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Abstract: Herein we investigated hydrophilic surface modification of SiOx containing amorphous
hydrogenated carbon nanocomposite films (DLC:SiOx) via the use of atmospheric oxygen plasma
treatment. The modified films exhibited effective hydrophilic properties with complete surface
wetting. More detailed water droplet contact angle (CA) measurements revealed that oxygen plasma
treated DLC:SiOx films maintained good wetting properties with CA of up to 28 ± 1◦ after 20 days of
aging in ambient air at room temperature. This treatment process also increased surface root mean
square roughness from 0.27 nm to 1.26 nm. Analysis of the surface chemical states suggested that the
hydrophilic behavior of DLC:SiOx treated with oxygen plasma is attributed to surface enrichment
with C–O–C, SiO2, and Si–Si chemical bonds as well as significant removal of hydrophobic Si–CHx

functional groups. The latter functional groups are prone to restoration and are mainly responsible
for the increase in CA with aging. Possible applications of the modified DLC:SiOx nanocomposite
films could include biocompatible coatings for biomedical applications, antifogging coatings for
optical components, and protective coatings to prevent against corrosion and wear.

Keywords: oxygen plasma; hydrophilic; wetting; surface modification; DLC; DLC:SiOx

1. Introduction

Diamond-like carbon (DLC) films are a class of materials that exhibit unique properties,
including high hardness [1], low friction [2,3], and excellent chemical resistance [4]. These
properties make DLC films attractive for a wide range of applications, such as protective
coatings for medical implants [5–7], wear-resistant coatings for mechanical components [8,9],
and anti-reflective coatings for optical devices [10,11].

The wetting properties of DLC films, or the ability of a liquid to spread over the surface
and form a uniform and stable contact angle is a very important factor in determining the
performance and suitability of DLC films for specific applications. Good wetting properties
can enhance the functionality of DLC films in various applications, such as in medical
implants, where wetting properties play a crucial role in controlling the interaction between
the implant and the surrounding biological fluids [12]. DLC films with good wetting
properties can exhibit improved performance in specific applications, such as in optical
devices, where a uniform and stable contact angle can help reduce reflections and increase
optical transmission. Furthermore, hydrophilic DLC films can be effectively utilized in
environments that involve liquids or high humidity [13]. Good wetting properties can
improve the adhesion between DLC films and other materials, which is important in
applications such as tribological coatings and protective [14,15].

The surface energy of DLC films is an important parameter that determines their
wetting and adhesion characteristics [16]. One approach to tailor the surface energy of DLC
films is through the use of plasma treatment. This treatment can be easily applied and
does not require hazardous chemicals or specialized equipment, making it a cost-effective
and scalable method. Plasma treatment involves exposing the DLC film to gas plasma,
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which results in the formation/recombination of functional groups on the surface of the
film. These functional groups can alter the surface energy of the DLC film and improve its
wetting and adhesion properties. For example, oxygen plasma treatment has been reported
to be an effective method to increase hydrophilicity as well as hemocompatibility of DLC
films [17,18]. The formation of oxygen-related functional groups on the surface of the film
after exposure to oxygen plasmas is mainly responsible for the increase in the hydrophilic
character and surface energy of DLC [19,20].

Another strategy to improve wetting properties of DLC is through the use of hybrid
films. Hybrid films are composed of DLC and other materials, such as metallic or organic
compounds, which can affect the surface energy of the film. By carefully selecting the
composition of the hybrid film, it is possible to achieve desired surface energy levels for
specific applications, such as anti-fog coatings on automobile windshields, and biocoatings
on contact lenses [21,22].

