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Abstract: Although the physics and chemistry of materials are driven by exposed surfaces in the
morphology, they are fleeting, making them inherently challenging to study experimentally. The
rational design of their morphology and delivery in a synthesis process remains complex because
of the numerous kinetic parameters that involve the effective shocks of atoms or clusters, which
end up leading to the formation of different morphologies. Herein, we combined functional density
theory calculations of the surface energies of ZnO and the Wulff construction to develop a simple
computational model capable of predicting its available morphologies in an attempt to guide the
search for images obtained by field-emission scanning electron microscopy (FE-SEM). The figures
in this morphology map agree with the experimental FE-SEM images. The mechanism of this
computational model is as follows: when the model is used, a reaction pathway is designed to
find a given morphology and the ideal step height in the whole morphology map in the practical
experiment. This concept article provides a practical tool to understand, at the atomic level, the routes
for the morphological evolution observed in experiments as well as their correlation with changes in
the properties of materials based solely on theoretical calculations. The findings presented herein not
only explain the occurrence of changes during the synthesis (with targeted reaction characteristics
that underpin an essential structure–function relationship) but also offer deep insights into how to
enhance the efficiency of other metal-oxide-based materials via matching.

Keywords: ZnO; surface energy; morphology

1. Introduction

The determination of the surface-dependent properties of materials is essential for the
structure–property relationship and the rational design for their high performance. Surface
properties (i.e., surface energy, atomic structures, electronic structures, etc.) make a large
difference to the stability and performance of materials. Thus, it is highly desirable that
these properties be tuned in order to maximize performance, since the efficiency of these
systems depends on the ability to control electronic levels on surfaces and at interfaces.
Nevertheless, developing an adequate design of reaction conditions for the synthesis of
a desirable morphology is a complex and difficult process. In principle, it is possible to
predict equilibrium morphologies once the specific surface energies of exposed crystal
surfaces become available. However, to determine the precise surface structures and
energies and the morphological evolution of a given material, it is necessary to carry out
multiple measurements, which is a time-consuming and resource-intensive task. Quantum
mechanical simulations based on first-principles calculations have been commonly used to
illuminate these phenomena at a fundamental level. Combining density functional theory
(DFT) with ab initio atomistic thermodynamics can be a good strategy to overcome such
experimental drawbacks and allow the investigation of exposed surfaces and morphological
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evolution of different materials. This knowledge is also key to discovering and controlling
the properties of materials with tunable multifunctionalities and more [1–6].

In addition to SnO2 and TiO2, ZnO has been investigated and extensively used in a
variety of technological applications. Due to its high activity, environment-friendly nature,
and low cost, it has a wide range of properties that can be applied in optics, electronics,
catalysis, and gas sensing [3,7–9]. These multifunctional properties of ZnO are known to be
strongly dependent on its morphology. However, it is a challenge to identify the surface
structure, properties, and morphologies of ZnO for surface engineering [10–15].

ZnO can be synthesized into a wide range of possible morphologies, including rods,
cones, bullets, cages, and hexagonal plates, depending on the synthesis method and reaction
conditions used [9,16–25]. This plethora of complex morphologies appears because ZnO
crystals exhibit exposed surfaces with low surface energy values and with both polar
and non-polar natures. This behavior causes relative rates of crystal surface growth to be
modulated by temperature, reaction time, and the presence of a surfactant, a capping agent,
counterions, or a solvent in the synthesis process [23,26–29].

Surface energy is a critical descriptor of both crystal growth and morphology. It
measures the energy difference per unit area between a given surface and its bulk material.
Experimental measurements of this property remain challenging and have mostly been
limited to extrapolations of liquid-state surface tensions [30,31]. The relative surface energy
and orientation of planes in a crystal dictate its morphology, as already explained by
Wulff [32]. Wulff stated that the shortest (i.e., perpendicular) distance between the center
of a crystal and its surface is proportional to the energy of that surface. In 2015, we
developed a methodology to obtain a set of the available morphologies (morphology map)
of a given material by using the surface energy values of its exposed surfaces and the
Wulff construction [33]. Since this first publication, this methodology has been used with
different semiconductors, such as ZnWO4 [34,35], Ag2WO4 [36–39], Ag2O [40], MnTiO3 [41],
CuMnO2 [42], Ag2CrO4 [2], TiO2 [43], Cu2O [44], and CaXO4 (X = Mo or W) [45], among
others [46–49].

