Supplementary Materials: Aggregation and Colloidal Stability of Commercially Available Al₂O₃ Nanoparticles in Aqueous Environments

Julie Mui, Jennifer Ngo and Bojeong Kim *

Figure S1. Bright field transmission electron microscopy (TEM) images of 10 nm γ-Al₂O₃ Nanoparticle (NP) aggregates at a point of zero charge (PZC).

Figure S2. Bright field TEM images of 10 nm γ -Al₂O₃ NPs with 10 mg·L⁻¹ of humic acid (HA) at pH > PZC. NP: Nanoparticle.

Figure S3. ζ potential measurements of montmorillonite, as a function of pH.

Figure S4. Bright field TEM images of montmorillonite at pH close to PZC of Al_2O_3 NPs.

Figure S5. X-ray diffraction (XRD) pattern of montmorillonite. WL: Wavelength.

The X-ray diffraction (XRD) result showed the very broad reflection at low angles, which is indicative of montmorillonite (main phase, shown in blue), with its composition of Al_{0.86}Fe_{0.1}H Li_{0.08}Mg_{0.14}O₁₀Si_{3.9}. It also showed the presence of trace amounts of other minerals including quartz, gypsum, calcite, rutile, and aragonite (shown in red, green, pink, brown, and yellow, respectively).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).