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Abstract: The aim of this work was to investigate of biocompatibility of polymeric implants modified
with silver nanoparticles (AgNPs). Middle ear prostheses (otoimplants) made of the (poly)acrylonitrile
butadiene styrene (ABS) and ABS modified with silver nanoparticles were prepared through extrusion
and injection moulding process. The obtained prostheses were characterized by SEM-EDX, micro-CT
and mechanical tests, confirming their proper shape, good AgNPs homogenization and mechanical
parameters stability. The biocompatibility of the implants was evaluated in vivo on rats, after 4, 12,
24 and 48 weeks of implantation. The tissue-healing process and cytotoxicity of the implants were
evaluated on the basis of microscopic observations of the materials morphology after histochemical
staining with cytochrome c oxidase (OCC) and acid phosphatase (AP), as well as via micro-tomography
(ex vivo). The in vivo studies confirmed biocompatibility of the implants in the surrounding tissue
environment. Both the pure ABS and nanosilver-modified ABS implants exhibited a distinct decrease
in the area of granulation tissue which was replaced with the regenerating muscle tissue. Moreover,
a slightly smaller area of granulation tissue was observed in the surroundings of the silver-doped
prosthesis than in the case of pure ABS prosthesis. The kinetics of silver ions releasing from implants
was investigated by ICP-MS spectrometry. The measurement confirmed that concentration of the silver
ions increased within the implant’s immersion period. Our results showed that middle ear implant
with the nanoscale modification is biocompatible and might be used in ossicular reconstruction.

Keywords: nanocomposites; medical devices; middle ear prosthesis; silver nanoparticles; biocompatibility;
thermoplastic polymer

1. Introduction

The need to replace or reconstruct ossicles has led to the development of surgical techniques
enabling innovative prostheses implantation. New structural and material possibilities have improved
the design and preparation of prostheses so as to make them vary in size, shape and the applied
material. Nowadays, it is common knowledge that a well-designed material may result in a more
advantageous postoperative response. Moreover, proper modifications of the chemical composition
change the parameters and functions of mechanical prostheses.

The ossicular chain reconstruction may be carried out with either partial ossicular replacement
prosthesis (PORP) or total ossicular replacement prosthesis (TORP). Unfortunately, many ossicular
chain reconstructions—using either PORPs or TORPs—still fail. There are various factors determining
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the success of the operations, such as the proper length of the prosthesis, stability of implantation,
recurring illnesses, risk of inflammation, and reaming out the ear to provide passage of air [1,2].
Another important factor is the presence of either anatomic incus or stapes that facilitate the stability
of the prosthesis fixation. Despite the possible difficulties and complications, both partial [3–5] and
total prostheses [6] are effective in ossicular chain reconstructions.

The research conducted for the last 40 years has thoroughly described the requirements set for
materials used in laryngological surgeries. The most important issue is the optimal quality of sound
transmission that is influenced by various biological, acoustic and mechanical factors. As far as
the biomechanical functions of the device are concerned, the mechanical properties of the implant
material are key factors. Still, it is possible to tailor the material to specific needs depending on the
implantation site, the size of the implant and the manner of manufacturing. The materials for middle
ear prostheses do not face precise strength requirements. Yet it is common knowledge that the implant
material should have such mechanical properties so as to best resemble the tissue it is supposed to
substitute. It is a challenge to design a perfect material, considering the complex structure and the
chain of auditory ossicles, as well as the wide spectrum of Young’s modulus for particular elements
(e.g., ligaments, muscles, joint and bones) which ranges from 0.049 MPa (for ligaments) to 14 GPa
(for bones) [7]. The transmission of high-frequency sound depends on such parameters as the surface
of the prosthesis, its stiffness (rigidity), Young modulus, Kirchhoff modulus, friction and the implant’s
density and weight (mass) [8–10]. Although the lightness of the structure is connected with the type
and size of the implant, the essential factor is the material of the prosthesis. In order to provide the
best quality of high-frequency transmission, the implants ought to be as light as possible—the higher
specific gravity of the implant, the lower its high-frequency sensitivity [11]. Apart from the sound
transmission of the middle ear implant, the biological functions of the material are a key requirement
in medical applications.

The mechanical properties of the material dedicated for ear implants are also clearly defined.
The biomaterial is supposed to sustain its shape, constant measurements, proper elasticity and rigidness
for the longest possible period of time. The material should be also resistant to changing loads and
prove its high resilience in fatigue tests. Additionally, middle ear prostheses must be capable of making
micro movements between the eardrum and middle-ear chamber.

Polymeric/(poly)acrylonitrile butadiene styrene (ABS) materials play a significant role in bone
surgery and laryngology [12]. There were a few reasons for selecting high ABS as a material for
prototype implants. First of all, it is very convenient to obtain complex shapes by means of injection
moulding. ABS polymers can be modified with silver nanoparticles, obtaining the following advantages:
bactericidal efficacy against Staphylococcus aureus and Escherichia coli, slight but visible cytotoxicity
against fibroblasts (ensuring better implant-bone fixation without scarring), no cytotoxic activity against
osteoblasts, advantageous mechanical properties, fatigue stability, high homogenization of nanosilver in
the polymer matrix and a high level of silver ions released into the environment [13]. All the previously
mentioned factors proved Ag-modified ABS to be a very promising material for a prototype of the
middle ear implant.

The potential for the use of nanoparticles in surgery is huge. Antibacterial properties of silver
nanoparticles are used in urology, implantology and dentistry, as well as to treat burns or other
chronic wounds [14,15]. For instance, catheters can be coated with silver nanoparticles to endow
them with antibacterial properties and prevent surface biofilm formation [16]. In the surgery of ossicular
replacement prosthesis, none of the implants possess bactericidal properties. Nowadays, the range of
commercially available materials used for bone reconstruction is impressive. On the market, the most
popular group of materials used for such prostheses are metals (titanium), ceramic (hydroxyapatite),
polymers (PTFE-teflon) and some composites (HAPEX) [17]. According to the literature reports, the
titanium prostheses display better biostability and biocompatibility in comparison to allogenic grafts. The
titanium implants sustain proper stiffness and they are efficient in sound transmission and lightweight,
which is a vital factor in the postoperative assessment [18]. The ossicular chain reconstructions are
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often performed with hydroxyapatite prostheses, as an alternative to auto- and homografts. They are
popular mainly due to the biological aspect. It is one of the main components of bones and teeth and it
forms a stable implant/tissue bonding without the fibrous layer around the prosthesis. Hydroxyapatite
also stimulates the cell proliferation and is highly biocompatible [19]. The negative feature, however,
is the formation of a big mass in the relatively small middle ear cavity [20]. Teflon is used to obtain
partial ossicular replacement prosthesis, ventilation tubes and drains, incus and stapes prostheses
(piston type) usually with a platinum wire. Due to its hydrophobicity and low surface energy teflon is
especially popular for the stapes prostheses [21]. One of the most popular materials for the ossicle chain
reconstruction is HAPEX. It is composed of 40% synthetic hydroxyapatite (HAp) and 60% high-density
polyethylene (HDPE). In the stress tests, HAPEX has proven to be a stable implant/bone bonding.
Fibrous tissue formation was observed on the implant surface and the implant/bone border, in some
cases a thin epithelium layer outside was also observed [22].

In our case, the whole prosthesis is made of a thermoplastic polymer (ABS), which makes it
lightweight. It is also possible to adjust the implant’s length. The round shape of the head plate
minimizes the risk of tympanic membrane damage. The openwork construction of prosthesis (antenna)
allows its easy placement in the middle ear and creates an opportunity to manually form a desired
shape, according to the particular ossicular chain damages. Moreover, the mechanical properties, such
as Young’s modulus, are similar to the bone. Additionally, the cheap manufacturing method makes
the product competitive in the scope of general costs of treatment. The novelty is also the antibacterial
function of the plastic prosthesis. This medical device is similar to the titanium prosthesis in shape
but, up to now, it has never been manufactured by injection moulding and extrusion. Therefore,
antimicrobial polymers are highly demanded as a strategy to avoid otitis media infections.

The perfect prosthesis material should be biocompatible with the surrounding tissues, it cannot
result in acute immunological, toxic, or allergic reactions [23]. Moreover, it should not display
mutagenic or carcinogenic effects. From the biological point of view, especially in the case of chronic
middle ear infection, the material’s stability in the environment is an essential quality too. The material
should neither degrade nor facilitate the further inflammation process [24,25]. It should be endowed
with proper wettability value to facilitate the epithelial cells proliferation, which guarantees the
successful adaptation of the implant.

According to the correct sequence of biological research, the implant material should first undergo
the in vitro cytotoxicity testing procedures. Then it should be tested on animals to describe an
interaction with the soft tissue and, preferably, also in the environment corresponding to the one of the
middle ear [26].

In this work, the medical devices made of nanocomposite with antibacterial silver nanoparticles
have been described as valid tools for otolaryngology. The biocompatibility of these devices has
been tested in vivo. Our results showed that this micro-device with the nanoscale modification is
biocompatible and very promising as a novel middle ear prosthesis.

2. Materials and Methods

2.1. Material Manufacturing

The otoimplants were manufactured by means of extrusion and injection moulding method, using
the Multiplas machine (Multiplas Enginery Co., LTD, Taiwan) fitted with a special steel moulding form.
The two types of the implants were injected: (poly)acrylonitrile butadiene styrene (ABS) and ABS with
the addition of 0.1 wt. % silver nanoparticles (AgNPs). The silver was developed at the Intercollegiate
Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk manufacture
according to Banasiuk et al. 2016 [27]. The size and shape of nanoparticles were estimated via SEM and
TEM [27]—they were characterized as spherical and measuring below 50 nm in diameter (Figure 1).
The AgNPs were agglomerated as an aqueous environment evaporated during the procedure of
sample preparation for SEM and nanoparticles started to aggregate.
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Figure 1. SEM images showing the silver nanoparticles, (A) silver nanoparticles (AgNPs), scale 500 
nm, (B) AgNPs with visible diameter, scale 300 nm. 

The procedure of obtaining the prostheses according to Ziąbka et al. 2017 [28] consisted of a few 
steps. First, the granulate was prepared and dried in the laboratory dryer at 80 °C for 6 h. Next, the 
nanosilver particles were incorporated and homogenized with polymer granules in the plasticizing 
chamber using a 0.8 m-long screw. Subsequently, the material was injected into the steel moulding 
form, cooled and extracted. The injection parameters were selected and adapted for the process 
according to the characteristic data sheet of the polymer manufacturer (injection temperature in 
three zones—240 °C, injection pressure—80 kg cm−2, flow—70%).  

The shape of our otoimplant (Figure 2) does not vary significantly from the other prostheses, as 
it has to replace ossicular chain bones and easily fit in the middle ear. However, we have enhanced 
some of its parts to simplify the surgical procedure. The shape we developed is surgically handy, 
ensuring the precise implantation in the middle ear. 

 
Figure 2. The middle ear implant—otoimplant. 

The prosthesis consists of the three elements: A “cup” which is placed on the head of the stapes, 
a “piston”—joining the cup and an “antenna”—the implant base which bends on the tympanic 
membrane. The openwork construction of the antenna determines the implant weight and expedites 
the implantation.  

Figure 1. SEM images showing the silver nanoparticles, (A) silver nanoparticles (AgNPs), scale 500 nm,
(B) AgNPs with visible diameter, scale 300 nm.

The procedure of obtaining the prostheses according to Ziąbka et al. 2017 [28] consisted of a few
steps. First, the granulate was prepared and dried in the laboratory dryer at 80 ◦C for 6 h. Next,
the nanosilver particles were incorporated and homogenized with polymer granules in the plasticizing
chamber using a 0.8 m-long screw. Subsequently, the material was injected into the steel moulding
form, cooled and extracted. The injection parameters were selected and adapted for the process
according to the characteristic data sheet of the polymer manufacturer (injection temperature in three
zones—240 ◦C, injection pressure—80 kg cm−2, flow—70%).

The shape of our otoimplant (Figure 2) does not vary significantly from the other prostheses, as it
has to replace ossicular chain bones and easily fit in the middle ear. However, we have enhanced some
of its parts to simplify the surgical procedure. The shape we developed is surgically handy, ensuring
the precise implantation in the middle ear.
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Figure 2. The middle ear implant—otoimplant.

The prosthesis consists of the three elements: A “cup” which is placed on the head of the stapes,
a “piston”—joining the cup and an “antenna”—the implant base which bends on the tympanic
membrane. The openwork construction of the antenna determines the implant weight and expedites
the implantation.



Nanomaterials 2018, 8, 764 5 of 18

2.2. Material Evaluation

Scanning Electron Microscopy

The SEM-Quanta FEG-250 scanning electron microscope (FEI, Eindhoven, The Netherlands) was
used to perform a detailed examination of the otoimplants microstructure. The measurements and
observations were conducted in high vacuum conditions, with a back scattered electron detector
(BSE), with the accelerated voltage of 10–18 kV. The microstructure observations were conducted on
two kinds of the implants—one was made of pure ABS and the other of ABS modified with silver
nanoparticles. All the samples were coated with a carbon layer.

Additionally, the microstructure of these implants was investigated using the Nova Nano SEM
200 scanning electron microscope (FEI, Eindhoven, The Netherlands) coupled with a Genesis XMX-ray
microanalysis system (EDAX, Tilburg, The Netherlands). The measurements and observations were
conducted in low vacuum conditions with a secondary electron detector (SE), the accelerated voltage
was 10–18 kV. The samples were coated with a carbon layer.

2.3. Implantation Procedure

The procedure of implantation was performed at the Animal Facility of the Faculty of Pharmacy
CM UJ Krakow (the consent no 251/2015 issued by the 1st Local Ethical Committee on Animal Testing
in Krakow). The experiment was performed according to the PN ISO 10993-6 guidelines [29]. The male
adult Wistar rat (Rattus norvegicus) was chosen as a research model. The animals were kept in standard
conditions at the stable temperature of about 20 ◦C and the 12:12 h light cycle.

The middle ear prostheses made of pure ABS and silver-doped ABS were sterilized at a low
temperature gas plasma (the Sterrad 120 apparatus) using hydrogen peroxide vapour in the double-cycle
(2 × 45 min) and implanted into the rats’ gluteus muscles. The animals were divided into four groups
for 30, 90, 180 and 360-day cycles, 5 rats in each batch. Prior to the surgery, the animals were sedated
with the intraperitoneal injection (Ketamine + Xylazine: 100 mg/kg + 10 mg/kg animal body weight)
and the implantation area was shaved and disinfected with iodine. Next, a small incision was made
in the skin and the underlying muscle to create a small pouch (3–4 mm deep) where the implant was
inserted. Then the double stitching was applied (degradable PDS II Johnson & Johnson Intl) to complete
the surgery. The implantation procedure is presented in Figure 3.
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2.4. In Vivo Examination

After a set period of time (30, 90, 180 or 360 days) the rats were decapitated, then the tissue
samples were extracted and prepared (frozen in liquid nitrogen, cut into 9 µm-thick slices with
a cryostat microtome—Shandon, Thermo Sci., GB) for histoenzymic and microstructural assessment.
Additionally, the lymph glands adjacent to the implant site were extracted for further examinations.
The histoenzymic reactions such as cytochrome c oxidase (OCC) and acid phosphatase (AP) were
performed to identify the response to a foreign body and to assess the healing process. Slides performed
for the AP activity were also stained with Mayer’s hematoxylin for better visualization of tissue
structure. The observations were conducted using an optical microscope (Olympus BH2, Tokyo, Japan,
objective 4–20×) and images were taken with a digital camera. In each series, the tissue samples
containing the pure ABS implant and the ABS/AgNPs implant were extracted and immersed into
formalin for the further micro-CT study. The samples of blood were harvested for CRP (C Reactive
Protein) examination as well.

2.5. C Reactive Protein Measurement

Blood was collected directly from the heart of 5 rats decapitated after 30 days of implantation.
The C reactive protein (CRP) concentration in blood serum was measured by an immunoturbidimetric
method using the Cobas 8000 machine (Roche Hitachi, Mannheim, Germany).

2.6. Micro-CT Observation

The rats’ muscle tissues containing the implants of the two kinds (pure ABS and ABS/AgNPs)
were harvested and fixed in 4% buffered formalin to perform the Micro-CT observations. The tests
were performed 30, 90, 180 and 360 days after the implantation. All the samples were scanned in wet
conditions at room temperature using a Nanotom 180N device (GE Sensing & Inspection Technologies
Phoenix X-ray Gmbh, Grasbrunn, Germany). The micro-CT system provided a unique spatial and
contrast resolution due to the installed ultra-high performance nanofocus X-ray tube (180 kV/57 W)
and the tungsten target with a diamond window. The working parameters of the X-ray tube were
I = 200 µA and V = 70 kV. The magnification was set to 6.7, which corresponds to 7.5 µm resolution.
Each projection was averaged from five expositions taking 500 ms for each. The total number of
projections was 1800. The reconstruction of the scanned implants was performed with the aid of
proprietary GE software datos X ver. 2.1.0 using the Feldkamp algorithm for cone beam X-ray CT.
The post-reconstruction data treatments, such as denoising, thresholding and visualization, were run
in VG Studio Max.

2.7. ICP-MS

The pure polymer otoimplants and silver-doped otoimplants were incubated at 37 ◦C in 50 mL of
UHQ water for one year. The ions release observations were also carried out on bigger samples (10 mm
in diameter) due to the low concentration. The silver ions concentration was also examined in the
blood harvested from the rats’ hearts one month after the implantation. The in vitro release of silver
ions was studied by means of inductively coupled plasma mass spectrometry (ICP-MS), using the
ICP-MS Perkin-Elmer Plasma 6100 spectrometer. Prior to performing ICP-MS analysis, so as to prohibit
the silver ions (Ag+) reduction into metallic silver, the filtered samples were acidified with nitric acid,
up to the final concentration of 0.1 mol/L. The silver concentration values of the investigated samples
were determined using ICP-MS at m/z 107, applying the external standard calibration procedure.

2.8. Mechanical Tests

The mechanical parameters were established during the uniaxial stretching, using the universal
testing machine Inspekt Table Blue 5 kN (Hegewald & Peschke GmbH, Nossen, Germany) and the
intelligent testing software LabMaster. The tested samples were shaped as paddles made of ABS
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polymer and the silver-modified composite. Their measurements are compliant with PN-EN ISO 527-1
norm [30]. In order to perform the tensile strength test, the paddles were placed in the grips of the testing
machine and the tensile force F was applied. The measuring speed of the upper grip of the machine was
50 mm/min and the measuring length of the paddles was 40 mm. The measuring accuracy of elongation
was 0.01 mm, and of the force—0.5 N with the nominal range of the cylinder—5000 N. The obtained
force-deformation graph made it possible to establish such parameters as Young’s modulus E, tensile
strength σ and elongation at the maximum εFmax force.

2.9. Statistical Analysis

The results were analyzed using the one-way analysis of variance (ANOVA) with Duncan post
hoc tests, performed with Statistica 13.1 (Dell Inc., Round Rock, TX, USA) software. The results were
considered statistically significant when p < 0.05.

3. Results and Discussion

3.1. Microstructure Observation of Middle Ear Prosthesis

The observations of the implants’ microstructure using the SEM method and micro-CT reconstruction
confirmed the proper prosthesis shape obtained in the injection moulding process (Figure 4B–D). All
the prostheses elements (the cup, the piston and the antenna) were of a homogeneous and consistent
structure in comparison to the 3D model prepared in the Solidworks (Figure 4A).
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sides, (D) prosthesis 3D reconstruction after micro-CT scanning.

An innovative solution is the openwork construction of the antenna that allows easier implantation
and determines the weight of the implant. Initially, the complex mould shape and the small size
of the medical device caused many difficulties. However, the well-thought-out injection moulding
conditions and the efficient silver nanoparticles dispersion in the polymer matrix resulted in developing
laryngological implants. Moreover, the implants were obtained in accordance with the design
assumptions and the connection of the individual elements was proper. It is common knowledge
that good dispersion and strong interfacial interactions between the nanoparticles and the polymer
matrix are critical to engineering a strong composite. Therefore, it is a challenge to obtain the sufficient
dispersion of hydrophobic fillers in a polymer matrix. Although various surfactants are widely used
as they enhance dispersion, their cytotoxicity limits the biomedical applications [31]. