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Abstract: Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell
nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy.
Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal
oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of
CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and
morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets
is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the
hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by
various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh
specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention
at the current density from 2 to 50 mA cm−2) and excellent cycling stability, with capacitance retention
of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized
design and fabrication of electrode materials with more sufficient electrolyte-electrode interface,
robust structural integrity and fast ion/electron transfer.

Keywords: copper oxide; nickel cobalt sulfide; hierarchical composite nanowires; supercapacitor;
electrochemical properties

1. Introduction

Over the past few years, considerable effort has been made to search for clean, efficient and
renewable energy sources due to the limited available fossil fuels and serious pollution problems caused
by conventional energy technologies [1–4]. Many energy storage devices are thus being developed, with
the aim of effective use of various energy sources. As one of the most promising energy storage systems,
supercapacitors (SCs) have drawn intense attention because of their favorable characteristics including
high power density, long cycle life, rapid charge-discharge process, and environmental friendliness [5–7].
Although considerable progress has been achieved so far in SC applications, they are still restricted
by their lower energy density in comparison with secondary batteries. The kinetic characteristics and
electrochemically active surface area of the electrode materials mainly influence the performance of
SCs, thus the electrode materials with appropriate pore structure and superior electrical properties
are perfectly reasonable [8]. So far, carbon-based materials, conducting polymers and transition metal
oxides/hydroxides, are among the most extensively investigated electrode materials for SCs [9–12].
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However, they have some obvious drawbacks, including low specific capacitance, poor cycling stability
and low electronic conductivity, which inevitably deteriorate their electrochemical performance and
restrict their applications in SCs. Hence, it is imperative to develop advanced composites combining
synergistic contributions from single components to maximize the performance of electrodes.

In recent years, transition metal sulfides such as nickel sulfides [13,14], cobalt sulfides [15,16] and
ternary nickel cobalt sulfides [17–19] have been explored as promising electrodes for SCs because of
their higher electrical conductivity and richer redox reactions than those of their oxide and hydroxide
counterparts [20]. Impressively, ternary metal sulfides also possess much higher electrical conductivity
and exhibit better electrochemical performance as compared to binary metal sulfides. To date, various
nanostructures of ternary metal sulfides have been developed and shown high capacitive performance
in SCs applications. More attractively, 3D hierarchical nanoarchitectures on conductive substrates not
only can effectively enhance the utilization of active materials, due to their large surface area and short
electron- and ion-transport pathways, but also combine the advantages of both components [21–24]. As a
result, the ternary metal sulfides based core-shell composite arrays demonstrate excellent performance.
For instance, Gong et al. reported the in situ growth of NiCo2S4@Ni3V2O8 core/shell hybrid on Ni
foam via a facile two-step process. The composite electrode exhibited a higher specific capacity of
512 C g−1 and a better rate capability of 396 C g−1 at 10 A g−1 [24]. Xie et al. also developed an effective
strategy to fabricate hierarchical NiCo2S4@CoSx nanotube arrays on Ni foam, and it showed a high
areal capacitance of 4.74 F cm−2 at a current density of 5 mA cm−2, a good rate capability (2.26 F cm−2

at 50 mA cm−2) and cycle stability (76.1% capacitance retention after 1500 cycles at 50 mA cm−2),
which were superior to those of NiCo2S4 nanotubes [25]. Although a significant advance has been
made in the fabrication of ternary metal sulfides based 3D core-shell composites, they still suffer from
significant degradation during the fast and long-term cycling process due to structural or morphological
failure, which greatly limits their electrochemical performance. Thus, the rational design and fabrication
of hierarchical nanocomposites with a highly integrated style, mechanical robustness and efficient
charge/mass transport have been the focus of research to optimize the overall performance of SCs.