The knowledge of the surface structures and energies of ZnO is essential not only
for understanding its function mechanisms [50] but also for delineating its growth mech-
anism during synthesis. Since the morphology of a crystal is determined by the relative
magnitudes of its specific surface energies associated with different crystallographic facets,
it is feasible to alter the ratios between specific surface energies to obtain crystals with
morphologies other than that predicted using the Wulff construction.

How to manipulate the relative specific surface energies associated with different
crystallographic planes is the central theme of the present work. In this context, the aim is
to provide a new way to intelligently design the morphologies of ZnO-based materials with
high robustness. This study has four challenges. The first is to obtain the available mor-
phologies based on the Wulff construction. The second is the introduction of an innovative
model to display the morphological transformations among the available morphologies by
adjusting the relative surface energy values. The third consists of introducing polyhedron
energy to delineate the morphological transformations along the reaction pathways in
the morphology map so as to directly link surface energy variations with changes in the
morphology of materials. Lastly, we will explain how the surface energy values regulate
the growth process and evolution to reach a final morphology.

The paper is structured as follows. Section 2 will describe the theoretical approach
used. Section 3.1 will address how the morphology map was selected to test the principles
of our approach. Section 3.2 will explore the model used to investigate the effect of surface
energy on the morphologies and calculate the reaction pathways from the equilibrium
morphology. Section 3.3 will show how the formation energy of facet B on surface A was
calculated to obtain the final morphology. Finally, the main conclusions will be summarized
in the last section. The high degree of coincidence between theory and experiments makes
us believe that the model might have a more general scope of application.
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2. Theoretical Methods

The theoretical morphologies of ZnO were studied using the Wulff construction
obtained through the surface energy (Esur f ) values of the
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planes reported by Na and Park [51]. The authors used the

Vienna ab initio simulation package, adopting the LDA + U and PAW schemes. For the
surface energy calculations, they employed periodically repeated slab geometry, which
was separated by a vacuum layer of proper thickness [51]. To achieve the theoretical
morphologies, the methodology proposed by our research group [33,52,53] was applied to
obtain the available set of morphologies of ZnO. According to this methodology, the crystal
morphology depends on the ratios between the surface energy and the crystal symmetry
and structure [33,54].

The polyhedron energy (Epol) and the percentage of contribution of each surface in the
ZnO morphology are calculated. Epol is obtained by the following equation:
Ei

pol = ∑i Ci × Ei
sur f , where Ci is the contribution of the surface area to the total surface area

of the polyhedron (Ci = Ai/Apol) and Ei
sur f is the surface energy value of the correspond-

ing surface i [37]. On the other hand, the well-known Wulff construction is a convenient
method to evaluate the formation of a macroscopic surface B of orientation (h2k2l2) on a
surface A of orientation (h1k1l1). The relative energy, ∆E, can be calculated by the following
expression: ∆E = EA

sur f (h1k1l1)cosθ − EB
sur f (h2k2l2), where EA

sur f is the surface energy (per

unit area) of surface A (of orientation (h1k1l1)), EB
sur f is the surface energy (per unit area) of

surface B (of orientation (h2k2l2)), θ is the angle between surfaces A and B, and the cosθ
factor corresponds to the change in surface area when facets are formed [55]. According to
this expression, if ∆E is negative, surface B can grow stably on surface A, i.e., the growth
process takes place along the surface with lowest surface energy. This is the classical growth
mechanism of Ostwald ripening, which describes the growth of smaller crystals into larger
ones through diffusion in order to reduce the total surface energy [56–58].

