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Abstract: In this study, the photoelectric properties of a complete series of GaS1−xSex (0 ≤ x ≤ 1) layered
crystals are investigated. The photoconductivity spectra indicate a decreasing bandgap of GaS1−xSex

as the Se composition x increases. Time-resolved photocurrent measurements reveal a significant
improvement in the response of GaS1−xSex to light with increasing x. Frequency-dependent photocur-
rent measurements demonstrate that both pure GaS crystals and GaS1−xSex ternary alloy crystals
exhibit a rapid decrease in photocurrents with increasing illumination frequency. Crystals with lower
x exhibit a faster decrease in photocurrent. However, pure GaSe crystal maintains its photocurrent
significantly even at high frequencies. Measurements for laser-power-dependent photoresponsivity
and bias-voltage-dependent photoresponsivity also indicate an increase in the photoresponsivity
of GaS1−xSex as x increases. Overall, the photoresponsive performance of GaS1−xSex is enhanced
with increasing x, and pure GaSe exhibits the best performance. This result contradicts the findings
of previous reports. Additionally, the inverse trends between bandgap and photoresponsivity with
increasing x suggest that GaS1−xSex-based photodetectors could potentially offer a high response and
wavelength-selectivity for UV and visible light detection. Thus, this work provides novel insights
into the photoelectric characteristics of GaS1−xSex layered crystals and highlights their potential for
optoelectronic applications.

Keywords: photoelectric properties; GaS1−xSex layered crystals; photoconductivity; Se composition;
photocurrent; photoresponsivity

1. Introduction

GaS and GaSe are layered crystals belonging to the IIIA-VIA compound family and
are classified as post-transition metal monochalcogenides [1–3]. The room-temperature
bandgaps of GaS and GaSe reported in the literature range from 2.46 eV to 2.83 eV [4–10]
and 1.95 eV to 2.03 eV [7–14], respectively. Therefore, GaS and GaSe have the potential to
be used in the fabrication of optoelectronic devices for applications in the red and blue
visible light regions. For instance, GaS has been described as a promising semiconductor
for use in near-blue-light-emitting devices [15]. On the other hand, GaSe is also promising
for optoelectronic devices in the visible range [16].

GaS and GaSe crystals can be fabricated into atomically thin, two-dimensional (2D)
layered structures [17–23] due to the weak van der Waals forces between their adjacent
monolayers [1,24]. Recent research has highlighted the intriguing properties exhibited
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by these 2D layered structures. For example, the photodetectors based on 2D layered
structures of GaSe showed high performance of photoresponse in the UV and visible
regions [19,22,25,26]. The GaSe thin film consisting of a few layers displayed a significant
absorption coefficient [20]. Furthermore, strong second-harmonic generation was found in
atomic layered GaSe [27,28]. On the other hand, the photodetectors based on 2D nanoflakes
of GaS demonstrated a relevant UV-selective photoresponse [23]. The superior nonlinear
optical activities were also found in the 2D layered structures of GaS [29]. The unique prop-
erties and high performance position 2D layered structures of GaS and GaSe as promising
materials for applications in next-generation optoelectronics and electronics.