On the other hand, copper oxides (CuO and Cu2O-based SCs have also recently attracted
wide interest because of their abundance, low cost, non-toxicity and easy preparation of different
nanostructures [26–29]. But the low electrical conductivity and poor cycling stability hinder their charge
storage performance. To solve the disadvantages, one effective way is to incorporate pseudocapacitive
materials into copper oxides to enhance their capacitance, particularly as a smart nanoarchitecture
is constructed to facilitate the charge transfer process [30–32]. Based on the point, it is expected that
CuO/Cu2O@NiCo2S4 composite nanowire arrays grown on copper foam may result in fascinating
electrochemical performance. Yet for that, it is still challenging to bring cost-effectiveness to hierarchical
CuO/Cu2O@NiCo2S4 based free-standing electrodes with outstanding performance.

Herein, we design and fabricate a free-standing, 3D hierarchical CuO/Cu2O@NiCo2S4 core-shell
nanocomposite electrode based on nickel cobalt sulfides nanosheets grown on CuO/Cu2O nanowire
arrays. CuO/Cu2O nanowire arrays are firstly grown on Cu foam by thermal oxidation, followed
by one-step electrodeposition of NiCo2S4, which is directly used as binder-free electrode for
electrochemical evaluation. The as-prepared composite electrode exhibits an ultrahigh specific
capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability and excellent cycling stability
with a capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. In addition, the relationship
between structural and electrochemical properties of the composites is also studied systematically.

2. Experimental Section

2.1. Chemicals and Materials

All chemical agents were analytical grade and purchased from Sinopharm Chemical Reagents
Co., Ltd. (Shanghai, China). Commercially Cu foam was purchased from Lizhiyuan Battery Materials
Co., Ltd. (Shanxi, China).
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2.2. Fabrication of CuO/Cu2O Nanowire Arrays on Cu Foam

Commercially, Cu foam (1.2 mm thick) was used as the substrates to grow 3D CuO/Cu2O
nanowire arrays. Typically, the Cu foams were first immersed in ethanol solution followed by ultrasonic
treatment for 20 min, and then dried at 80 ◦C for 12 h in a vacuum oven. Finally, they were thermally
oxidized in a muffle furnace at 400 ◦C for 4 h with a heating rate of 3 ◦C min under air atmosphere.

2.3. Synthesis of CuO/Cu2O@NiCo2S4 Core-shell Nanostructures

The NiCo2S4 nanosheets with different Ni–Co–S composition were electrochemically
co-deposition on the surface of CuO/Cu2O nanowires. Typically, the electrolyte solution contains
10 mM NiCl2·6H2O with different concentrations of CoCl2·6H2O (0, 5, 10, 15, 25 mM) and 0.75 M
thiourea. The corresponding composite electrodes were designated as CuO/Cu2O@NiCo2S4-1,
CuO/Cu2O@NiCo2S4-2, CuO/Cu2O@NiCo2S4-3, CuO/Cu2O@NiCo2S4-4, CuO/Cu2O@NiCo2S4-5,
respectively. The electrodeposition was performed with a three-electrode system using CuO/Cu2O/Cu
as the working electrode, Pt plate as the counter electrode, and Ag/AgCl as the reference electrode,
respectively. The electrochemical reaction took place with cyclic voltammetry at a scan rate of 5 mV s−1

for 3 cycles within a voltage range of −1.2 to 0.2 V. The obtained composite electrodes were carefully
rinsed with distilled water and ethanol and then dried at 60 ◦C under vacuum for 12 h.

2.4. Material Characterization

X-ray diffraction (XRD) patterns were recorded on a Rigaku D/MAX 2550 diffractometer (Rigaku
Corporation, Tokyo, Japan) equipped with a Cu Kα radiation generator. The morphological characterization
was analyzed by field emission scanning electron microscopy (FE-SEM, S-4800, Hitachi, Tokyo, Japan)
equipped with an energy dispersive X-ray spectrometer (EDS) and high resolution transmission electron
microscopy (HRTEM, JEM-2011, JEOL, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) was
performed on a Thermo ESCALAB 250 X-ray photoelectron spectrometer (Thermo Scientific, Waltham,
MA, USA) at a pressure of about 2× 10−9 Pa using Al Kα X-ray as the excitation source.