In addition to plasma treatments and hybrid films, the surface wetting properties
of DLC films can be also tailored through other methods, e.g., chemical (piranha treat-
ments [23]), photochemical (UV light and 30% hydrogen peroxide), ion implantation [24]
and laser treatment [25]. These methods can also introduce functional groups onto the sur-
face of the DLC film and modify its wetting characteristics. However, chemical treatment
methods can be hazardous due to the highly reactive nature of the chemicals involved,
which can pose safety concerns. Moreover, chemical modification methods may result
in uncontrolled etching of the DLC film, leading to a reduced film thickness and surface
roughness, which can negatively affect the DLC film properties. The photochemical method
may not be effective for thicker films, and the process may require longer exposure times
to achieve desired surface modification. Moreover, photochemical treatment may cause
damage to the DLC film structure, leading to reduced film quality. Ion implantation and
laser treatment can be expensive and require specialized equipment, which may not be
easily accessible. Furthermore, these treatments may cause localized damage to the film
and may not be effective for modifying the entire surface uniformly.

One specific type of DLC film—SiOx containing amorphous hydrogenated carbon
nanocomposite film (DLC:SiOx), which is widely known for its high-hardness (10–20 GPa),
low wear rate (10−5–10−8 mm3 N−1 m−1) and friction coefficient (0.02–0.2), as well as low
internal stresses (<1 GPa) and high optical transmittance (~80–85%) in the visible spec-
trum [11,26–28]. However, very little is known about the surface modification of DLC:SiOx
films with plasma techniques. Herein, we attempt to contribute to this topic by investi-
gating how the wetting properties of DLC:SiOx films are affected upon the atmospheric
oxygen plasma treatment. We established the possible correlations between the oxygen
plasma treatment and the changes it introduces to the surface of the DLC:SiOx film via the
use of water droplet contact angle (CA) measurements, X-ray photoelectron spectroscopy
(XPS), and atomic force microscopy (AFM). It was found that atmospheric oxygen plasma
treatment of the DLC:SiOx film modifies its surface to be effectively hydrophilic. The
wetting properties of DLC:SiOx film deteriorate to some extent with aging in ambient air at
room temperature.

2. Materials and Methods

A commercial high-grade extra clear float glass Pilkington MicrowhiteTM (Sheet Glass
Co., Tokyo, Japan) was used as a substrate material. Hexamethyldisiloxane (HMDSO)
of analytical grade (≥99%, Sigma-Aldrich, Saint Louis, MO, USA) was used as a source
of hydrocarbons, silicon, and oxygen for synthesis of DLC:SiOx films. Deionized (DI)
water with a resistivity higher than 18.2 MΩ/cm at 25 ◦C was used for CA measure-
ments, and was obtained from a Direct-Q® 3 UV water purification system (Merck KGaA,
Darmstadt, Germany).

The Hall-type closed drift ion beam source operating at a constant energy of 800 eV and
a current density of 100 µA/cm2 was used for deposition of DLC:SiOx films at room tem-
perature. The base pressure and work pressure in the vacuum chamber were 2 × 10−4 Pa
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and 2 × 10−2 Pa, respectively. Hydrogen gas (H2) was used for transportation of HMDSO
vapor into the vacuum chamber. Simplified schematic illustrating experimental setup for
DLC:SiOx deposition is shown in Scheme 1.
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Scheme 1. Simplified schematic illustrating experimental setup for DLC:SiOx deposition.

Control tests with monocrystalline Si(1 0 0) (UniversityWafer Inc., Boston, MA, USA)
substrates were performed in order to determine deposition rate of DLC:SiOx for H2 gas.
The thickness of DLC:SiOx on Si(1 0 0) was determined using a laser ellipsometer Gaertner
L-115 (Gaertner Scientific Corporation, Skokie, IL, USA) equipped with a He–Ne laser
(wavelength of 632.8 nm). Film thickness of ~100 nm was chosen for the deposition of
DLC:SiOx on glass substrates.

The radio frequency capacitive plasma unit Plasma-600T (JSC Kvartz, Kuvasay, Uzbek-
istan) operating at a frequency of 13.56 MHz and power of 0.3 W/cm2 was used for surface
modification of as-deposited DLC:SiOx films. The atmospheric oxygen plasma treatment
time was varied in the range of 1–5 min.

CA measurements were performed at room temperature using the sessile drop method.
The size of the DI droplets was 5 µL, the wetting angles were recorded after 10 min for all
samples. CA were determined using an active contour method based on B-spline snakes
(active contours) [29]. The CA is reported as an average of five measurements at different
places on the surface of each sample.

