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Abstract: Recently, nanopore technology has emerged as a promising technique for the rapid, sensi-
tive, and selective detection of various analytes. In particular, the use of nanopores for the detection
of copper ions has attracted considerable attention due to their high sensitivity and selectivity. This
review discusses the principles of nanopore technology and its advantages over conventional tech-
niques for copper detection. It covers the different types of nanopores used for copper detection,
including biological and synthetic nanopores, and the various mechanisms used to detect copper ions.
Furthermore, this review provides an overview of the recent advancements in nanopore technology
for copper detection, including the development of new nanopore materials, improvements in signal
amplification, and the integration of nanopore technology with other analytical methods for enhanced
detection sensitivity and accuracy. Finally, we summarize the extensive applications, current chal-
lenges, and future perspectives of using nanopore technology for copper detection, highlighting the
need for further research in the field to optimize the performance and applicability of the technique.

Keywords: nanopore-based detection; copper ions; analytical chemistry; biological nanopores; solid-
state nanopores; biological nanopores

1. Introduction

Copper is a transition metal that plays an essential role in biological systems [1–3].
Copper is a cofactor for several enzymes involved in important physiological processes.
Copper-based enzymes play important roles in various physiological processes, including
pigmentation (tyrosinase), epigenetic modification (lysyl oxidase-like 2), respiration (cy-
tochrome c oxidase), iron uptake (ceruloplasmin), antioxidant defense (Cu/Zn superoxide
dismutase), neurotransmitter synthesis, and metabolism (dopamine β-hydroxylase) [4].
However, excessive copper intake or exposure can lead to toxicity and various health
problems, including liver damage [5], neurodegenerative disorders [6–8], and Wilson’s
disease [9]. The exposure of the human body to Cu2+ can occur through the consumption of
contaminated water resulting from industrial or consumer waste. In view of the deleterious
effects of such exposure, the Environmental Protection Agency acknowledges Cu2+ as a
potential trace pollutant and stipulates a permissible limit of 20 µM of Cu2+ in drinking
water [10].

Given the importance of copper in biological systems, there is a need for accurate and
sensitive methods for the detection and monitoring of copper levels in water and biological
samples, such as blood, urine, and cerebrospinal fluid [6,11]. Conventional methods
for copper detection include colorimetric and fluorometric assays [12], electrochemical
methods [13–16], and mass spectrometry [17]. Colorimetric and fluorescent sensors based
on organic compounds have been intensively developed for the detection of Cu2+ ions [18].
However, these sensors typically suffer from low selectivity and poor water solubility.
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The main disadvantages are the inapplicability of colorimetric and fluorescent sensors to
analyze levels of Cu2+ ions with dynamic changes in concentration and slow response times.

Conventional physical techniques for copper ion detection include atomic absorption
or emission spectroscopy (AAS/AES) [19] and inductively coupled plasma mass spec-
trometry (ICP-MS) [20]. The techniques enable the sensitive and accurate detection of
metal ions and are considered as standard methods. However, these methods often require
complex sample preparation, expensive instrumentation, and skilled personnel. Moreover,
these methods may not be suitable for in situ or real-time monitoring of copper in various
environments [21]. Thus, an ideal sensor has the characteristics of easy development, fast
detection, selectivity, good sensitivity, and reversibility.

Nanopore technology is a rapidly developing area that has attracted much attention
due to its potential applications in various fields, such as biosensing [22], genomics [23,24],
and drug discovery [25]. This technology has many advantages, such as being label-free,
ultrasensitive, possessing a high signal-to-noise ratio, having single-molecule resolution,
and being able to detect and identify DNA [26], RNA [27], peptides [28], proteins [29],
biomarkers, nanoparticles [30], and other small molecules [31]. Nanopore-based sensors
have emerged as a promising alternative for the detection of copper ions [21] and other
heavy metals [31]. Nanopores can be functionalized with specific molecules or materials
that selectively interact with copper ions, enabling sensitive and label-free detection in real
time. The most commonly used nanopore types for sensing applications are solid-state
and biological nanopores [32]. Biological nanopores such as α-hemolysin have been used
for the detection of copper ions [33,34]. Solid-state and hybrid nanopores have also been
explored for copper detection in biological fluids with promising results [35]. In general,
the development of sensitive and selective nanopore-based sensors for the detection of
copper could have important implications for the diagnosis and monitoring of copper-
related diseases, as well as for the understanding of copper metabolism and regulation in
biological systems.

Biological nanopores are protein channels that are naturally found in biological mem-
branes, such as the α-hemolysin pore [36]. Similar to solid-state nanopores, biological
nanopores can also be modified or engineered to have specific properties for sensing ap-
plications. It should be noted that biological nanopores are among the most common
nanopores for the detection of metal ions [37].

Nanopore technology offers a promising platform for various sensing applications,
including the detection of copper ions. To detect copper ions, there are two main techniques
using nanopores: resistive pulse sensing and ion current rectification. The main principle
of the first method is the use of molecules specific to copper ions, followed by the detection
of complexes using a nanopore. The second principle is based on the modification of the
nanopore channel by copper-binding ligands. After the binding of copper by ligands, the
charge on the surface of the nanopore channel changes, and therefore the measured current–
voltage characteristic changes (Figure 1). The ability to detect and monitor copper ions
in real time using nanopore-based sensors could have significant implications in various
fields, such as environmental monitoring, food safety, and medical diagnosis. Many good
reviews have been written on various aspects of nanopore-based detection [21,31,32,38,39].
This review focused on recent advances in nanopore-based copper detection, highlighting
the various types of nanopores and sensing strategies that have been developed.
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Figure 1. Summarized techniques and types of nanopores for copper detection.

2. Techniques of Nanopore-Based Copper Detection
2.1. Nanopore-Based Resistive Pulse Sensing Technique

Nanopore-based sensors are a type of sensor that utilize nanoscale pores to detect and
analyze different types of molecules [40–43]. Briefly, the fundamental principle of nanopore-
based sensors is based on the analysis of the electrical current when molecules are passing
through a nanopore. The basic setup of a nanopore-based sensor includes a nanoscale pore
that should exactly correspond to the dynamic size of the target molecule/detection sub-
stance in the solution phase [44]. The nanoscale pore is positioned between two Ag/AgCl
electrodes in electrolyte solution. With further application of electric potential to the de-
scribed electrolytic cell, the ion current begins to flow through the nanopore. When a
target molecule passes through the nanopore, it temporarily obstructs the flow of ions,
causing a change in the measured current. The main analyzed current parameters of this
process are the dwell time, amplitude of events, and event frequency. The significant part
of the obtained data is unique for each molecule, which helps to determine the identity and
properties of the analyte. The key features of nanopore-based sensors, highlighted in many
studies/reviews, are real-time single molecule detection, potential for label-free detection,
and a wide range of measurement conditions [31,45,46].
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Despite their potential advantages, nanopore-based sensors also face challenges includ-
ing the need to improve existing methods for the fabrication of biological and solid-state
nanopores, signal-to-noise ratio optimization, and the development of suitable algorithms
for data analysis [47–49]. Ongoing research aimed at solving the described problems and
further improving the performance of nanopore-based sensors suggests that this scientific
field is still promising for a wide range of practical applications [50].

2.2. Ionic Current Rectification Technique

Ionic current rectification (ICR) is a widely used technique for the detection of various
types of analytes, including metals. Briefly, the main idea is to estimate the change in ion
current as a result of the analyte molecular recognition event causing a conformational
and/or surface charge variation inside the nanopore [51]. These described factors lead to a
change in ion permeability or depletion of ions and hence to asymmetric current–voltage
dependences [52,53]. As in resistive pulse nanopore-based sensing, the electrolytic cell
consists of two electrodes located in the electrolyte on opposite sides of the nanopore. To
achieve the maximum change in the surface charge of a nanopore, various modifiers are
usually used to bind to the target analyte. Therefore, a lot of modern research is devoted
to the search and use of new types of modifiers that strongly affect the sensitivity of this
technique. A negative feature of the technique is the need to regenerate the sensor in a
stronger complexing agent after a single measurement and at low scan rates, which imposes
some restrictions on possible applications [54]. In addition, sensors using the ICR technique
are predominantly suitable for measuring solutions.