2.5. Electrochemical Measurements

The electrochemical properties of the as-obtained electrodes were investigated on a CHI
660E electrochemical workstation (Shanghai Chenhua Instrument Co., Shanghai, China) with a
three-electrode cell in 3 M KOH aqueous electrolyte at room temperature. The composites electrodes,
Pt plate and Ag/AgCl electrode were served as the working electrode, the counter electrode and
the reference electrode, respectively. The applied potential window of cyclic voltammetry (CV) and
galvanostatic charge–discharge (GCD) curves was set from −0.3 to 0.6 V and −0.1 to 0.4 V. The areal
capacitance Cs (F cm−2) is calculated by the equation: Cs = I∆t/S∆V, where I (A) is discharging current,
∆t (s) is the discharging time, S (cm2) is the area of the electrode and ∆V is the discharging potential
window. The electrochemical impedance spectroscopy (EIS) was conducted within the frequency
range between 0.01 to 100 kHz.

3. Results and Discussion

Figure 1 depicts the two–step preparation process of CuO/Cu2O@NiCo2S4 composite nanowire
arrays on Cu foam. Firstly, CuO/Cu2O nanowires are directly grown on Cu substrate via one-step
thermal oxidation of Cu foam, which has been confirmed by previous studies [33–35]. Two oxide layers
on the Cu foam can be detected after thermal treatment: a very thin top layer of CuO and a bottom layer
of Cu2O. Then, the CuO/Cu2O nanowire arrays are uniformly decorated with NiCo2S4 nanosheets
by electrodeposition. The obtained composite possesses hierarchical core-shell nanoarchitectures
which might show short ion transport/diffusion pathway and close contact between active materials
and electrolyte.
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Figure 1. Schematic illustration of the CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam. 
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2. Both distinctive peaks at 43.3° and 50.4° assigned to (111) and (200) planes of Cu (JCPDS No. 65–
9026) [29] can be observed in the pattern of CuO/Cu2O/Cu composite, which indicates that Cu foam 
substrate is not entirely oxidized. The diffraction peaks at 36.5°, 61.5° and 74.6° are attributed to the 
crystal planes of cubic Cu2O (JCPDS No. 78–2076), and the peak at 35.6° is ascribed to (111) crystal 
plane of CuO (JCPDS No. 74–1021) [27,29]. Importantly, the above diffraction peaks all appear in the 
pattern of CuO/Cu2O@NiCo2S4-4 composite, but a new peak at 38.1° is consistent with (400) plane of 
cubic type NiCo2S4 (JCPDS No. 45–1477) [24,36], suggesting the poor crystallinity or small amount 
of NiCo2S4 obtained by electrodeposition.  
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CuO/Cu2O@NiCo2S4-4 composite, scanning electron microscopy (SEM) and transmission electron 
microscopy (TEM) images are presented in Figure 3. As shown in Figure 3a, the copper foam shows 
a 3D open network framework, indicating its relatively high surface area and considerable 
electroactive sites for ion diffusion onto the nanowire surface. After thermal treatment of the Cu foam 
for some time, its skeleton is completely covered by dense nanowire arrays which are almost 
vertically grown on the Cu substrate (Figure 3b). The average length of CuO/Cu2O nanowires is 
around 5–10 μm and diameter is ~50 nm. After coating with NiCo2S4 nanosheets by the  
co-electrodeposition route, CuO/Cu2O@NiCo2S4 composites are obtained (Figure 3c). It is clear that 
NiCo2S4 nanosheets are grown uniformly on the CuO/Cu2O nanowires’ backbone, resulting in the 
hierarchical core-shell nanostructures on Cu foam. The core-shell nanostructure can be distinctly 
found and the average thickness of the NiCo2S4 shell is ~20 nm. It is worth noting that numerous 
voids between composite nanowires can be clearly observed, which facilitate the transport of ions 
between the electrode and electrolyte. The detailed structure of CuO/Cu2O@NiCo2S4 core-shell 
composite is also verified by TEM images. Figure 3d reveals the single CuO/Cu2O nanowire with 
smooth surface, while its surface becomes rough after coating with interconnected NiCo2S4 
nanosheets (Figure 3e). And the width of the NiCo2S4 shell is ~100 nm. The rough and ultrathin 

 

Figure 1. Schematic illustration of the CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam.