AFM experiments were performed with NanoWizardIII microscope (JPK Instruments,
Bruker Nano GmbH, Berlin, Germany) equipped with V-shaped silicon cantilever (spring
constant of 3 N/m, tip curvature radius of 10.0 nm and the cone angle of 20◦) operating
in contact mode at room temperature. Data processing was carried out using a SurfaceX-
plorer and JPKSPM Data Processing software (Version spm-4.3.13, JPK Instruments, Bruker
Nano GmbH).

The XPS measurements were performed employing XSAM800 spectrometer (Kratos
Analytical Ltd., Manchester, United Kingdom). The non-monochromatized Al Kα radiation
(hν = 1486.6 eV) was used for XPS spectra acquisition. The base pressure in the analytical
chamber was lower than 8 × 10−8 Pa. The energy scale of the system was calibrated
according to Au 4f7/2, Cu 2p3/2 and Ag 3d5/2 peak positions, respectively. The C 1s,
O 1s, and Si 2p spectra were acquired at the 20 eV pass energy (0.1 eV energy step), and the
analyzer was in the fixed analyzer transmission (FAT) mode. Spectra were fitted using a
sum of Lorentzian–Gaussian (ratio of 30:70) functions and symmetrical peak shape; while
for graphitic carbon asymmetrical peak shape and 70:30 ratio was used.

3. Results and Discussion

Figure 1 shows typical water droplet profile images of DLC:SiOx films before and after
oxygen plasma treatment for 3 min, as well as the plasma treated DLC:SiOx film, which
was aged for 20 days in ambient air at room temperature. The as-deposited DLC:SiOx
film exhibited water CA of 82 ± 1◦, which is very close to the hydrophobic surface. After
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oxygen plasma treatment for 3 min, the surface of the DLC:SiOx film was modified to
be effectively hydrophilic with complete spreading of water droplet (CA < 2◦) on the
surface. In [17], DLC films deposited using benzene and diluted silane as the precursor
gases were subjected to plasma treatment using various gases such as N2, O2, H2, and
CF4. They found that oxygen plasma treated films exhibited the lowest water CA of
13.4 ± 1.3◦ as compared to other plasma gases. In contrast, our result is significantly better.
Further, we assessed the wetting stability of DLC:SiOx. The water CA on the surface of
the DLC:SiOx film, which was modified using oxygen plasma treatment increased up
to 28 ± 1◦, still maintaining good hydrophilic properties after 20 days of aging. It was
also found that the oxygen plasma treatment time variation (i.e., 1–5 min) of as-deposited
DLC:SiOx films had little effect on the hydrophilic surface modification as in all cases
total surface wetting was observed (Figure 1d), whereas the lowest CA was determined
for the 3 min oxygen plasma treated DLC:SiOx films (CA 28 ± 1◦) after 20 days of aging
(Figure 1d). In Figure 1e, CA measurements indicated that during the first 10 days of aging,
the oxygen plasma-treated DLC:SiOx film rapidly loses its hydrophilic properties to some
extent, after which stabilization is reached with CA ~28 ± 1◦ for the remaining 10 days
of aging. S. Narayan et al. investigated oxygen plasma treatment effect on the wetting
properties of DLC coatings deposited using plasma enhanced chemical vapor deposition
(PECVD) technique [30]. They observed that hydrophilic properties of oxygen plasma
treated DLC coatings rapidly deteriorate within 8 days of aging. Afterwards, better stability
of CA with aging time was observed. However, CA values of >40◦ were reported for
oxygen plasma treated DLC coatings in all cases after 10 days of aging.
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Figure 1. Water droplet profile images of DLC:SiOx (a) as-deposited, (b) 3 min oxygen plasma treated
and (c) oxygen plasma and aged for 20 days; (d) water CA as a function of oxygen plasma treatment
time of as-deposited and after aging for 20 days; (e) water CA as a function of aging time.