However, despite these limitations, the ICR technique has proven to be a powerful
tool for the detection of a wide range of analytes, including small molecules, proteins,
and other biomolecules. The key feature of the ICR technique is the absence of the use
ultra-small and low-conductivity nanopores, which results in a significant deterioration in
the signal-to-noise ratio [43]. The technique is also attractive due to its simplicity and low
cost compared to other analytical techniques. With ongoing advancements in nanopore
fabrication, surface modification, and analytical methods, the ICR technique is expected to
continue to gain popularity and be further developed for new and diverse applications in
the future [39,55–57].

3. Applications of Nanopore-Based Sensors for Copper Detection
3.1. Nanopore-Based Resistive Pulse Sensing Technique

Recently, two types of nanopores have been used as nanopores: biological protein
pores and synthetic nanopores. Protein nanopores are more reproducible and provide the
highest resolution, while synthetic nanopores are more stable and robust [58].

Due to the small size of metal ions, it is impossible to detect them using unmodified
nanopores or without additional sensitive probes. There are several strategies for detecting
metal ions: (1) using biomolecules as carriers; (2) using a biological nanopore with a
metal-sensitive site on the inner surface of the nanopore; and (3) using chemical reactions.

One of the first studies devoted to the detection of metals in solution was a work that
used α-hemolysin mutant 4H containing histidine at specific positions. It was found that
the signatures of events, such as the average blocking amplitude and/or translocation time
of Zn2+, Co2+, and Cd2+ ions, were completely different, which made it possible to detect
Zn2+ in the presence of other metal ion species and even achieved simultaneous detection
of the three types of metal ions [59]. However, the use of this strategy has not yet received
due development for the detection of copper ions.

The most-used strategy for the detection of copper ions using nanopores is the use of
probes capable of chelating copper ions. Various molecules can be used as carriers, ranging
from DNA molecules to polymers [31].

In one study, it was demonstrated that the polyhistidine molecule can be used as
a probe for the detection of Cu2+ ions based on a chelating reaction between them [33].
Without Cu2+ ions, interactions between copper chelating agents and protein pores lead
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to only one type of event (Figure 2A). After Cu2+ ions are added to the solution, they will
interact with copper chelator molecules to form copper chelates, which will lead to events
that have significantly different signs (e.g., residence time or blocking amplitudes) [3].
The peptides used included 3, 6, and 10 histidines. Despite the fact that the peptides
possessed potential donor atoms, which, in turn, were effective chelators for various metal
ions, the events corresponding to the Zn2+- and Cu2+-peptide complexes differed from
each other in signal amplitude, which made it possible to distinguish them. The events
of the Ni2+- and Co2+-peptide complexes had similar blocking amplitudes as that of the
Cu2+-peptide chelate, although the residence times of their events were much shorter than
that of the Cu2+-peptide complex. Thus, the authors managed to develop a specific method
to distinguish copper ions from other transition metals with the LOD for Cu2+ of ~40 nM.
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Figure 2. Nanopore pulse detection of Cu2+ ions using a chelating agent probe. (A) Scheme of
detection of copper ions using polyhistidine probe. Reproduced from [33]. Copyright 2014 Elsevier
(B) Detection of copper ions with βCD by α-hemolysin. Reproduced from [60]. Copyright 2017 Royal
Society of Chemistry (C) Nanopore-based detection of Cu2+ using a TPPS as probe. The TPPS and
Cu2+–TPPS complexes with the pore produced different signatures. (D) Expanded view of a typical
event with TPPS, scatter plots of the events caused by TPPS, and histograms of normalized current
blockade. (E) Expanded view of a typical event with TPPS + Cu2+, scatter plots of the events caused
by TPPS (blue) and Cu2+–TPPS complexes (red), and histograms of normalized current blockage.
Reproduced from [5].