Typical XRD patters of the CuO/Cu2O and CuO/Cu2O@NiCo2S4-4 samples are given in
Figure 2. Both distinctive peaks at 43.3◦ and 50.4◦ assigned to (111) and (200) planes of Cu (JCPDS
No. 65–9026) [29] can be observed in the pattern of CuO/Cu2O/Cu composite, which indicates that
Cu foam substrate is not entirely oxidized. The diffraction peaks at 36.5◦, 61.5◦ and 74.6◦ are attributed
to the crystal planes of cubic Cu2O (JCPDS No. 78–2076), and the peak at 35.6◦ is ascribed to (111)
crystal plane of CuO (JCPDS No. 74–1021) [27,29]. Importantly, the above diffraction peaks all appear
in the pattern of CuO/Cu2O@NiCo2S4-4 composite, but a new peak at 38.1◦ is consistent with (400)
plane of cubic type NiCo2S4 (JCPDS No. 45–1477) [24,36], suggesting the poor crystallinity or small
amount of NiCo2S4 obtained by electrodeposition.
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Figure 2. X-ray diffraction patters of the as–prepared CuO/Cu2O/Cu and CuO/Cu2O@NiCo2S4-4.

In order to characterize the structure and surface morphology of hierarchical CuO/Cu2O@NiCo2S4-4
composite, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images are
presented in Figure 3. As shown in Figure 3a, the copper foam shows a 3D open network framework,
indicating its relatively high surface area and considerable electroactive sites for ion diffusion onto the
nanowire surface. After thermal treatment of the Cu foam for some time, its skeleton is completely
covered by dense nanowire arrays which are almost vertically grown on the Cu substrate (Figure 3b).
The average length of CuO/Cu2O nanowires is around 5–10 µm and diameter is ~50 nm. After coating
with NiCo2S4 nanosheets by the co-electrodeposition route, CuO/Cu2O@NiCo2S4 composites are
obtained (Figure 3c). It is clear that NiCo2S4 nanosheets are grown uniformly on the CuO/Cu2O
nanowires’ backbone, resulting in the hierarchical core-shell nanostructures on Cu foam. The core-shell
nanostructure can be distinctly found and the average thickness of the NiCo2S4 shell is ~20 nm. It is
worth noting that numerous voids between composite nanowires can be clearly observed, which
facilitate the transport of ions between the electrode and electrolyte. The detailed structure of
CuO/Cu2O@NiCo2S4 core-shell composite is also verified by TEM images. Figure 3d reveals the
single CuO/Cu2O nanowire with smooth surface, while its surface becomes rough after coating with
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interconnected NiCo2S4 nanosheets (Figure 3e). And the width of the NiCo2S4 shell is ~100 nm.
The rough and ultrathin nanosheets on the CuO/Cu2O nanowire core endow the composite with
large surface area in favor of intercalation/de-intercalation of ions. In addition, CuO/Cu2O nanowires
directly grown on Cu foam act as a wonderful scaffold for uniform growth of the metal sulfides
nanoflakes, and hence the adhesion of the CuO/Cu2O@NiCo2S4 composite on Cu foam is very robust
and the cycling stability of composite electrode is thus enhanced significantly. In order to further
reveal the structural differences between CuO/Cu2O@NiCo2S4 composites obtained with various
concentration ratio of CoCl2·6H2O to NiCl2·6H2O (i.e., ratio of Co2+/Ni2+), SEM images of these
composites with various concentration ratio of Co2+/Ni2+ are now provided in Figure S1. It can be
found that NiCo2S4 nanosheets on CuO/Cu2O nanowires become more evident and well defined
hierarchical structures are thus formed with increasing concentration ratio of Co2+/Ni2+.
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Figure 3. Scanning electron microscopy (SEM) images of (a) copper foam; (b) CuO/Cu2O nanowires
and (c) CuO/Cu2O@NiCo2S4-4 composite nanowires (The insets in (b) and (c) show high-magnification
of respective SEM images); transmission electron microscopy (TEM) images of (d) CuO/Cu2O
nanowires and (e) CuO/Cu2O@NiCo2S4-4 composite nanowires.