Figure 2 shows characteristic AFM 2D topographical images of the as-deposited and
3 min oxygen plasma treated DLC:SiOx films acquired over 2.0 × 2.0 µm2 area in air using
contact mode. The topography of the as-deposited DLC:SiOx surface exhibits a random
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distribution of surface mounds having different angle orientations to each other, without a
preferred direction. A mean height of the surface structures (Zmean) was determined to be
0.7 nm. The root mean square roughness (Rq) was found to be 0.27 nm. The as-deposited
DLC:SiOx film surface is dominated by the valleys with skewness (Rsk) value of −0.11
and has a platykurtoic distribution (i.e., relatively few high peaks and low valleys) of
surface morphological features with kurtosis (Rku) value of 2.7. In contrast, 3 min oxygen
plasma treated DLC:SiOx film surface exhibited higher Rq value of 1.26 nm with Zmean
value of 3.23 nm, and followed similar distribution of surface morphological features with
Rsk and Rku values of −0.11 and 2.46, respectively. In [31,32] surface morphological analysis
was performed for as-deposited and oxygen plasma treated DLC films. Their results also
indicated an increase in surface roughness after surface modification with oxygen plasma.
This increase in surface roughness was attributed to oxygen ion bombardment during the
treatment process. In our case, oxygen plasma treated DLC:SiOx film maintained very low
surface roughness, and therefore it is suggested that this change had negligible effect on
the wetting properties.
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Figure 2. AFM surface topography of (a) as-deposited and (b) 3 min oxygen plasma treated
DLC:SiOx films.

The effect of oxygen plasma surface hydrophilic modification on the chemical states
of DLC:SiOx was investigated employing XPS. The deconvoluted high-resolution XPS
spectra in the O 1s, C 1s and Si 2p regions of the as-deposited, oxygen plasma treated and
20 days aged DLC:SiOx films are shown in Figure 3. The deconvoluted components of
DLC:SiOx films in the XPS O 1s spectra where assigned to C=O (531.2 eV), C–O (532.6 eV),
C–O–C/SiOx (533.1 eV) and O–H (534 eV) chemical bonds [33–37]. It can be seen that after
oxygen plasma treatment the concentration of hydrophilic C–O–C functional groups on
the surface of DLC:SiOx increased considerably, remained stable after 20 days of aging.
The deconvoluted component originating from C–O bonds decreased after oxygen plasma
treatment and also remained stable after 20 days of aging. High-resolution XPS spectra in
the C 1s region were deconvoluted into four components, respectively. A high intensity
peak at 285 eV represents carbon in sp3 hybridization, and it overlaps with C–H and
Si–CHx chemical bonds [38]. A low intensity peak at 284.1 eV was assigned to carbon
sp2 hybridization. The position and asymmetric shape of this component is typical for
graphitic carbon [39,40]. Lower intensity peaks at higher binding energies could be assigned
to O–C=O and C=O chemical bonds. No considerable changes were observed in C 1s region
for oxygen plasma treated DLC:SiOx films. The aging of the DLC:SiOx films resulted in
further oxidation in ambient air, which is indicated by slight increase of C=O component
as well as recombination of sp2 carbon into other functional groups. Two deconvoluted
components of as-deposited DLC:SiOx film in the XPS Si 2p spectrum were assigned to
Si–CHx (102.5 eV) and SiOx (101.1 eV) chemical bonds [38,41]. Two additional components
appeared at 104 eV and 99.8 eV after oxygen plasma treatment of DLC:SiOx, assigned
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to the SiO2 and Si–Si chemical bonds, respectively [41]. After oxygen plasma treatment
the concentration of hydrophobic Si–CHx functional groups on the surface of DLC:SiOx
decreased significantly, and slightly increased after 20 days of aging, which is in good
agreement with CA measurement results. The restoration of Si–CHx chemical bonds is
mainly responsible for CA increase with aging of DLC:SiOx film. The appearance of SiO2
and Si–Si chemical bonds for oxygen plasma treated DLC:SiOx films also significantly
contributed to the effective hydrophilic properties of the surface [21]. The concentration of
these functional groups on the surface of oxygen plasma treated DLC:SiOx film remained
relatively stable after 20 days of aging.
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Based on the findings of this study, several future directions are of the main importance:

• Investigation of the long-term stability of hydrophilic properties of the oxygen plasma
treated DLC:SiOx films under various environmental conditions, such as humidity,
temperature, and exposure to different chemicals.