Kang et al. used polyamine-decorated cyclodextrin as a recognition element for
copper detection [60]. The strong binding affinity between Cu2+ and the amino groups
of the cyclodextrin induced new current blockade events within the α-hemolysin pore.
Three types of hemolysin protein nanopores, (WT)7, (M113R)7, and (M113F)7, were studied
and significant differences in event characteristics were observed. In the case of (M113F)7,
cyclodextrin almost permanently blocked the pore (77.2 ± 0.5%). It was noted that the
(M113F)7 protein nanopore could provide increased resolution for recognition of Cu2+
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ions compared to other types of hemolysin pores. The linear range for determining the
Cu2+ concentration was 0.08–20 µM. The LOD was only 12 nM. The main advantage of
this system was its high specificity for copper ions compared to other types of metal ions.
The use of this sensor was also confirmed by the analysis of Cu2+ ions in running water
(Figure 2B) [60].

Then, Kang et al. studied the interaction of CMβCD with Cu2+ in more detail [61]. It
was noted that the Cu2+–CMβCD complex generated a distinctive signature that differed
from that of the original βCD. It was shown that the chemical reaction between Cu2+

and CMβCD in the nanoreactor was completely different from that in the bulk solution.
The formation constant increased in a nanopore by almost 15,000 times compared to in a
bulk solution. The thermodynamic and kinetic constants of the Cu2+–CMβCD complex
were affected by various experimental conditions, i.e., pH, transmembrane voltage, and
temperature. It was also found that the binding of Cu2+ led to an increase in the channel
current and not to blocking, as in the usual experiment with nanopores. It should be
noted that in this work, the authors described in some detail the processes occurring in the
hemolysin nanopore by studying the formation constant of Cu2+–CMβCD at various varied
parameters. It was demonstrated for the first time that slightly acidic pH was favorable for
the formation of a stable Cu2+–CMβCD complex. As the voltage between pores increased,
the frequency of CMβCD binding to Cu2+ increased and the stability of the Cu2+–CMβCD
complex decreased. It was shown that the process of complex formation was a spontaneous,
endothermic process. This approach made it possible to evaluate the efficiency of metal ion
chelation at the level of one molecule, which was a promising direction for the development
of new drugs based on metal ion complexes.

In the following example, 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin (TPPS)
was the ligand for copper ion chelation. Various chemosensors based on porphyrin were
previously developed to detect heavy metal ions [62]. Kang et al. used a similar approach
adopted in earlier fluorescent studies and nuclear medicine [5,63]. TPPS was used as
the ligand for copper ion chelation. Nanopore-based detection of copper complexes was
carried out using the α-hemolysin nanopore (Figure 2D). The signature of the Cu2+–TPPS
complex was significantly different from that of free TPPS. The frequency of signature
events showed a linear response for Cu2+ concentrations in the range of 0.03–1.0 µM (LOD
16 nM). The detection mechanism demonstrated excellent specificity towards Cu2+ ions and
effectively distinguished them from other metal ions (Figure 2E). Moreover, the feasibility
of implementing this approach in real scenarios was validated through the successful
detection of Cu2+ ions in running water with recovery in the range of 95.0% to 101.7% [5].

One non-trivial approach for the determination of copper ions was taken by Mayne
et al. [64]. Modified silicon dioxide nanoparticles by APTES were used to detect Cu2+ ions
in solution. To determine the concentration of copper ions in the solution, the peak width
was used to measure particle velocity, along with the magnitude and frequency of both
resistive (∆ir) and conduction (∆ic) pulses, as illustrated in Figure 2D. The signal exhibited
high specificity for Cu2+ in the presence of other metal ions, and its characteristics were
modulated by adjusting the pH and ionic strength of the solution. This technique enabled
the detection of Cu2+ ions at concentrations as low as 1 ppm with a brief 5 min incubation
period and the capacity to accurately measure 10 ppm of Cu2+ in the presence of five other
types of ions. Its potential application extends to the monitoring of heavy metals in both
biological and environmental samples.