Energy-dispersive X-ray spectroscopy (EDS) mapping was carried out to clarify the elemental
distribution of the NiCo2S4 nanosheet arrays. Figure S2b,c,e exhibit the elemental mapping of nickel
(e), cobalt (b), sulfide (c), respectively. The even distribution of the Ni, Co, S elements reveals orderly
growth of the NiCo2S4 nanosheets on the surface of CuO/Cu2O composite nanowires, which is more
evidence that NiCo2S4 nanosheets have been synthesized successfully via electrodeposition.

In order to analyse the elemental composition and chemical state in CuO/Cu2O@NiCo2S4

composite, XPS measurements were performed (Figure 4). As shown in Figure 4a, two typical peaks
located at 931.7 eV and 952.0 eV correspond to Cu 2p3/2 and Cu 2p1/2, respectively, indicating existence
of the Cu+ in the composite [37,38]. Moreover, the observed peaks at 943.0 eV and 962.5 eV imply
the presence of unfilled Cu 3d9 shell of Cu2+ in the composite [39]. The Co 2p and Ni 2p spectra
can be fitted with the two spin-orbit doublets and two shakeup satellite. Figure 4b presents the Ni
2p spectrum, the binding energies at around 875.2 eV and 857.0 eV are ascribed to Ni 2p1/2 and Ni
2p3/2, respectively, confirming the existence of Ni2+, while the peaks at 879.5 eV and 861.7 eV of Ni
2p are related to Ni3+ in the sample [40,41]. For the Co emission spectrum (Figure 4c), the observed
peaks at 796.3 eV and 781.2 eV of Co 2p are characteristics of Co2+, whereas the peaks at 798.7 eV and
783.5 eV of Co 2p are well matched with Co3+ according to the previous reported [42]. As for the S 2p
high resolution spectrum (Figure 4d), the binding energy at 162.1 eV can be attributed to the S 2p3/2
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core level, which is a typical peak of the metal-sulfur bonds (Ni–S and Co–S bonding) in the Ni–Co
sulfides [43] and the peak at 169 eV in S 2p is assigned to surface sulfur [44]. In the light of the XPS
analysis, the surface of the composite consists of Ni2+, Ni3+, Co2+, Co3+ and S2−. The results are in
agreement with previous studies on NiCo2S4 [45].
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The electrochemical properties of the CuO/Cu2O@NiCo2S4 composites as binder-free electrodes
were investigated in a standard three-electrode system. As can be seen from Figure 5a, all
curves demonstrate a pair of well-defined redox peaks, showing the pseudocapacitive behavior
of all composites. Clearly, the ternary composites possess the larger areas inside the CV curves
than that CuO/Cu2O, demonstrating that incorporation of NiCo2S4 nanosheets result in larger
capacitance of composites than CuO/Cu2O. Furthermore, the CuO/Cu2O@NiCo2S4-4 electrode has
the largest CV integrated area among all composite electrodes at the same scan rate, suggesting
the CuO/Cu2O@NiCo2S4-4 electrode exhibits the best capacitive properties. Note that along with
the Co2+ concentration increasing, the anodic peaks shift to lower potential. This can be explained
by the fact that the cobalt sulfides have a lower redox potential in comparison with nickel sulfides
based on their inherent electrochemical response to the electrolyte [44]. Figure 5b depicts the GCD
curves of composites with different ratio of Co2+ to Ni2+. Apparently, the longest discharging time of
CuO/Cu2O@NiCo2S4-4 electrode exactly reflects its largest capacitance, as confirmed by the CV results.
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The specific capacitance of composites was calculated in terms of GCD curves and the results are
plotted in Figure 5c. As the ratio of Co2+/Ni2+ is increased, the capacitance of the composites increases
and reaches a maximum at Co2+/Ni2+ = 15/10 then decreases, that is, the CuO/Cu2O@NiCo2S4-4
electrode exhibits the largest capacitance of 3.186 F cm−2 at a current density of 10 mA cm−2. Therefore,
CuO/Cu2O@NiCo2S4-4 is chosen as a representative of CuO/Cu2O@NiCo2S4 composites, and its
structural and electrochemical properties are emphasized in our experiment.