3. Results and Discussion
3.1. A computational Road to Morphology

This paper provides an alternative approach for the efficient generation of the available
morphologies (morphology map) of a given material, in addition to a quantitative structure–
reactivity relationship based on quantum chemistry and the Wulff construction. The first
step of this investigation involves the study of the bulk (unit cell).

The crystallographic unit cell of ZnO is shown in Figure 1. The ZnO structure is fully
determined by the lattice parameters a = b and c, belongs to the space group P63mc, and is
formed by a two-unit formula per cell (Z = 2). In the ZnO structure, the Zn cations have a
coordination number of four, which means that they are surrounded by a tetrahedron of
O2− anions. Therefore, the ZnO structure has [ZnO4] clusters as building blocks, but with
some local disorder, as illustrated in Figure 1. A note on terminology: to avoid confusion,
the term cluster will be used exclusively to denote the local coordination of the Zn cation
corresponding to the number of neighboring oxygen anions both in the bulk and on the
exposed surfaces in the morphology.

The next step consists of the investigation of surfaces that can be cut through the bulk.
Previous studies have applied several different functionals to calculate the surface energy
values of ZnO, as shown in Table 1.
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Table 1. Reported surface energy values of ZnO (in J/m2).

(100) (110) (001) (102) (101) (112) (111) (00
¯
1) Functional Ref.

1.12 1.06 – 2.07 1.73 2.18 2.22 2.04 LDA + U [51]
2.05 1.16 2.00 – – – – – B3LYP [59–61]
0.87 – – – 2.00 – – 1.39 PBE-D3 [3]
0.82 – 2.37 – – – – 1.01 PBE [62]
0.91 1.64 1.74 1.58 GGA [63]
1.19 1.23 LDA [64]

0.680
3.796 –

0.897
8.671

*

2.292
2.481
2.389

– – – – PBE [65]

* terminal in O.

By applying our methodology [33,52,53] and combining the surface energy values
reported by Na and Park [51] and the Wulff construction, we were able to obtain a map of
the available morphologies of ZnO, as illustrated in Figure 2. In the center of this figure, it
is possible to see the starting morphology using the surface energy values calculated by Na
and Park [51]. From this morphology, we obtained the available morphologies by decreas-
ing the surface energy values of one (or two) surfaces using different synthesis methods.

This map becomes a powerful tool for experimentalists during the morphological
characterization of materials, since it allows matching the experimental morphologies
to the theoretical ones. At this point, it is possible to note that the variation in relative
surface energy values is more important than their calculation, which avoids the technical
drawback resulting from the fact that different functionals provide different calculated
surface energy values, as observed in Table 1.

3.2. Where Will This Road Take Us?

This work provides insights to better understand the underlying mechanisms of crystal
growth in the synthesis process. To this end, we delineated the reaction pathways that
connect the different morphologies.

Some of the morphologies displayed in Figure 2 were reported in the literature. From
these morphologies, we were able to calculate the Epol values and build a reaction pathway
for use in the synthesis process, as shown in Figure 3. It is important to note that the
selected images of the morphology in Figure 3 correspond to static or steady-state values.
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Figure 2. Map of available morphologies of the wurtzite ZnO.

The starting morphology was obtained by Debroye et al. [9] and synthesized as
described by Kiomarsipour and Shoja Razavi [66] by a simple hydrothermal process at low
temperature without any additional surfactant, organic solvent, or catalytic agent. The
elongated hexagonal morphology (a) was obtained by Amin et al. by the hydrothermal
method using different experimental parameters such as pH, precursor concentration,
growth time, and temperature [67]. This morphology was also reported by some of us
through the doping of ZnO with Ni and Fe to enhance its photocatalytic activity [68]. These
results are clear-cut examples of how the reaction conditions and the synthesis methods
can modulate the final morphology.

The elongated octahedral morphology (b) was also obtained by Wu et al. by the
hydrothermal method, but using water and methanol during the synthesis [69]. Zhang et al.
observed a lance-shaped morphology (c) in a flower-like architecture by using different
conditions in a controlled hydrothermal process (water/ethanol as a solvent and different
ratio of precursors) [70].