To engineer the properties of GaS and GaSe and expand their potential applications,
alloying is one of the crucial methods. For instance, an entire series of GaS1−xSex (0 ≤ x ≤ 1)
alloy layered crystals can be produced [4,8,9,30–37]. By adjusting the composition ratio
of S and Se, the lattice constants [9,30,32,33] and bandgap [8,9,36,37] can be tuned. The
ability to tune the bandgap is essential for achieving high-performance optoelectronic
devices. Numerous experimental and theoretical studies on GaS1−xSex alloy crystals have
been conducted [9,37–44], dating back to early reports on the photoconductivity of these
alloys in 1960 [8]. For instance, the investigation on the nanobelts of GaS1−xSex crystals
showed they exhibited an intense photoluminescence spectrum in the visible range for all
compositions [37]. More recently, GaS1−xSex alloy crystals have been employed as color
converters for GaN-based micro light-emitting diodes, enabling the conversion of blue emis-
sion to green and red [39]. The exploration of GaS1−xSex alloy crystals for electronic and
optoelectronic devices has garnered attention, yet comprehensive investigations into their
photoelectric characteristics remain limited. Therefore, our study delves into the photoelec-
tric properties of GaS1−xSex alloy crystals, aiming to uncover their potential applications.
Our experimental results reveal an enhancement in the photoresponsive performance of
GaS1−xSex with increasing x, with pure GaSe exhibiting the best performance. This finding
contradicts previous observations on GaS1−xSex nanobelts [37] and MoS2(1−x)Se2x mono-
layers [45], where a decrease in photocurrents was noted with increasing Se composition
x. Additionally, the inverse trends between the bandgap and photoresponsivity with in-
creasing x suggests that the GaS1−xSex-based photodetectors could potentially offer high
response and specific wavelength-selectivity for UV and visible-light-detection applications
by adjusting their composition and thickness. Thus, this work introduces novel insights
and contributes to assessing the potential of GaS1−xSex layered crystals for optoelectronic
applications.

2. Materials and Methods

An entire series of GaS1−xSex (0 ≤ x ≤ 1) layered crystals was grown using the
chemical vapor transportation method with I2 as a transport agent. High-purity elemental
S powder, Ga granules, Se granules, and I2 pieces were carefully weighed and placed in
a quartz ampoule. The ampoule was then evacuated to 10−6 torr, sealed, and positioned
in a three-zone furnace. To grow pure GaS crystals, the temperatures of the first, second,
and third zones of the furnace were set to 950 ◦C, 900 ◦C, and 850 ◦C, respectively. For
subsequent growths of GaS1−xSex mixed crystals, the molar ratio x = Se/(S + Se) was
incrementally increased by 0.2, accompanied by a corresponding reduction of 50 ◦C in the
growth temperatures. Therefore, for the growth of pure GaSe crystals, the temperatures
of the furnace’s first, second, and third zones were adjusted to 700 ◦C, 650 ◦C, and 600 ◦C,
respectively. The crystal growth process typically lasted for approximately 265 h.

The scanning and transmission electron microscopy images of the grown GaS1−xSex
specimens revealed layered crystals with hexagonal structures and high crystalline quality.
Raman and X-ray diffraction analyses indicated that GaS and GaS0.8Se0.2 were in the 2H
β-phase, GaSe was in the 2H ε-phase, while those with intermediate x were in the 2H β-ε
mixed phase. The wavelength of the samples’ photoluminescence peaks increased with
x and covered the visible range. Detailed information regarding their growth conditions,
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composition ratios, structural properties, and optical properties has been previously re-
ported [9]. This study focuses on investigating and reporting their photoelectric properties.

For the absorption and photoconductivity (PC) measurements, a 0.25 m monochroma-
tor (MKS, Irvine, CA, USA) equipped with a 130 W halogen lamp was employed to generate
monochromatic light across a wide photon energy range. The continuous light from the
monochromator was modulated into alternating light using a rotating beam chopper with
a frequency set at 200 Hz, which then illuminated the measured sample. For the absorption
measurements, a silicon photodetector (Thorlabs, Newton, NJ, USA) with a sensing range
of 1.5 to 3.1 eV was positioned at the back of the measured sample. The output signals from
the photodetector were captured using an EG&G 7265 Dual Phase DSP Lock-in Amplifier
(Test Equipment Solutions, Bedfordshire, UK) to suppress noise signals effectively.