Figure 5d shows the CV curves of CuO/Cu2O@ NiCo2S4-4 electrode at various scan rates of
5, 10, 20, 50, 100 mV s−1. The noticeable anodic and cathodic peaks in all CV curves indicate that the
electrode materials obtained own Faradaic redox reactions and pseudocapacitive characteristics which
is caused by the reversible reactions of Co2+/Co3+ and Ni2+/Ni3+ with OH- according to the following
equations [46]:

CoS + OH− ↔ CoSOH + e− (1)

CoSOH + OH− ↔ CoS + H2O + e− (2)

NiS + OH− ↔ NiSOH + e− (3)

Clearly, all the curves depict the similar redox peaks and the intensity of current increases
with scan rate from 5 to 100 mV s−1. The anodic peaks shift to higher potentials and the cathodic
peaks shift to lower potentials accordingly, indicating an enlarged potential window. Even as
the scan rate increases up to 100 mV s−1, the redox peaks still retain, which indicates that the
hierarchical structure is beneficial to faster Faradic reactions. Figure 5e presents the GCD curves
of CuO/Cu2O@NiCo2S4-4 electrode at different current density. The similar symmetric potential-time
curves demonstrate the high charge-discharge coulombic efficiency and low polarization of the
3D hierarchical composite electrode [47]. To further evaluate potential applications of the resulting
composite electrodes for SCs, the rate capability of the CuO/Cu2O@NiCo2S4-4 electrode was also
investigated by GCD measurements at various current densities (Figure 5f). The specific capacitance
of this optimized electrode was calculated to be 3.376, 3.333, 3.186, 3.060, 2.928, 2.77 F cm−2 at
2, 5, 10, 20, 30, 50 mA cm−2, respectively. Although the capacitance decreases with increasing
current densities, around 82.06% of initial capacitance is still retained as the current density increased
from 2 to 50 mA cm−2. Good rate performance might be due to the synergistic effects of NiCo2S4

nanosheets and CuO/Cu2O nanowire arrays. CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on
Cu foam with high conductivity and specific surface area can not only facilitate the electrolyte access
and exposure of the active sites to the electrolyte, but also effectively collect and transfer charges.
In addition, the robust adhesion of composite nanowires on Cu foam also ensures its structural stability
during the electrochemical reaction.
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charge–discharge (GCD) curves of all the CuO/Cu2O@NiCo2S4 electrodes at a current density of
10 mA cm−2; (c) Specific capacitance of CuO/Cu2O@NiCo2S4 composites as a function of ratio
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To better understand the electrochemical performance of all the samples investigated, Nyquist
plot was performed to investigate ion diffusion and charge transfer on the electrode/electrolyte
interface, as shown in the Figure 6a. All the electrodes show a straight line in the low-frequency
region. Ionic diffusion of electrolyte ions into active materials can be reflected by the slope of the
straight line. It is evident that the largest slope of CuO/Cu2O@NiCo2S4-4 electrode reveals the
best capacitive properties because of the fastest diffusion rate of electrolyte ions into the electrode
materials. In the high-frequency region, the equivalent series resistance (Rs) is indicated by intersection
of the plots at the X-axis. Apparently, the CuO/Cu2O electrode exhibits the largest Rs due to its
highest resistance among all electrodes, while the CuO/Cu2O@NiCo2S4-4 electrode exhibits the lowest
resistance (Rs = 0.968 Ω), which indicates excellent capacitor behavior and low electrolyte diffusion
resistance. Efficient attachment of NiCo2S4 nanoflakes on the CuO/Cu2O nanowire backbone offers
an ideal pathway for electron transport. A small Rs value facilitates rapid ion transport from solution
to the NiCo2S4 nanosheets in electrolyte, leading to good rate capability of NiCo2S4-4, which can be
also confirmed by Figure 5f.