• Study of the underlying mechanisms of the restoration of hydrophobic Si-CHx func-
tional groups and the ways to prevent or delay this process, enhancing the long-term
stability of the hydrophilic properties of the DLC:SiOx films.

• Investigation of the effect of the hydrophilic DLC:SiOx films on the adhesion, prolifer-
ation, and differentiation of various cell types to explore their potential applications in
tissue engineering and regenerative medicine.
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4. Conclusions

Atmospheric oxygen plasma treatment was used to modify DLC:SiOx film wetting
properties. The surface of the DLC:SiOx film was modified to be effectively hydrophilic
with complete spreading of water droplet (CA < 2◦) on the surface. The CA increased up to
28 ± 1◦ after 20 days of aging in ambient air at room temperature, still maintaining good
hydrophilic properties. AFM analysis indicated that the root mean square roughness of the
film increased from 0.27 nm to 1.26 nm after oxygen plasma treatment. XPS investigation
revealed that the highly hydrophilic characteristics of the oxygen plasma treated DLC:SiOx
is attributed to surface enrichment with C–O–C, SiO2 and Si–Si chemical bonds as well
as significant removal of hydrophobic Si–CHx functional groups. During aging process
of DLC:SiOx film the Si–CHx functional groups tend to restore to some extent negatively
affecting the wetting properties. The modified DLC:SiOx nanocomposite films should
be tested in various applications, such as biocompatible coatings for medical purposes,
anti-fog coatings for optical components, and protective coatings to prevent corrosion
and wear.
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diamond like carbon films for nanoimprint lithography applications. Thin Solid Films 2006, 515, 636–639. [CrossRef]

16. Rahman, S.M.; Song, J.; Yeo, C.-D. Computational study on surface energy of amorphous DLC with respect to hybridization state
of carbon and potential functions. Diamond Relat. Mater. 2019, 95, 127–134. [CrossRef]

17. Roy, R.K.; Choi, H.-W.; Park, S.-J.; Lee, K.-R. Surface energy of the plasma treated Si incorporated diamond-like carbon films.
Diamond Relat. Mater. 2007, 16, 1732–1738. [CrossRef]

18. Marciano, F.; Bonetti, L.; Da-Silva, N.; Corat, E.; Trava-Airoldi, V. Wettability and antibacterial activity of modified diamond-like
carbon films. Appl. Surf. Sci. 2009, 255, 8377–8382. [CrossRef]

19. López-Santos, C.; Yubero, F.; Cotrino, J.; González-Elipe, A. Lateral and in-depth distribution of functional groups on diamond-like
carbon after oxygen plasma treatments. Diamond Relat. Mater. 2011, 20, 49–56. [CrossRef]

20. Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma methods for the generation of chemically reactive surfaces for biomolecule
immobilization and cell colonization—A review. Plasma Process. Polym. 2006, 3, 392–418. [CrossRef]

21. Yi, J.W.; Moon, M.-W.; Ahmed, S.F.; Kim, H.; Cha, T.-G.; Kim, H.-Y.; Kim, S.-S.; Lee, K.-R. Long-lasting hydrophilicity on
nanostructured Si-incorporated diamond-like carbon films. Langmuir 2010, 26, 17203–17209. [CrossRef]

22. Sun, L.; Guo, P.; Li, X.; Wang, A. Comparative study on structure and wetting properties of diamond-like carbon films by W and
Cu doping. Diamond Relat. Mater. 2017, 73, 278–284. [CrossRef]

23. Wang, J.; Zhang, K.; Wang, F.; Zheng, W. Improving frictional properties of DLC films by surface energy manipulation. RSC Adv.
2018, 8, 11388–11394. [CrossRef] [PubMed]