Through the solvothermal method, Liu et al. modulated the reaction conditions, i.e.,
reaction time and additive (tetramethylammonium hydroxide, TMAH) concentration, to
obtain a wide range of morphologies of the as-synthetized ZnO samples [71]. By using
the values of Epolyhedron, we were able to calculate the reaction pathway that connected the
morphologies obtained by Liu et al., as illustrated in Figure 4.
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Figure 3. Calculated Epol values and the reaction pathway used in the synthesis process to obtain
the most common experimental morphologies (inset): starting [9], (a) elongated hexagonal [67],
(b) elongated octahedral [69], and (c) lance-shaped [70]. The percentages of each surface area are also
provided for comparison purposes in a pie chart. Reprinted with permission from [9], under the
terms of the Creative Commons CC—BY license. Reprinted with permission from [64], under the
terms of the Creative Commons CC license. Reprinted with permission from [66]; Copyright 2020,
Elsevier. Reprinted with permission from [67]; Copyright 2011, John Wiley and Sons.

As it can be seen, the morphology after the “initial stage” (b) has a higher value of
Epol than the starting morphology (a), i.e., 0.87 J/m2 vs. 0.84 J/m2. From this point, two
alternative routes can be opened as functions of synthesis process and time, resulting in
two different situations to be analyzed: changes in time and TMAH concentration during
synthesis. In the first case, the surface composition changes as a function of time. The
contribution of the
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Figure 4. Polyhedron energy (Epol) values in the synthesis process. The morphological evolution
for the formation of different forms of tetradecahedral ZnO is highlighted. The experimental mor-
phologies obtained by Liu et al. can be found in the inset [71]. Reprinted (adapted) with permission
from [71]; Copyright 2019, American Chemical Society.

3.3. Which Way Does the Morphology Go?

As observed, the hydrothermal method is one of the most frequently used to synthetize
ZnO, with the reaction conditions being responsible for the changes in surface stability. The
favorable growth directions of ZnO can be disclosed by using the Wulff construction to
evaluate the formation of a macroscopic surface B of orientation (h2k2l2) on a surface A of
orientation (h1k1l1).

From the surface energy values used in the construction of the morphology map, it
was possible to calculate the ∆E values for all possible surfaces B on all surfaces A. These
values are presented in Table 2.

By using the values of ∆E, it is possible to predict the preferential crystal growth
direction of ZnO. According to the literature [10,72–74], the growth of ZnO crystals along
the [0001] direction is the most reported. Nonetheless, Cho et al. observed that when the
triethyl citrate is used as a surfactant, a lateral growth of each spine along the six symmetric
directions can be noted [75]. Therefore, by combining the ∆E values listed in Table 2, we
could thermodynamically estimate the most favorable side surface growth along these
directions, as shown in Table 3.
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Table 2. Calculated values of relative energy (∆E) of surface B on surface A (J/m2) and angle (θ,
degree) between planes A and B.

A\B (11
¯
20) (10

¯
10) (000

¯
1) (10

¯
11) (10

¯
12) (11

¯
21) (11

¯
22)(

1120
)