The long-term stability of the electrode is also crucial for practical applications. Figure 6b shows
the cycling performance of CuO/Cu2O@NiCo2S4-4 electrode at a current density of 10 mA cm−2.
The specific capacitance decreases gently with the increasing cycle numbers. After 2000 cycles,
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the electrode could maintain a relatively high specific capacitance of 2.96 F cm−2, an outstanding
capacitance retention of 96.73% is retained, indicating quite good cycling property, which is higher
than other ternary sulfides, such as NiCo2S4 [48], NiCo2O4@Ni3S2 [49], and NiCo2S4@Ni(OH)2 [50].
To verify that this electrode material can give rise to considerable high capacitance retention, SEM
imagery of the electrode material after 2000 cycles was conducted (Figure 6b, inset). The composite
electrode can still maintain its 3D hierarchical structure even after 2000 cycles. The excellent
electrochemical properties of CuO/Cu2O@NiCo2S4-4 can be caused by the following factors. Firstly,
the composite electrode obtained exhibits hierarchical structure with the core (CuO/Cu2O nanowires)
and the shell (NiCo2S4 nanosheets). The two parts can be both used as pseudocapacitive materials.
The shell provides very large surface area to offer a number of electroactive sites for fast and reversible
redox reactions to improve capacitance, while the core endows the active materials with robust
adhesion on Cu foam to guarantee structural stability during cyclic process. Secondly, this hierarchical
nanoarchitecture can provide superhighways for rapid electron transportation and ion diffusion
between electrolyte and the electrode. Also, this hybrid structure can ensure a large contact surface
between the electrode and electrolyte even at very high rate. Thirdly, the NiCo2S4 nanosheets directly
grown on CuO/Cu2O nanowire arrays can create many open spaces and short ion diffusion paths in
favor of the electrochemical reaction, and also avoid the addition of a polymer binder or additive in
the electrode materials, ensuring good electrical conductivity. Therefore, the direct growth of NiCo2S4

nanosheets on CuO/Cu2O nanowires results in superior electrochemical performance of the ternary
composite electrode.
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4. Conclusions

In conclusion, the hierarchical NiCo2S4 nanosheets arrays grown directly on the CuO/Cu2O/Cu
nanowires have been successfully constructed by electrodeposition for high performance SC electrode
applications. Both the core (CuO/Cu2O nanowires) and the shell (NiCo2S4 nanosheets) act as the
electroactive materials. Moreover, this hybrid structure also serves as a hierarchical scaffold for
rapid ion diffusion and electron transport. The hierarchical CuO/Cu2O@NiCo2S4 electrode exhibits
ultrahigh specific capacitance (2.77 F cm−2 at 50 mA cm−2), high rate performance (82.06% of
capacitance retention from 2 to 50 mA cm−2) and excellent cycling stability (only 3.27% capacity
loss after 2000 cycles at 10 mA cm−2). The experiment results not only stress the significance of optimal



Nanomaterials 2017, 7, 273 10 of 12

design and fabrication of electrode materials, but also propose a simple method for 3D electrode
configuration in energy storage fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/9/273/s1,
Figure S1: SEM images of (a) CuO/Cu2O@NiCo2S4–1, (b)CuO/Cu2O@NiCo2S4–2, (c) CuO/Cu2O@NiCo2S4–3,
(d) CuO/Cu2O@NiCo2S4–4, (e) CuO/Cu2O@NiCo2S4–5, Figure S2: EDS mapping of (a) O element, (b) Co element,
(c) S element and (d) Cu elements (e) Ni element and (f) the cross section of CuO/Cu2O@ NiCo2S4–4.
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