For the PC measurements, the sample under examination was affixed to a copper
holder using thin tape. A stable bias voltage of 50 V was applied to the sample using a
Keithley 2400 SourceMeter (Tektronix, Beaverton, OR, USA). The low power of the illumi-
nating light, the exceptionally thin adhesive tape, and the efficient heat dissipation of the
copper holder ensured minimal temperature rise in the sample during light exposure. This
guaranteed that the current observed in the PC experiments stemmed from photoinduction
rather than thermal induction. The signals of the induced photocurrent were received
and transformed into voltage signals through an SR570 low-noise current preamplifier
(Stanford Research Systems, Sunnyvale, CA, USA). An EG&G 7265 Dual Phase DSP Lock-in
Amplifier processed the voltage signals, transferring them to a computer via a general-
purpose interface bus (GPIB). The photoresponsivity of a measured sample was defined
as the induced photocurrent divided by the power of the incident light. The variation in
photoresponsivity with the photon energy of the incident light for a specimen was depicted
as its PC spectrum.

To measure the photocurrent of a specimen as a function of time or the frequency
of alternating illumination, a laser with a wavelength of 405 nm was employed as the
excitation source. This laser, controlled by an AFG-2225 function generator (GW Instek,
New Taipei City, Taiwan), applied on/off light modulation to the measured specimen. A
stable bias voltage of 50 V was applied to the sample using a Keithley 2400 SourceMeter. An
SR570 low-noise current preamplifier received the signals of the induced photocurrent and
transformed them into voltage signals. For the time-dependent photocurrent measurements,
a data acquisition device with a time resolution of 1 µs was employed to collect and transfer
these signals to a computer for depicting the variation of photocurrent over time for
the measured specimen. For the frequency-dependent photocurrent measurements, an
EG&G 7265 Dual Phase DSP Lock-in Amplifier was used to receive the voltage signals and
transfer them to a computer via a GPIB. The amplitude of the alternating photocurrent
during alternating illumination, Iac, was divided by the steady-state photocurrent during
steady illumination, Idc, to obtain the normalized photocurrent Iac/Idc as a function of the
frequency of alternating illumination.

To measure the photoresponsivity of a specimen as a function of the incident laser
power or the bias voltage, a laser with a wavelength of 405 nm was employed as the
excitation source. An AFG-2225 function generator was utilized to modulate the laser light
into alternating light with a frequency of 1 Hz. For the bias-dependent photoresponsivity
measurements, the laser power was set to 11.6 mW, and a Keithley 2400 SourceMeter was
used to apply a bias voltage to the measured sample and record the induced current. The
difference between the average currents under illumination and in the dark was divided
by the incident laser power to obtain the photoresponsivity of the measured sample. For
the laser-power-dependent photoresponsivity measurements, the incident laser power was
adjusted using neutral-density filters. A stable bias voltage of 50 V was applied to the
measured sample using a Keithley 2400 SourceMeter. The photocurrent was recorded using
an EG&G 7265 Dual Phase DSP Lock-in Amplifier and then divided by the incident laser
power to obtain the photoresponsivity of the measured sample.
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3. Results and Discussion

The room-temperature absorption spectra of the GaS1−xSex (0 ≤ x ≤ 1) samples
are depicted in Figure 1a. Based on these absorption spectra, we employed the Tauc
plot method [46,47] to ascertain the indirect and direct bandgaps of the GaS1−xSex sam-
ples by extrapolating the linear segment of the (AEph)n vs. Eph curves at (AEph)n = 0
for n = 1/2 and 2, respectively. Here, A represents the absorbance of the measured
sample, and Eph signifies the energy of the incident photon. The determined indirect
bandgaps of GaS, GaS0.80Se0.20, GaS0.60Se0.40, GaS0.37Se0.63, GaS0.19Se0.81, and GaSe are
2.58 eV, 2.45 eV, 2.34 eV, 2.24 eV, 2.16 eV, and 2.00 eV, respectively. Similarly, the deter-
mined direct bandgaps of GaS, GaS0.80Se0.20, GaS0.60Se0.40, GaS0.37Se0.63, GaS0.19Se0.81, and
GaSe are 2.64 eV, 2.49 eV, 2.36 eV, 2.28 eV, 2.18 eV, and 2.02 eV, respectively [9]. It is noted
that, as x increases, the sample exhibits a smaller bandgap.
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Figure 1. Absorption (a) and photoconductivity (b) spectra of the GaS1−xSex specimens at
room temperature.