– 30.00◦

∆E = − 0.96
90.00◦

∆E = − 2.51
40.37◦

∆E = − 2.68
53.98◦

∆E = − 2.96
17.33◦

∆E = − 2.16
31.97◦

∆E = − 1.28(
1010

) 30.00◦

∆E = − 0.89 – 90.00◦

∆E = − 2.54
28.39◦

∆E = − 2.84
47.23◦

∆E = − 3.18
34.24◦

∆E = − 3.28
42.72◦

∆E = − 1.84(
0001

) 90.00◦

∆E = − 1.97
90.00◦

∆E = − 2.03 – 61.61◦

∆E = − 1.04
42.77◦

∆E = − 1.36
72.67◦

∆E = − 4.09
58.03◦

∆E = − 1.99(
1011

) 40.37◦

∆E = − 2.60
28.39◦

∆E = − 2.84
61.61◦

∆E = − 1.45 – 18.84◦

∆E = − 0.34
29.67◦

∆E = − 2.53
26.09◦

∆E = − 1.19(
1012

) 53.98◦

∆E = − 2.80
47.23◦

∆E = − 3.18
42.77◦

∆E = − 1.32
18.84◦

∆E = 0.34 – 38.73◦

∆E = − 1.16
27.43◦

∆E = − 3.56(
1121

) 17.33◦

∆E = − 0.94
34.24◦

∆E = − 3.23
72.77◦

∆E = − 4.08
29.67◦

∆E = − 2.12
38.73◦

∆E = − 0.94 – 14.64◦

∆E = − 3.25(
1122

) 31.97◦

∆E = 0.79
42.72◦

∆E = − 0.45
58.03◦

∆E = − 1.84
26.09◦

∆E = − 0.48
27.43◦

∆E = − 3.52
14.64◦

∆E = − 3.27 –

Table 3. Signs of relative energy (∆E) values of surfaces.

Side Surfaces
Growth Directions

[0001] [10
¯
10](

1120
)
\
(
1010

)
∆E< 0\∆E < 0 ∆E < 0\–(

1010
)
\
(
1011

)
∆E< 0 \∆E < 0 \∆E < 0(

1120
)
\
(
1011

)
∆E< 0\∆E < 0 ∆E< 0\∆E < 0(

1010
)
\
(
0001

)
∆E < 0\– –∆E < 0(

0001
)
\
(
1012

)
–∆E < 0 ∆E< 0\∆E < 0

As it can be seen in Table 3, the combination of
(
1120

)
/
(
1010

)
,
(
1010

)
/
(
1011

)
, and(

1120
)
/
(
1011

)
surfaces results in a favorable crystal growth process along the [0001] direc-

tion. For the [1010] direction, the combination of
(
1120

)
/
(
1011

)
and

(
0001

)
/
(
1012

)
also

indicates a favorable crystal growth process. To further explore this behavior, it is necessary
to calculate the ∆E values corresponding to the combination of surface B of orientation
(h2k2l2) on surface A of orientation (h1k1l1) using the surface energy values of the morpholo-
gies depicted in Figures 3 and 4. These values are presented in Tables 4 and 5, respectively.

A detailed analysis of the results in Table 4 shows that in the starting morphology,
the formation of the

(
1010

)
plane on

(
1011

)
is the most stable (∆E = −2.84 J/m2), whereas

the formation of the
(
1011

)
surface on

(
1012

)
is unstable (∆E = 0.34 J/m2). In the case

of the morphology shown in (a), in the [0001] growth direction, the formation of the(
1010

)
surface on

(
0001

)
is stable (∆E = −1.75 J/m2), resulting in an elongated hexagonal

morphology. The formation of morphologies (b) and (c) comprises only the
(
1011

)
and(

1010
)

surfaces, without any growth competition, according to the ∆E values. However,
by analyzing the crystal growth process in the [0001] direction, it is possible to observe that
the formation of the

(
1010

)
surface is more stable than that of

(
1011

)
(∆E = −2.03 J/m2

against ∆E = −1.04 J/m2, respectively; see Table 2). This explains the lance-shaped mor-
phology depicted in (c), where the contribution of the

(
1010

)
surface corresponds to 82%

against 18% for the
(
1011

)
plane. However, for morphology (b), these values are 35% and

65%, respectively.
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Table 4. Calculated values of relative energy (∆E) of surface B on surface A (J/m2) and angle (θ,
degree) between surfaces A and B for the crystal morphologies reported in Figure 3.