24. Ma, G.; Gong, S.; Lin, G.; Zhang, L.; Sun, G. A study of structure and properties of Ti-doped DLC film by reactive magnetron
sputtering with ion implantation. Appl. Surf. Sci. 2012, 258, 3045–3050. [CrossRef]

25. Chen, L.; Minakawa, A.; Mizutani, M.; Kuriyagawa, T. Study of laser-induced periodic surface structures on different coatings
exhibit super hydrophilicity and reduce friction. Precis. Eng. 2022, 78, 215–232. [CrossRef]

26. Jedrzejczak, A.; Kolodziejczyk, L.; Szymanski, W.; Piwonski, I.; Cichomski, M.; Kisielewska, A.; Dudek, M.; Batory, D. Friction and
wear of aC: H: SiOx coatings in combination with AISI 316L and ZrO2 counterbodies. Tribol. Int. 2017, 112, 155–162. [CrossRef]

27. Koshigan, K.; Mangolini, F.; McClimon, J.; Vacher, B.; Bec, S.; Carpick, R.; Fontaine, J. Understanding the hydrogen and oxygen
gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon
2015, 93, 851–860. [CrossRef]

28. Batory, D.; Jedrzejczak, A.; Szymanski, W.; Niedzielski, P.; Fijalkowski, M.; Louda, P.; Kotela, I.; Hromadka, M.; Musil, J.
Mechanical characterization of aC: H: SiOx coatings synthesized using radio-frequency plasma-assisted chemical vapor deposition
method. Thin Solid Films 2015, 590, 299–305. [CrossRef]

29. Stalder, A.F.; Kulik, G.; Sage, D.; Barbieri, L.; Hoffmann, P. A snake-based approach to accurate determination of both contact
points and contact angles. Colloids Surf. A Physicochem. Eng. Asp. 2006, 286, 92–103. [CrossRef]

30. Bachmann, S.; Schulze, M.; Morasch, J.; Hesse, S.; Hussein, L.; Krell, L.; Schnagl, J.; Stark, R.W.; Narayan, S. Aging of oxygen and
hydrogen plasma discharge treated aC: H and ta-C coatings. Appl. Surf. Sci. 2016, 371, 613–623. [CrossRef]

31. Yun, D.Y.; Choi, W.S.; Park, Y.S.; Hong, B. Effect of H2 and O2 plasma etching treatment on the surface of diamond-like carbon
thin film. Appl. Surf. Sci. 2008, 254, 7925–7928. [CrossRef]

32. Marciano, F.; Marcuzzo, J.; Bonetti, L.; Corat, E.; Trava-Airoldi, V. Use of near atmospheric pressure and low pressure techniques
to modification DLC film surface. Surf. Coat. Technol. 2009, 204, 64–68. [CrossRef]

33. Sun, P.; Wang, Y.; Liu, H.; Wang, K.; Wu, D.; Xu, Z.; Zhu, H. Structure evolution of graphene oxide during thermally driven phase
transformation: Is the oxygen content really preserved? PLoS ONE 2014, 9, e111908. [CrossRef]

34. Bokare, A.; Nordlund, D.; Melendrez, C.; Robinson, R.; Keles, O.; Wolcott, A.; Erogbogbo, F. Surface functionality and formation
mechanisms of carbon and graphene quantum dots. Diamond Relat. Mater. 2020, 110, 108101. [CrossRef]

35. Kerber, S.; Bruckner, J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T. The nature of hydrogen in X-ray photoelectron spectroscopy:
General patterns from hydroxides to hydrogen bonding. J. Vac. Sci. Technol. A Vac. Surf. Film. 1996, 14, 1314–1320. [CrossRef]

36. Shen, Z.; Xia, Y.; Zhao, C.; Ding, Y.; Fan, P.; Li, J. Mechanical Property Evolution Model of Polyimide Film by Far Ultraviolet
Irradiation. J. Phys. Conf. Ser. 2020, 1637, 012040. [CrossRef]
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