It is widely acknowledged that PrP is a protein that binds to copper, with the capability
of absorbing numerous Cu2+ ions within its malleable N-terminal segment. In the next
study, the prion peptide was immobilized through physical sorption onto the negatively
charged walls of a nanopipette, and its functionalization was monitored in real time via
chronoamperometry. The sensor utilized the unique properties of the PrP octarepit domain
and could be regenerated multiple times by EDTA treatment without any significant loss
in performance, demonstrating the stability of the interaction of the peptide with the
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nanopipette walls. However, the disadvantage of this method was its low sensitivity and
selectivity [65].

For some chemical reactions, the presence of copper ions is crucial. For example, Cu+

catalyzes the 1,3-dipolar cycloaddition of azides to alkynes. This reaction belongs to the
field of click chemistry and demonstrates the advantages of excellent ligation efficiency, high
selectivity, and mild reaction conditions [66,67]. Therefore, this reaction underlies many
methods of analysis, for example, electrochemical [68], colorimetric [69], and fluorescent
methods [70].

The use of copper ions in click reactions that underlie nanopore-based detection has
become widespread in recent times. Recently, a work was published on the determination of
HIV-1 p24 in clinical samples, which used the principles of this reaction for nanopore-based
detection of the antigene. Even though copper ions were not determined in this work, the
work is of great significance in the field of nanopore-based detection of biomolecules [71].

Earlier, a nanopore technology was developed for the detection of alpha-fetoprotein (a
cancer biomarker in human blood) (Figure 3A). The DNA probe was split into two parts,
one was the alkyne-modified single-stranded DNA (ssDNA) and the other was a complex
between azide-containing ferrocene and cucurbit[ 7 ] uril. The authors showed that the
frequency of translocation was directly proportional to the concentration of copper ions in
solution, and foreign metal ions did not affect the frequency of translocations [72].
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Figure 3. Nanopore pulse detection of Cu2+ ions using click chemistry. (A) Scheme of the strategy
for the detection of biomarkers based on sandwich assay. Reproduced from [72]. Copyright 2018
John Wiley and Sons (B) Scheme of copper ion detection with individual ssDNA fragments (C10

and C6), one internally modified with azide and the other end-modified with alkyne. (C) Current
trace recorded in the presence of Cu2+ and monitored at +150 mV in 1 M KCl, with red triangles
representing signature events. (D) Contour plot for Cu2+ reaction products and ssDNA. (E) Duration
histogram Reproduced from [34]. Copyright 2019 American Chemical Society.

In a recent study, a similar technique was employed for the detection of copper ions.
As depicted in Figure 3B, the probe was divided into two individual ssDNA fragments, one
internally modified with azide and the other end-modified with alkyne. The click reaction
induced the fusion of these two fragments, thereby generating a branched DNA probe. As
this branched DNA traversed the α-hemolysin nanopore, it produced highly distinctive
current events. The method exhibited a good linear correlation between the frequency of
events and the logarithm of Cu2+ concentration within a range of 100 pM to 5 µM (LOD
67 pM) [34]. In this study, the authors developed a method that demonstrated comparable
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or superior detection limits to previous methods. The practicability of this approach was
evaluated by analyzing human serum and tap water samples that had been enriched with
copper ions. The nanopore-based sensor platform was found to be suitable for analyzing
complex samples, with recovery rates of 89.5–105.3% and 90.2–103.8% in serum and tap
water, respectively.

Nanopore technology has a remarkable ability to detect copper ions with high sen-
sitivity, thanks to specific molecules for chelating copper ions designed for this purpose.
While this technology has been most effectively used in aqueous solutions, its use in living
organisms is limited by the challenge of creating a minimally invasive sensor with a bio-
logical nanopore. However, it is possible that more advanced biological nanopores will
be developed in the future, which could accurately and sensitively measure copper ion
concentrations within cells and tissues. This breakthrough could lead to new opportunities
for investigating copper’s role in biological processes and developing innovative diagnostic
and treatment methods for diseases related to copper metabolism disorders.

3.2. Ionic Current Rectification in Nanopores Technique

In recent years, a lot of research have been published using the ICR detection technique,
including summarizing review articles [39]. However, there are few studies with the main
goal of detecting Cu2+. Therefore, in this section, we will focus on describing existing
research from previously unconsidered points of view and discuss a new one.