A\B
(Starting morphology)(

0001
)
\
(
1012

)
42.77◦

∆E = − 1.36

(Starting morphology)(
1012

)
\
(
0001

)
42.77◦

∆E = − 1.32

(a)(
0001

)
\
(
1010

)
90.00◦

∆E = − 1.75

(a)(
1010

)
\
(
0001

)
90.00◦

∆E = − 2.42(
1012

)
\
(
1011

)
18.84◦

∆E = 0.34

(
1011

)
\
(
1012

)
18.84◦

∆E = − 0.34
(b)(

1011
)
\
(
1010

)
28.39◦

∆E = − 1.80

(b)(
1010

)
\
(
1011

)
28.39◦

∆E = − 1.80

(
1011

)
\
(
1010

)
28.39◦

∆E = − 2.84

(
1010

)
\
(
1011

)
28.39◦

∆E = − 2.84(
1011

)
\
(
1120

)
40.37◦

∆E = − 2.60

(
1120

)
\
(
1011

)
40.37◦

∆E = − 2.68
(c)(

1011
)
\
(
1010

)
28.39◦

∆E = − 1.26

(c)(
1010

)
\
(
1011

)
28.39◦

∆E = − 1.27

(
1010

)
\
(
1120

)
30.00◦

∆E = − 0.89

(
1120

)
\
(
1010

)
30.00◦

∆E = − 0.96

Table 5. Calculated values of relative energy (∆E) of surface B on surface A (J/m2) and angle (θ,
degree) between planes A and B for all crystal shapes reported in Figure 4.

A\B

(a)(
0001

)
\
(
1010

)
90.00◦

∆E = −1.22

(a)(
1010

)
\
(
0001

)
90.00◦

∆E = −1.23

(c)(
0001

)
\
(
1011

)
61.61◦

∆E = −0.61

(c)(
1011

)
\
(
0001

)
61.61◦

∆E = −0.55(
1011

)
\
(
1010

)
28.39◦

∆E = −1.73

(
1010

)
\
(
1011

)
28.39◦

∆E = −1.73

(b)(
0001

)
\
(
1011

)
61.61◦

∆E = −0.78

(b)(
1011

)
\
(
0001

)
61.61◦

∆E = −0.49

(d)(
0001

)
\
(
1011

)
61.61◦

∆E = −0.51

(d)(
1011

)
\
(
0001

)
61.61◦

∆E = −0.58(
1011

)
\
(
1010

)
28.39◦

∆E = −1.90

(
1010

)
\
(
1011

)
28.39◦

∆E = −1.90

(
1011

)
\
(
1010

)
28.39◦

∆E = −1.63

(
1010

)
\
(
1011

)
28.39◦

∆E = −1.63

According to the results presented in Table 5 for the morphologies reported by
Liu et al. [71] in Figure 4, the reaction conditions change the ZnO morphologies, resulting
in a stabilization of the

(
1011

)
surface in morphology (b). Initially, the formation energy

in morphology (a) stabilizes the growth of
(
1010

)
on

(
0001

)
(∆E = −1.22 J/m2). After the

initial stage, as the time and additive concentration increase, the growth of
(
1011

)
is also

stabilized, as confirmed by the negative ∆E values for the combination of
(
0001

)
\
(
1011

)
surfaces. Another important fact is that the percentage contribution of the

(
1010

)
plane

decreases, whereas the contribution of
(
1011

)
increases, as seen in Figure 4.

Several works have used experimental characterization techniques such as XRD and
TEM as valuable tools to investigate the growth direction of crystals [76–79]. For instance,
Chang and Waclawik controlled morphological transformations by varying the reaction
temperature and molar ratio (benzylamine/Zn2+ concentration from 1 to 10) [20] and
obtained ZnO with a nano-bullet-like morphology exhibiting exposed

(
1011

)
and

(
1010

)
surfaces (Figure 5a). An analysis of the results previously reported in Table 2 shows
that the combination of both surfaces provokes a thermodynamically favorable crystal
growth process with ∆E < 0. As shown in Table 2, the growth in the [0001] direction is
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favored when these surfaces are combined, as observed in the elongated nano-bullet-like
morphology (see (a) in Figure 5). By decreasing the synthesis temperature from 210 to
170 ◦C, a hexagonal cone-like morphology with an exposed

(
1010

)
surface can be obtained

(see (b) in Figure 5), while an increase in the benzylamine/Zn2+ molar ratio results in a 2D
plate-like morphology with an exposed (0001) surface (see (c) in Figure 5).
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Figure 5. Schematic representation of (a) nano-bullet-like, (b) hexagonal cone-like, and (c) plate-like
morphologies reported by Chang and Waclawik [20] through the combination of (0001),

(
1010

)
, and(

1011
)

surfaces.

