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Abstract: Iron oxide nanoparticles have long been studied as a T2 contrast agent in MRI 

due to their superparamagnetic behavior. T1-based positive contrast, being much more 

favorable for clinical application due to brighter and more accurate signaling is, however, 

still limited to gadolinium- or manganese-based imaging tools. Though being the only 

available commercial positive-contrast agents, they lack an efficient argument when it 

comes to biological toxicity and their circulatory half-life in blood. The need arises to 

design a biocompatible contrast agent with a scope for easy surface functionalization for 

long circulation in blood and/or targeted imaging. We hereby propose an extremely fast 

microwave synthesis for fluorescein-labeled extremely-small iron oxide nanoparticles 

(fdIONP), in a single step, as a viable tool for cell labeling and T1-MRI. We demonstrate 

the capabilities of such an approach through high-quality magnetic resonance angiographic 

images of mice. 
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1. Introduction 

Iron based nanoparticles have enticed researchers for long, as a potent tool for contrast enhancement 

in magnetic resonance imaging (MRI) [1,2]. A typical contrast agent is supposed to shorten the 

transverse, T2/T2* (negative contrast), or the longitudinal, T1 (positive contrast) relaxation times of 

protons in the water molecules. Iron oxide nanoparticles, for instance, have been widely studied for the 

former [3–5]. T2/T2* shortening, accounting for the negative contrast, induces the signal from both the 

target and the surrounding area. Superparamagnetic iron oxide nanoparticles (SPIONs) have, therefore, 

evolved as optimal negative contrast agents due to their high magnetic moment and high metal 

payload. This magnetic behavior is translated in very large values for r2, the transverse relaxivity, 

making it possible to get large signals in the image using small amounts of contrast materials. 

However, being their most remarkable property it can also be a burden for many applications in 

imaging. This is due to the fact that T2 pulse sequences are difficult to use for the diagnosis of many 

pathologies due to the possibility of endogenous negative contrast, which may be produced by calcium 

depositions, bleeding, or the presence of other metals. This situation is particularly complicated in 

cardiovascular imaging, for example, in atherosclerotic plaque characterization or angiography. All 

these factors have contributed to a limited clinical application, even at the expense of using the  

highly-toxic gadolinium. This has led to a recent and intense research for the production of iron oxide 

nanoparticles for T1 MRI [6–8]. Even with these efforts their use for T1 contrast is still, to some extent, 

not extended. For now, Gd- and Mn-based contrast agents stand as the current pioneers of the field, but 

with many drawbacks [9–11]. Positive contrast with iron oxide nanoparticles, giving a high signal to 

noise ratio and a bright intensity, is of course, clinically, much more favorable, particularly at field 

strengths smaller than 3 T, which normally is the case. The efforts, therefore, have been in designing 

probes competent with the Gd-based positive contrast agents, but with an edge over them with the 

scope for easy surface functionalization, enhanced biocompatibility, and half-life in blood [12]. One of 

the primal necessities, when considering iron based contrast agents for such a purpose, is the size 

confinement. Decreasing the size decreases the net magnetic moment of the particles and increases the 

surface area, accounting further to an increased density of lone pairs of electrons in the valence shells 

of the iron oxide nanoparticles in the solution. With this principle as the baseline, our aim was to 

design a small-sized nanoparticulate system. 

Microwave synthesis (MWS) has long been used in the field of chemistry for organic synthesis and 

catalyzed reactions [13–15]. However, only recently has this technology been exploited in the field of 

nanoparticle synthesis. One of the prominent features responsible for this choice was the fast and 

selective heating [15,16]. The superior performance of MWS is due to dielectric heating: the rapid 

heating of the sample as the molecular dipoles try to align with the alternating electric field, with more 

polar solvents and reagents being more efficiently heated. Several reports have described microwave 

synthesis of Fe2O3 and Fe3O4 nanoparticles; however, the reports showing the MWS of iron oxide for 

positive contrast MRI are scarce [17–21]. The heating efficiency thus, greatly depends on the material 

under consideration. For instance, fluctuation in the molecular dipoles as an attempt to align with the 

alternating electric field leads to the temperature modification at the molecular level, giving an edge to 

the polar solvents as compared to the conventional heating (water bath, oil bath, etc.) which is a bulk 

phenomenon. This technique, hence, is much faster and eliminates any side reactions. Our work here 
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analyzes the various parameters during the fabrication process, governing, hence, the properties of the 

synthesized nanoparticles and as a result, modulating their varying efficacy as an MR contrast tool. 