It is noteworthy that half of the studies using the ICR technique for Cu2+ detection
developed a sensor based on a macropipette with a nanopore at the sharp tip. Using
a pipette with a nanopore (further termed “nanopipette”) as a base for further sensor
development has several features. Firstly, the nanopipette is an easy-to-handle product.
All manipulations during sensor fabrication are performed with its macro part, which
does not require high-precision techniques and tools. Secondly, the nanocapillary sensor
can be easily combined with a micromanipulator and an optical microscope to carry out
measurements with high spatial resolution [35]. The final advantage is the possibility of
combination with other research methods. For example, in recently published research,
authors used a double-barrel nanopipette sensor. One channel was used to detect pH
changes using the ICR technique, while the other one was used for topographical imaging
using SICM. Thus, combining two strong techniques allowed real-time simultaneous 3D
topographical imaging and pH monitoring of living cancer cells [73].

One of the first studies aimed at the detection of metal ions (Cu2+ predominantly) using
the ICR technique was the study by Paolo Actis et al. [74]. The authors used a nanopipette
sensor functionalized with chitosan and poly(acrylic acid) (Figure 4A). The layer-by-layer
modification technique consisted of forming layers of chitosan and poly(acrylic acid)
by sequentially immersing a nanopipette in the appropriate solutions and applying a
sinusoidal voltage to achieve real-time control of the dynamic process. The developed
sensor showed a linear detection range from 4 to 100 µM. Thus, a non-selective ICR
nanopipette sensor for the detection of metal ions was developed, which laid the foundation
for subsequent studies aimed at the detection of Cu2+ with a wide range of applications.

The next published study had the main goal of achieving stable detection of Cu2+

with high selectivity [75]. The authors used PGA as a non-immobilized probe, which was
highly specific to Cu2+ in aqueous solution at pH 7–8 (Figure 4B). Great attention was paid
to the variation of asymmetric salt gradients that significantly impacted the sensitivity of
the sensor. The average linear range of sensor detection was 7.5 to 60 µM with an LOD
of ~1.05 µM. The selectivity of the sensor was investigated by evaluating the effect of
non-target metal ions on the rectification factor. It was established that the influence of
interfering metal ions was insignificant and the sensor regeneration (in buffer pH 2) was
~95%. For the first time, in this work, the practical application of a nanopipette ICR sensor
for the investigation of real samples was shown. Cu2+ was detected in real samples of
grape wine and industrial water, confirming numerous previous selectivity tests.
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Figure 4. Schematic representation of the Cu2+ detection principle using nanopipette sensors and
the ICR detection technique. (A) Electrochemical configuration and reversible binding of Cu2+ ions
on the chitosan/PAA nanopipette. Reproduced from [74]. (B) Single glass capillary nanopore-based
sensing platform with non-immobilized PGA probes. Reproduced from [75]. Copyright 2015 Elsevier
Copyright 2011 American Chemical Society (C) Alkyne-end ssDNA-functionalized G-nanopore
for Cu2+ or Cu+ detection in single cells based on click chemistry. (D) Typical I–V curves of the
functionalized AG-nanopore for Cu2+ or Cu+ detection in a single cell. Reproduced from [35].
Copyright 2022 American Chemical Society.

The detection of Cu2+ was slightly touched on in the literature [76]. The authors used a
nanopipette modified with tannic acid to provide the polyphenolic functional groups. The
main feature of this work was the different current rectification after binding of different
valent metal ions with the sensor surface. Such a strategy made it possible to successfully
detect trivalent ions with ultrahigh sensitivity (LOD of Fe3+ was 10−15 M) and also divalent
ions (such as Cu2+) with lower sensitivity.

The final study with a nanopipette-based sensor was the quantitative determination of
Cu+/Cu2+ inside single cells reported by Hu [35]. The authors fully realized the suitability
of nanopipette sensors for low-invasive measurements of biological systems [77]. In the
sensing scheme, the thiolated ssDNA with an alkynyl end was first functionalized onto
a gold-modified glass nanopipette. Copper ions catalyzed the cycloaddition reaction
between an azide-end single-stranded DNA (ssDNA) and an alkynyl-functionalized glass
nanopipette, which caused obvious rectification changes of the sensor (Figure 4C,D). The
selectivity of the nanopipette sensor towards copper ions was high. However, the presence
of ion mixtures significantly complicated the detection process. Using the developed
sensor, the authors conducted correlation studies to assess the relationship between ROS
generation and copper accumulation inside single HepG2 cells (human liver carcinoma-
derived). It was confirmed that a higher Cu2+/Cu+ ratio in single cells led to an increase in
ROS generation.

A non-nanopipette-based sensor was presented by Jyh-Ping Hsu. It was an interest-
ing case in which a conical PET nanopore surface was used with the ICR technique for
detection [78]. The authors used PET membranes functionalized by 18-crown-6 for the
detection of trace levels of heavy metal ions (Pb2+ predominantly). The main part of the
study was modeling ionic transport in nanochannels under different conditions affecting
electroosmotic flow. The developed conical nanochannels showed the possibility of sensing
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Pb2+ or/and Cu2+ with an LOD of 0.05 and ~10 µM, respectively. Thus, the authors empha-
sized that the conical PET nanopore with the ICR technique could be potentially used for
the quantitative analysis of human blood in which the concentration of metals is strictly
controlled.

An extraordinary approach to the determination of Cu2+ was developed by the Tietze
group [79]. The authors used the 5/6-FAM-Dap-β-Ala-His fluorescent peptide for selective
binding of Cu2+ ions. The fluorescent peptide was simultaneously used as a PET nanopore
modifier and an independent fluorescent probe. Thus, the Cu2+ detection mechanism
was based on the ICR technique and fluorescence quenching upon binding between Cu2+

and the peptide. The linear ranges of this sensor were from 1 to 100 µM (for fluorescence
quenching) and from 10 fM to 0.1 µM (for ICR technique), which was a record among the
described research in this section.

Finally, Zhao et al. used a nanochannel array of porous anodic alumina for Cu2+

detection [80]. The authors modified nanopores with PGA, which was used as a high-
selectivity modification agent in other described study [75]. In contrast to the previous
study, the use of an array of nanopores with a highly enhanced magnitude of the ion current
made it possible to significantly increase the sensitivity of the technique. The LOD was
0.1 fM. The practical application of the nanochannel array was confirmed by measuring the
concentration of Cu2+ in real blood samples.

Thus, in the first half of this section we demonstrated the evolution of nanopipette
sensors aimed at Cu2+ detection using the ICR detection technique. The first study demon-
strated the potential application of this type of sensor followed by research with real
applications, including investigation of complex biological systems. The investigation of
biological systems with nanopipette sensors based on the ICR detection technique is an
indisputable advantage over the translocation technique, even despite the significantly
smaller detectable range of concentrations. Further evolution of this scientific field, in our
opinion, should include the search for solutions that can increase sensitivity and selectivity
in the presence of several types of non-target ions. This will allow more accurate measure-
ments of real samples, in which the presence of several types of ions is often commonplace.
In addition to the above, we have described research using PET nanopores or nanopore
arrays of porous anodic alumina. Notably, interesting strategies have been applied to
significantly increase sensitivity, such as the simultaneous use of ICR and fluorescence
quenching or the use of a nanochannel array. We summarized of strategies for copper
detection in Table 1.

Table 1. Summarized table of strategies for copper detection.

Analyte Type of Nanopore LOD Linear Range Sensing Principe Used Ligand Refs.

Cu2+ α-hemolysin 40 nM - RPS Histidine-
peptide [33]

Cu2+/Cu+ α-hemolysin 67 pM RPS DNA [34]

Cu2+ α-hemolysin 12 nM 0.08–20 µM RPS
Polyamine-
decorated

cyclodextrins
[60]

Cu2+ α-hemolysin - - RPS Carboxymethyl-
β-cyclodextrin [61]

Cu2+ α-hemolysin 16 nM 0.03–1.0 µM RPS TPPS [62]

Cu2+ α-hemolysin 1 ppm - RPS
Modified

silicon dioxide
nanoparticles

[64]
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Table 1. Cont.