Ahmed et al. prepared ZnO nanocrystals by the hydrothermal method. Single ZnO
nanorods were transformed into sharp sword-like tips by increasing the reaction time
to 30 min. After 60 min of reaction, a single ZnO semi-hollow nanorod (pyramid-like
morphology) was obtained [80]. This can be supported by the HRTEM images, which
depict a lattice spacing corresponding to the distance between the (002) planes in the
obtained ZnO structures growing along the [0001] direction. According to the results in
Table 2, the growth process along the [0001] direction is favored when different surfaces
are combined. In the synthesis process, the final morphology is dependent on the growth
velocity, which in turn is affected by the nonuniformity and variability of the precursor
solution throughout the reaction time.

Interesting reaction pathways were proposed by Liu and Liu by employing the pulsed-
laser deposition technique to obtain a given morphology of ZnO [81]. The authors demon-
strated that laser-induced crystal growth is a practical tool to tune the morphology of
nanomaterials in a precise and effective manner. The growth directions of the ZnO crys-
tallization in a hydrothermal reaction were selected by adjusting the laser irradiation
conditions (power and time) to control the appearance of the final morphology (hexagonal
versus pyramid-like, corresponding to the kinetic and thermodynamic reaction pathways,
respectively). The above results can be rationalized by tuning the surface energy values of(
0001

)
,
(
1010

)
, and

(
1011

)
. From the kinetically controlled growth product with surface

energy values of 1.20, 0.84, and 1.73 J/m2, respectively, a need arises: to overcome an
energy barrier of 0.11 J/m2 in order to obtain an intermediate morphology. This pathway
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is achieved by increasing or decreasing the surface energy value of the
(
0001

)
and

(
1011

)
surfaces to 1.55 and 1.05 J/m2, respectively. From this intermediate morphology, it is possi-
ble to obtain a thermodynamically controlled growth product by increasing or decreasing
the surface energy values of

(
0001

)
and

(
1011

)
to 2.20 and 0.87 J/m2, respectively. This

results in energy barriers from the intermediate to the kinetically and thermodynamically
controlled morphologies reported by Liu and Liu of 0.11 and 0.22 J/m2, respectively. A
schematic illustration of the reaction pathways is presented in Figure 6.
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namically controlled morphologies reported by Liu and Liu [81].

4. Conclusions

In this study, we selected ZnO to evaluate the importance of our computational
method created to reciprocate findings on morphologies and crystal growth processes
from experiments. Based on the surface energy values and the Wulff construction, this
strategy was found to be very useful for unraveling the morphologies that are challenging
to characterize experimentally. This work provides a theoretical framework that requires
as input data the surface energy values to obtain the available morphologies of a given
semiconductor, its polyhedron energy, and the reaction pathways involved in a synthetic
road to achieve a certain morphology. Important information can also be taken from the
results presented herein for further research on the effects of morphological control on
the synthesis of semiconductors. The figures of merit in this morphology map agree with
the experimental images obtained by field-emission scanning electron microscopy. The
high degree of coincidence between the theory and the experiments makes us believe
that the model might have a more general scope of application, which, to the best of
our knowledge, has not been discussed in previous literature. Additional studies are in
progress to standardize this computational procedure by proving its efficiency in replicating
experimental data, as well as the usefulness of techniques employed to predict structural,
physical, chemical, and dynamic properties of materials. We also expect that these new
insights will guide researchers aiming to apply the potential of computational methods to
illustrate minute details of various types of materials.
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