The room-temperature PC spectra of the GaS1−xSex (0 ≤ x ≤ 1) samples are illustrated
in Figure 1b. It is apparent that the photoconductivity of each specimen undergoes negligi-
ble variations with increasing photon energy until it experiences a sudden increase beyond
a specific value. This specific value roughly indicates the bandgap of the specimen. When
the photon energy surpasses the bandgap of the semiconductor material, electrons can
absorb photons and transition from the valence band to the conduction band, resulting
in an increase in the total number of conduction carriers and subsequently enhancing the
material’s conductivity. The bandgaps of GaS, GaS0.80Se0.20, GaS0.60Se0.40, GaS0.37Se0.63,
GaS0.19Se0.81, and GaSe are approximately 2.58 eV, 2.43 eV, 2.33 eV, 2.24 eV, 2.14 eV, and
1.96 eV, respectively. The bandgaps determined from the PC spectra of the GaS1−xSex
samples align with those indirect bandgaps obtained from their absorption spectra.

Figure 2a presents the photocurrent profile of the GaS0.60Se0.40 specimen under an
illumination frequency of 200 Hz, depicting its variation over time. Similar behaviors
were observed for the photocurrents of other GaS1−xSex specimens under different illu-
mination frequencies. Figure 2b illustrates the rise times trise, defined from 10% to 90%
of the maximum photocurrent, and the fall times tfall, defined from 90% to 10% of the
maximum photocurrent, for the GaS1−xSex samples under various illumination frequencies
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as functions of the Se composition x. Across all illumination frequencies, trise and tfall
decrease with an increase in the Se composition x. The GaSe sample exhibits the shortest
trise and tfall.
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In Figure 2c, the current amplitudes, representing the difference between the maximum
and minimum photocurrents in a rising–falling period, are shown for the GaS1−xSex sam-
ples under different illumination frequencies. Regardless of the illumination frequency, the
current amplitude rises with an increase in the Se composition x. The pure GaSe sample at-
tains the highest current amplitude, significantly surpassing those of the GaS1−xSex ternary
alloy samples and the pure GaS sample. This finding contrasts with previous investigations
on both GaS1−xSex nanobelts [37] and MoS2(1−x)Se2x monolayers [45], which indicated a
decrease in photocurrent as the Se composition x increased. Our result demonstrates the
opposite trend.

Figure 3 illustrates the normalized photocurrents Iac/Idc of the GaS1−xSex specimens
as functions of the frequency f of alternating illumination. For frequencies f ≥ 100 Hz, a
higher Se composition x corresponds to a greater Iac/Idc. The normalized photocurrents
decrease rapidly with increasing f for the pure GaS sample and the GaS1−xSex ternary
alloy samples, with the photocurrent dropping more quickly for samples with lower x. For
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frequencies above 1000 Hz, the Iac/Idc for these samples are less than 0.01. In contrast,
the normalized photocurrent for GaSe remains significantly high even at high frequencies,
exceeding 0.01 at f = 9000 Hz, with an Iac/Idc greater than 0.015. Consequently, at high
frequencies of alternating illumination, the optical response of the pure GaSe sample
surpasses that of both the pure GaS sample and the GaS1−xSex ternary alloy samples.
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alternating illumination.