With fluorescein isothiocyanate carboxymethyl dextran as the surface passivating agent, we intended 

to render in vivo biocompatibility and long circulating times for blood-pool applications. We hereby 

demonstrate the use of these nanoparticles for high-quality positive contrast in MRI of main arteries 

and small vessels, while achieving these results through an easy one-step protocol. 

2. Results and Discussion 

2.1. Microwave Synthesis and Characterization of Fluorescein Isothiocyanate Carboxymethyl Dextran 

Iron Oxide Nanoparticles 

FITC-CM Dextran (4 KDa) coated iron oxide nanoparticles, fdIONP, were synthesized with 

microwave irradiation as the heat source. The main goal was to produce extremely small nanoparticles 

so they could produce positive contrast and long circulating times in blood, with the carboxymethyl 

derivative of this FITC labeled dextran giving an anchor further, for biomodification and fluorescence 

signal. Dextran was chosen as surface stabilizer due to its biocompatibility, easy in vivo degradation, 

and for its very property of imparting hydrophilicity and, hence, the stealth from the immune system, 

when considered under circulation. The reaction progressed by hydrazine mediated reduction of the iron 

(III) chloride hexahydrate salt under continuous stirring and MW heating. The reaction progressed at 

100 °C with a ramping time (from room temperature to the set temperature, 100 °C) of 54 s at 240 W 

of power. This fast ramping time eliminates, to a great extent, any unspecific reactions and increases 

the homogeneity of the sample. The sample was cooled under 2 min after the completion of the 

experiment so as to avoid overheating or any variation in the originally defined parameters for the 

experiment. The purification of the sample was performed by gel filtration chromatography to remove 

unreacted iron salt and the excess of hydrazine from the sample, while obtaining the pure fdIONP in a 

preferred solvent. 

This approach yielded extremely small nanoparticles with a hydrodynamic size, as determined by 

DLS, of 21.5 nm (PDI 0.18), and with an excellent reproducibility for all the repetitions of the 

procedure (Figure 1a). The surface charge was observed in a negative value, as expected, of −15.8 mV. 

Core size was also checked by transmission electron microscopy (TEM, Figure 1b and Figure S1) 

showing, as expected, a really small size of 2.5 ± 0.2 nm and a crystal size of 2.6 nm, according to  

X-ray powder diffraction (XRD) measurements (Figure S2). At higher magnification TEM images 

show the lattice planes of individual particles, indicating the individual particles to be monocrystalline 

(Figure S1). The difference between the core size and the hydrodynamic size is explained by the large 

polymeric layer surrounding the nanoparticle, as the thermogravimetric data demonstrates (Figure S3) 

with a weight loss of 80% at 300 °C, ensuring the colloidal stability of the nanoparticles. 

Characterization of surface composition by Fourier transform infrared spectroscopy (FTIR) of both 

FITC-dextran and the fdIONP showed the expected band for a successful synthesis, particularly at  

1000 cm−1 and 1325 cm−1, and for iron oxide at 400 cm−1 and 545 cm−1, indicating the presence of 

dextran on the surface and Maghemite in the nanoparticles (Figure 1c). Magnetic properties of fdIONP 

were analyzed with a superconducting quantum interference device (SQUID), revealing a magnetic 
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moment (Ms) of 17.2 emu/g Fe3O4 (Figure 1d). This small value was expected due to the really small 

size of the core and the consequent spin canting effect. This effect is due to the lack of full alignment of 

the spins in the surface. According to literature, the thickness of the spin-canted layer is about 0.9 nm 

and therefore our particles, with a hydrodynamic diameter of 2.5 nm, have 97.8% of the spins canted; 

higher than the previously reported extremely-small iron oxide nanoparticles [12,22]. Furthermore, a 

small saturation magnetization value was required to fulfill the goal of a positive contrast agent. 

Contrast agents’ capacity of reducing the relaxation times of the tissue in MRI is characterized based 

on the relaxivity values. 

The relaxivity values for fdIONP were measured at 1.5 T and 37 °C showing a large value for r1 of 

5.97 mM−1s−1 and a low r2 value of 27.95 mM−1s−1 (Figure 1e), giving r2/r1 ratio of 4.7. To be suitable 

as a T1 contrast agent for MRI, a compound must possess a high longitudinal relaxivity (r1) and the 

lowest possible r2/r1 ratio [12]. The results with our nanoparticles therefore predicted a good positive 

contrast. The high r1 value of fdIONP is due to the small size of the magnetic core, leaving a large 

number of Fe3+ ions, each with five unpaired electrons, on the surface of the nanoparticle. 