Analyte Type of Nanopore LOD Linear Range Sensing Principe Used Ligand Refs.

Cu2+ α-hemolysin - - RPS Prion peptide [65]

Cu2+ Glass nanopipette - 4–100 µM ICR
Chitosan and
poly(acrylic

acid)
[74]

Cu2+ Glass Nanopipette 1.05 µM 7.5–60 µM ICR PGA [75]

Cu2+ Glass Nanopipette - ~1–40 µM ICR

Thiolated
ssDNA with an

alkynyl end,
azide-end

single-stranded
DNA

[35]

Cu2+ PET nanochannel - 10–500 µM ICR 18-crown-6 [78]

Cu2+ PET nanochannel
18 nM (Flu-
orescence

quenching)

10 fM–0.1 µM
(ICR technique)

1–100 µM
(Fluorescence

quenching)

ICR and
Fluorescence
quenching

5/6-FAM-Dap-
β-Ala-His
fluorescent

peptide

[79]

Cu2+
Nanochannel array

of porous anodic
alumina

0.1 fM - ICR PGA [80]

4. Conclusions and Outlook

In conclusion, we reviewed several works devoted to the detection of copper ions using
various techniques with nanopores. In this review, we have focused exclusively on the
detection of copper ions, since copper is an important element in the body and is involved
in a huge number of biochemical processes. First, we considered a strategy for detecting
copper ions based on the registration of events characteristic of the passage of complexes
with copper through a nanopore. In most of these works, biological nanopores based on
hemolysin were used, while the number of works with solid-state nanopores is extremely
small. Nevertheless, this type of nanopore is the most suitable for the development of
portable sensors. Immobilization of the binding site in a solid pore is very difficult; therefore,
the development of a strategy for detecting copper ions using this type of nanopore can be
carried out by introducing additional highly specific molecular probes capable of chelating
copper ions. Another direction of development in this area is the development of high-
performance nanopore-based sensing, namely the creation of an array of nanopores to
improve the sensitivity and accuracy of determining metal concentration.

In addition, nanopore-based sensors can be integrated into microfluidic devices for
automated and high-throughput analysis. Microfluidic devices can be used to precisely
control the flow of samples through nanopores, allowing fast and efficient analysis of large
volumes of samples. Integrating nanopore-based sensors into microfluidic devices can also
reduce the volumes of samples and reagents required for analysis, making analysis more
economical and environmentally friendly.

Secondly, a detection strategy based on current rectification in the nanopore was
considered. Fundamentally two types of nanopores were used in the reviewed studies.
In the case of using a nanopipette, there is a clear trend from the first works with the
development of non-selective sensors to research aimed at the intracellular determination
of Cu2+. We expect that researchers will focus on expanding the use of nanopipettes as
an easy-to-use stable tool for measurement of in vitro/in vivo biological systems. In the
second case of using various types of nanopores with the ICR technique, it is obvious that
nanopores will be integrated into arrays and devices in the future or combined with other
methods of analysis. Thus, it will be possible to significantly increase the sensitivity of
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the current rectification technique. Nanopore technology offers a promising platform for
the sensitive and selective detection of copper ions in a variety of samples. The ability to
detect copper ions in real time and at low concentrations with nanopore-based sensors
could be important in various fields, such as environmental monitoring, food safety, and
medical diagnostics.
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Abbreviations

βCD β-cyclodextrin
AAS atomic absorption spectroscopy
AES atomic emission spectroscopy
APTES (3-aminopropyl)triethoxysilane
CMβCD carboxymethyl-β-cyclodextrin
EDTA ethylenediamine tetraacetic acid
ICP-MS inductively coupled plasma mass spectrometry
ICR ion current rectification
LOD limit of detection
PGA polyglutamic acid
PrP prion peptide
RPS resistive pulse sensing
TPPS 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin
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