Figure 4 illustrates the photoresponsivities of the GaS1−xSex specimens as functions
of the incident laser power. As the incident laser power gradually decreases from the
order of 10−2 W to the order of 10−6 W, the photoresponsivities of all GaS1−xSex samples
gradually increase. The GaSe sample exhibits the largest increase, with its photoresponsivity
increasing by 85.7 times. For a given incident laser power, the photoresponsivity increases
as x increases. The pure GaSe sample possesses the highest photoresponsivity at any laser
power, exceeding that of other samples by at least one order of magnitude. The maximum
photoresponsivity of the pure GaSe sample reaches 5.77 × 10−3 A/W at a laser power
of 8.70 × 10−7 W, significantly greater than those of the GaS1−xSex ternary alloy samples
and the pure GaS sample. Conversely, the pure GaS sample has the lowest maximum
photoresponsivity at a laser power of 8.70 × 10−7 W, which is 1.78 × 10−6 A/W.
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Figure 5 illustrates how the photoresponsivities of the GaS1−xSex samples vary with
the bias voltage. As the applied bias voltage increases from 5 V to 50 V, the photore-
sponsivities of all GaS1−xSex samples gradually increase. For a given bias voltage, the
photoresponsivity increases as x increases. The pure GaSe sample exhibits the highest
photoresponsivity at any bias voltage, exceeding that of other samples by at least one order
of magnitude. At a bias voltage of 5 V, the photoresponsivities of the GaS1−xSex samples in-
crease from 8.44 × 10−9 A/W to 3.76 × 10−6 A/W as x increases from 0 to 1. This contrasts
with the findings of Jung et al. [37], who reported that the photoresponsivities of GaS1−xSex
nanobelts at 2 V were approximately 7 × 10−6 A/W for x ranging from 0 to 0.5, decreasing
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to approximately 1 × 10−6 A/W for x = 0.7 and approximately 0.5 × 10−6 A/W for x = 1.
Our measured photoresponsivity changes with x in the opposite direction of theirs. The
photoresponsivity of our pure GaSe sample reaches its maximum value of 6.39 × 10−5 A/W
at 50 V, significantly greater than those of the GaS1−xSex ternary alloy samples and the pure
GaS sample. Conversely, the pure GaS sample has the lowest maximum photoresponsivity
at a bias voltage of 50 V, which is 3.34 × 10−7 A/W.
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Ho et al. investigated the photoconductance and photoresponse of the photodetectors
based on GaS1−xSex layered crystals, ranking the photosensitivity of their samples from
maximum to minimum as GaS0.3Se0.7, GaS0.2Se0.8, GaS0.4Se0.6, GaS0.1Se0.9, GaSe, and
GaS [48]. However, our results, as discussed above, differ from those of Ho et al. [48]. We
found that the photoresponsive performance of the GaS1−xSex samples improves monotonously
with increasing x, with the pure GaSe sample exhibiting the best performance.

The enhancement in photoresponsive performance may be attributed to the decreased
bandgaps of the GaS1−xSex samples with increasing x. The redshift of the bandgaps occurs
because an increase in the Se composition x results in more S ions being replaced by Se
ions, leading to an increase in lattice constants and, consequently, a decrease in bandgaps.
A smaller bandgap facilitates the transition of an electron from the valence band to the
conduction band by absorbing a photon. The increased number of carriers generated by the
absorption of photons enhances the photoresponsive performance of the semiconductors.

Another factor contributing to enhancing the photoresponsive performance of GaS1−xSex
layered crystals may be the reduction in the difference between indirect and direct bandgaps
as x increases. The minimum difference is only 20 meV when x = 1. This insignificant energy
difference makes the GaS1−xSex crystals with high x resemble pseudo-direct bandgap
semiconductors [9]. Semiconductors with direct bandgaps exhibit better response to light.
Consequently, the photoresponsive performance of the GaS1−xSex crystals is enhanced
with increasing x.

It is well known that GaX (X = S or Se) layered crystals exhibit four basic polytypes
determined by the stacking sequences of the monolayers: 2H β-, 2H ε-, 3R γ-, and 4H δ-GaX,
corresponding to the space groups P63/mmc (D6h

