more rigid and fragile, hence increasing the PPE concentration in the blends and increasing
the modulus and tensile strength at the break (Figure S5). Consequently, in Figure 9, we
see that the addition of the 2 wt% triblock copolymer in the blend nanocomposites shows
an enhanced Young’s modulus for 80:20:1 /PPE/HDPE/CNT, with a 38.8% increase for
10 min mixing and a 28.5% increase for 5 min of mixing time. The higher increase at a
higher mixing time is attributed to the longer shearing time, allowing for a better CNT
dispersion and less agglomeration. This agrees with a previous work in the literature [44]
which showed that a longer mixing time can result in a better interfacial adhesion and an
improved interfacial interaction. This result confirms that the CNT migration occurs with
the addition of the SEBS copolymer, as shown in Figure 7c. In the same way, the elongation
at the break shown in Figure 9b is improved at 10 min of mixing time for the system with
a low concentration of PPE polymer, whereas when the PPE concentration increases, we
see a general reduction in elongation. However, at a higher PPE concentration at 60:40
and 80:20 PPE/HDPE, the addition of SEBS helps to improve the ductility of the blend
nanocomposite, and we achieve a 164.6% and 82.2% increase in elongation, respectively, at
10 min of mixing time.
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Furthermore, both the CNT nanofiller and the SEBS copolymer worked synergistically
to improve the stiffness of our blend composites (see Figure S6), while the filler dispersion
contributes to an effective load transfer. The copolymer plays a role in improving the
miscibility in the multiphase system, hence the increase in the modulus and strength
at the break seen for the compatibilized blend nanocomposites at 80:20 composition, as
shown in Table 2. Therefore, the interfacial interaction in compatibilized PPE/HDPE/CNT
composites correlates with the improvement in the tensile properties. In same way, the work
conducted by Zhang and Sundararaj [45] with LLDE/PEMA and clay nanocomposites,
in which they show that matching PEMA chemical structure with that of the LLDPE of
their system, provides a better interaction between the clay filler and the matrix. Moreover,
the 20:80 PPE/HDPE blend composition shows a higher ductility in the presence of the
copolymer than without the copolymer, namely, by about a 340% increase in the elongation
at the break. This shows that the addition of the CNT nanofiller generally improves the
Young’s modulus and tensile strength at the break but not the ductility (see Table 3).

Table 3. Tensile properties of the different blend samples at 80:20 and 20:80 composition.

Samples Tensile Strength at Break (MPa) Young’s Modulus (MPa) Elongation at Break (%)

PPE/HDPE 80/20 15.40 ± 0.7 1029.45 ± 24.7 3.00 ± 1.9
PPE/HDPE/SEBS/80/20/2 28.30 ± 4.9 1557.18 ± 119.0 2.90 ± 0.3
PPE/HDPE/CNT/80/20/1 21.25 ± 2.2 1285.70 ± 54.2 3.46 ± 0.7

PPE/HDPE/SEBS/CNT/80/20/2/1 38.27± 0.2 1784.26 ± 99.9 5.97 ± 0.5
PPE/HDPE 20/80 11.49 ± 1.9 210.4 ± 36.4 15.27 ± 3.4

PPE/HDPE/SEBS/20/80/2 15.40 ± 0.6 275.06 ± 20.6 25.2 ± 2.6
PPE/HDPE/CNT/20/80/1 14.05 ± 2.9 356.04 ± 92.3 5.73 ± 0.7

PPE/HDPE/SEBS/CNT/20/80/2/1 16.86 ± 0.6 399.39 ± 27.1 9.51 ± 1.1

4. Conclusions

In this work, we showed the interplay between the blend morphology, compatibi-
lization process, and the target blend property using kinetic factors to control the CNT
migration. We achieved this by systematically selecting a high temperature, high viscosity
PPE, which has a good dimensional stability and low viscosity HDPE polyolefin, which
helps improve PPE processability. We showed that the addition of SEBS triblock copolymer
significantly reduced the droplet domain size in the dispersed blend morphology, confirm-
ing SEBS as a good compatibilization agent for the PPE/HDPE blend system. At a high PPE
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content greater than 60%, where PPE is the matrix, increasing the PPE concentration results
in a low electrical conductivity. This is likely a result of CNT agglomeration within the PPE
matrix because of PPEs high viscosity. This is particularly evident at the 80:20/PPE/HDPE
blend. However, the addition of the SEBS compatibilizer reduces the viscosity, allowing for
more CNT migration and network formation, and hence a significant increase in conductiv-
ity of about four orders of magnitude compared to the uncompatibilized blend. In the same
way, the tensile property of our system shows an improvement in the compatibilized blend
nanocomposites due to the tuned interaction and connections between the CNT filler and
the SEBS compatibilizer. Nevertheless, the ductility is improved more in the presence of the
compatibilizer up to substantial amount of a 339.8% increase than in the CNT-reinforced
polymer nanocomposites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13061039/s1, Figure S1: PPE/HDPE/20:80/ 1 wt% CNT at
10 min; Figure S2: Domain sizes of PPE with and without SEBS; Figure S3: Solvent extraction of PPE
using chloroform; Figure S4: Electrical conductivity at different copolymer composition and different
blend composition; Figure S5: Strength at break and the elongation at yield of the polymer blend
nanocomposites at 1 wt% CNT; Figure S6: (a) modulus, (b) strength at break, (c) elongation at break,
and (d) elongation at yield of the different polymer blend samples at 80:20 and 20:80 composition;
File S1: The Young’s equation [39] for calculation of wettability parameter (ω) in PPE/HDPE blend;
Table S1: Geometric and harmonic mean values of PPE/HDPE, PPE/MWCNT, and HDPE/MWCNT.
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