 

Figure 1. Physicochemical characterization of fdIONP. (a) Hydrodynamic size for fdIONP 

(N = 6); (b) Transmission electron microscopy (TEM) image of fdIONP; (c) Fourier 

transform infrared spectroscopy (FTIR) spectrum for fdIONP; (d) Field dependent 

magnetization of fdIONP and (e) Relaxivities (r1 and r2) measurements for fdIONP in 

water at 37 °C and 1.5 T. 

2.2. Cell Labeling Studies 

To demonstrate the feasibility of generating positive contrast in MRI and the fluorescence from the 

surfactant we prepared phantoms with Mouse Adult Fibroblasts (MAFs) from C57BL/6 mice, 

incubated with increasing concentration of iron (0, 40, 80, and 120 μg/mL). MAFs were studied under 

MRI for T1-based bright contrast and fluorescence. MRI for the cells with highest Fe concentration 

showed the highest intensity of the bright contrast, while the intensity decreased and the image 

darkened with the decreasing Fe concentration (Figure 2a). This proved our particles to be a positive 
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contrast agent in MRI very well. An epifluorescent image was collected and, as expected, the 

fluorescence intensity increased relatively with the increase in iron concentration in each of the 

sample. This was further confirmed by recording the relative fluorescence unit (RFU) of the samples at 

a wavelength of 516 nm in NanoDrop 3300. There was observed to be a linear correlation between the 

iron concentration in each of the samples and the hence-observed fluorescence intensity. The RFU 

values of the samples with 0 μg/mL (control), 40 μg/mL, 80 μg/mL, and 120 μg/mL were measured as 

217.3, 726.5, 1705.4, and 2228.8, respectively. The percentage of signal enhancement by both imaging 

techniques can be calculated (Figure 2b,c) showing a quite good value of 30%–40% signal 

enhancement for MRI and about 65%–95% for fluorescence imaging, demonstrating a good labeling 

of the cells. This labeling was further confirmed by confocal images of the MAFs using DAPI staining 

for the nucleus, phalloidin568 for cytoskeleton and the fdIONP. As Figure 2d shows, there is a clear 

staining of the cells by the nanoparticles, very well correlating with the other dyes used (more images 

in Figures S4 and S5) and quantified by cytometry (Figure S6) where a clear increase is observed, 

while even considering some autofluorescence from the cells. Although there is an increase in fdIONPs 

uptake measured by flow cytometry in FITC laser, there is no a proportional increase in side scatter (SSC) 

microscopy, SSC parameters after 24 h of incubation with different concentrations of fdIONPs. SSC is 

related with cell complexity and nanoparticle-cell internal interaction. After analyzing flow cytometry 

results, confocal microscopy images in various depths within the sample (z-stacks), and low cytotoxicity in 

cells even with the highest Fe concentration, it can be concluded that most of the fdIONPs could be 

localized in the extracellular cell membrane and/or be surrounding it. Finally, proliferation studies 

demonstrated no cytotoxic effect at the concentration of fdIONP used, as expected, due to the 

composition of the particles (Figure S6). 

 

 

Figure 2. (a) Fluorescent imaging and magnetic resonance imaging (MRI) of labeled 

MAFs cells with fdIONP; (b) Percentage of signal enhancement in magnetic resonance 

images of labeled MAFs cells; (c) Percentage of signal enhancement in fluorescence 

images of labeled MAFs cells; and (d) Fluorescent confocal images of fdIONP-labeled 

cells at 80 µg/mL Fe concentration after 24 h of incubation, signal from fdIONP (green), 

phalloidin dye (red), and DAPI (blue). 
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2.3. In Vivo Magnetic Resonance Angiography 

The utility of fdIONP for in vivo positive contrast MRI was investigated in mice, by injecting the 

nanoparticles at a dose of 2.2 mg Fe/kg into healthy animals. The short T1 relaxation time of these 

nanoparticles produces high signal intensity and excellent anatomical detail in Magnetic Resonance 

Angiography (MRA) acquisitions. The views generated, clearly depict the main vascular architecture, 

carotids, subclavian, abdominal aorta and heart chambers, and some smaller vessels (Figure 3). The 

high quality of small-vessel imaging was maintained even 90 min post injection (Figure 3) due to the 

small size and thick polymeric layer which was possible to obtain through a one-step protocol in the 

microwave. This highlights an important advantage of these nanoparticles. Due to their small size and 

biocompatible surface coating, they remain in circulation much longer than most nanoparticles, 

providing, hence, an excellent contrast for blood pool applications and a platform for functionalization 

and targeted molecular imaging. 