4), P6m2(D3h
1), R3m (C3v

5), and P63mc
(C6v

4) [9]. These distinct stacking arrangements give rise to variations in the properties of
GaX crystals across different phases. Building upon this understanding, we propose another
intriguing hypothesis suggesting that the photoresponsive performance of GaS1−xSex
layered crystals may be influenced by their polytypes. Jung et al. [37] demonstrated
that their pure GaS existed in the β phase, while the GaS1−xSex ternary alloys and pure
GaSe were in a β-γ mixed phase. With increasing x, the ratio of β to γ phases decreased.
Conversely, our pure GaS and GaS0.80Se0.20 ternary alloy were in the β-phase. GaS0.60Se0.40,
GaS0.37Se0.63, and GaS0.19Se0.81 ternary alloys exhibited a β-ε mixed phase, with the ratio
of β to ε phases decreasing with increasing x. Pure GaSe was in the ε phase. If we
hypothesize that the ε and γ phases have the best and worst photoresponsive performance,
respectively, with the β phase exhibiting intermediate performance, it may explain the
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contrast between our findings and those of Jung et al. [37], who reported a decrease in
the photoresponsive performance of GaS1−xSex nanobelts with increasing x. However,
growing GaS1−xSex crystals exclusively in one pure phase for all different phases remains
challenging. Therefore, confirming this hypothesis would require the development of a
state-of-the-art growth technique for GaS1−xSex crystals, presenting an intriguing task for
future research.

The bandgaps of GaS1−xSex layered crystals span the visible region, but they can
significantly increase to over 3.0 eV and extend into the UV region when reduced to the
monolayer state due to the quantum confinement effect [36,49]. Photodetectors based on
2D nanoflakes of GaS have shown a remarkable UV-selective photoresponse attributed to
the increased bandgaps [23,50,51]. Considering the photoelectric properties of GaS1−xSex
layered crystals, the decrease in bandgaps with increasing x implies that GaS1−xSex crystals
with x > 0 respond to longer wavelengths compared to pure GaS crystals. Addition-
ally, the enhancement of photoresponsive performance with increasing x suggests that
GaS1−xSex crystals with x > 0 exhibit higher photoresponsivity than pure GaS crystals.
Consequently, GaS1−xSex-based photodetectors could potentially offer high response and
specific wavelength-selectivity for UV and visible-light-detection applications by adjust-
ing their composition and thickness, thereby broadening the potential applications of
GaS1−xSex layered crystals in optoelectronics.

4. Conclusions

The photoelectric properties of a complete series of GaS1−xSex (0 ≤ x ≤ 1) layered
crystals were investigated. The photoconductivity spectra revealed that the bandgap of
GaS1−xSex gradually decreases as the Se composition x increases. The time-dependent
photocurrent measurements demonstrated that the increase in x significantly improves the
response of GaS1−xSex to light. The pure GaSe crystal has the shortest rise and fall times
and the largest current amplitude. The frequency-dependent photocurrent measurements
indicated that the photocurrents of the pure GaS crystal and GaS1−xSex ternary alloy crystals
decrease rapidly as the frequency of alternating illumination increases. Crystals with lower
x have a faster decrease in photocurrent. However, the photocurrent of the pure GaSe
crystal persists significantly, even at high frequencies. Additionally, the measurements for
laser-power-dependent photoresponsivity and bias-voltage-dependent photoresponsivity
revealed that the increase in x enhances the photoresponsivity of GaS1−xSex. Overall,
the photoresponsive performance of GaS1−xSex improves with increasing x, with pure
GaSe exhibiting the best performance. This result contradicts the findings of the previous
report. This enhancement in photoresponsive performance of the GaS1−xSex layered
crystals may be attributed to several factors, including decreasing bandgaps, reduced
differences between indirect and direct bandgaps, and phase conversion from β-GaS to
ε-GaSe as x increases. Because the bandgap and the photoresponsivity of GaS1−xSex vary
in reverse trends as x increases, the GaS1−xSex-based photodetectors could potentially
offer high response and specific wavelength-selectivity for UV- and visible-light-detection
applications by adjusting their composition and thickness. The findings of this work
provide novel insights into the photoelectric characteristics of GaS1−xSex layered crystals
and contribute to assessing the viability of GaS1−xSex layered crystals for potential use
in optoelectronics.
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