 

Figure 3. Magnetic resonance angiography of a mouse at increasing times after 

intravenous injection of fdIONP. 

3. Experimental Section 

3.1. Preparation and Characterization of fdIONP 

FITC CM Dextran (4 kDa) coated iron oxide nanoparticles were synthesized in a CEM microwave 

unit. All the necessary chemicals involved in the experiment, were purchased from Sigma-Aldrich 

Quimica SL(Madrid, Spain), and used without any further purification, while distilled water was used 

as supplied from our institution (Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain). 

Briefly, in an ideal 5 mL reaction, 37.5 mg (0.1387 mmol) of iron (III) chloride hexahydrate; 

FeCl3·6H2O was taken as the iron precursor in a 5 mL microwave adaptable tube. To this was added, 
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100 mg (25 mmol) FITC-CM dextran and was together formed into a homogeneous solution, with  

4.5 mL of distilled water. The magnetic stirring bead was dropped in the tube and, finally, 0.5 mL of 

hydrazine hydrate was added before placing closed container inside the microwave unit. The reaction 

was carried out at a temperature of 100 °C and with the irradiating power set at 240 W. The reaction 

continued under high stirring for 10 min. The sample, thereafter, as cooled down to 60 °C in 2 min 

through the self-equipped cooling mechanism of the instrument, before being extracted out. The 

preliminary sample purification step, involved filtration through a PD10 desalting columns (GE 

Healthcare, Madrid, Spain) eluted first with 15 mL of distilled water. In the first step, 2.5 mL of the 

prepared sample was subjected to the column for purification. The sample retained from this step had 

an increase in dilution with a final volume of 3 mL. This 3 mL of the elute was further purified through 

Amicon Ultra 0.5 mL Centrifugal Filters (Merck Millipore, Madrid, Spain) with a cut-off of 30 kDa. 

The recovered sample was, thereafter, made up to its initial volume of 3 mL and used as such for 

further characterizations and studies. The hydrodynamic size, surface charge and the polydisperstity 

index (PDI) of the obtained nanoparticles (fdIONP) was determined through Zetasizer Nano ZS 

(Malvern Instruments, Worcester, UK), equipped with 633 nm He-Ne laser. The Fe quantification in 

the sample was done through ICP. Size measurements were conducted on a JEOL 3000 F transmission 

electron microscope, with an accelerating voltage of 300 kV, samples were deposited in a Cu grid 

dispersed in water. 

3.2. XRD 

The crystal structure of the samples was identified by X-ray powder diffraction in a Bruker D8 

Advance powder diffractometer (Bruker Spain S.A. (BBIO & BOPT) S.A. Madrid, Spain), using Cu 

Kα radiation with an energy-discriminator (Sol-X) detector. Patterns were registered within 10 and 80 

in 2θ at 0.01 degrees per second. The average crystallite size was calculated with Scherrer’s equation 

from the half-width of the (311) diffraction peak. The XRD spectra correspond to an inverse spinel 

structure. The error in the crystallite sizes is 0.1 nm, and is mainly due to the instrumental line width 

(Δ2θ = 0.11). 

3.3. Relaxivity Studies 

T1 and the T2 relaxation times were studied in 1.5 T Bruker Minispec TD-NMR mq60 (Bruker Spain 

S.A. (BBIO & BOPT) S.A. Madrid, Spain) at a gain of 51 dB. The r1 and r2 values in each respective 

case, were defined by the slope plotted between the iron concentration, and the R1(1/T1)-R1b(1/T1blank) 

and R2(1/T2)-R2b(1/T2blank). The sample was studied under four dilutions of 92.5%, 85%, 77.5%,  

and 75%. 

3.4. Cell Labeling Studies 

3.4.1. Cell Culture and Media 

C57BL/6 mouse adult fibroblasts (MAFs) were grown in DMEM (Dulbecco’s Modified Eagle 

Medium) supplemented with 5% fetal bovine serum (FBS), 1% penicillin-streptomycin and 1 mM 

sodium pyruvate in a humidified atmosphere of 5% CO2 at 37 °C. Cytotoxicity and nanoparticle 
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uptake were assessed in MAFs exposed to fdIONP at different concentrations. Control cells were 

treated with vehicle. 

3.4.2. fdIONPs Uptake and Cytotoxicity Assays 

After culturing for 24 h with fdIONP (40, 80 and 120 µg/mL Fe concentrations), cells were 

trypsinized and measured in PBS. DAPI, the cell viability marker, was then added at a final 

concentration of 0.001% (w/v). A total of 10,000 events were recorded for each simple using the BD 

FACSCanto™ II system BD Biosciences, Madrid, Spain. All experiments were performed in triplicate. 

Samples were analyzed with BD FACSDiva™ Software (BD Biosciences, Madrid, Spain) and FlowJo 

Software (version 10.0.7.12, FlowJo LLC, Ashland, OR, USA). 

3.4.3. In vitro Inmunofluroescence Assay 

Cells seeded on coverslips, were washed in PBS, fixed (4% formaldehyde) and permeabilized in 

PBS with 0.1% Triton X-100. Samples were incubated with Alexa Fluor® 568 Phalloidin (1:50, Life 

Technologies, Carlsbad, CA, USA) for 45 min in blocking solution (5% BSA). Phalloidin dye is used 

to visualize F-actin in cytoplasm of cultured cells. Slides were washed twice with PBS and distilled 

H2O and applied with, ProLong® Gold Antifade Reagent with DAPI to stain cell nucleus. Optical 

sections were acquired using a Leica TCS SP5 confocal system and LAS AF 2.6.0 software (Leica 

Microsystems, Barcelona, Spain). 

3.5. MRI 

Cells were labeled with different fdIONP dilutions (different Fe conc.) for 24 h. After fdIONP 

incubation, cells were trypsinized, washed three times with PBS and collected in tubes. Samples were 

first studied in phantoms for T1 mapping in MRI. For in vivo MRA, mice weighing 20 g were 

anesthetized with 2% isoflurane and oxygen before being placed on a thermoregulated (38 °C) mouse 

bed. Ophthalmic gel was added in their eyes so as to prevent retinal damage due to drying. The MRI 

equipment used in this study was an Agilent/Varian scanner (Agilent, Santa Clara, CA, USA) equipped 

with a DD2 console and an active shielded 205/120 gradient insert coil with 130 mT/m maximum 

gradient strength and a combination of volume coil/two channel phased-array (Rapid Biomedical 

GmbH, Rimpar, Germany). 3D gradient echo with magnetization transfer contrast (MTC) prepulse 

MRA was performed with the following parameters: min TR, 12.64 ms; min TE, 2.32 ms, flip angle 

20, 2 averages, acquisition matrix 192 × 128, MTC flip angle 810 deg; duration, 6 ms; offset 

frequency, 2000 Hz. 

3.6. Fluorescence Studies 

The fdIONP-labeled cells were expected to demonstrate fluorescence due to the FITC labeling of 

the surface coating dextran, in this case. No secondary fluorescence labeling was done for any further 

studies. The cells incubated with different iron concentrations (different fdIONP dilutions), same as the 

ones used for phantom studies in MRI, were studied for fluorescence in comparison with the un-doped 

cells as the negative control. The epifluorescence study was performed in a pre-clinical In Vivo 
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Imaging System (IVIS) from PerkinElmer Inc. (Waltham, MA, USA). The relative fluorescence was 

also observed through NanoDrop 3300 Fluorospectrometer (Thermo Scientific, Waltham, MA, USA) 

at a wavelength of 516 nm, specific for FITC CM Dextran. 

4. Conclusions 

We here demonstrate how the use of microwave synthesis enables an extremely fast and robust 

production of fluorescent nanoparticles, with an excellent performance as a positive contrast for MRI. 

Moreover, we get these results in an easy and reproducible, one step protocol from the precursors. 

Furthermore, the presence of a large polymeric coating and reduced size has a dramatic enhancement 

of the circulating time of the nanoparticles in blood. This same thick surfactant will enable further 

functionalization for targeted molecular imaging. 

The ease of the synthesis and purification protocols renders high-quality nanoparticles that can be 

used for fluorescence imaging, in vitro cell imaging, and in vivo imaging for MRA. This is the first 

time, to our knowledge, that T1-MRI nanoparticles with fluorescent signal are produced by microwave 

technology. 
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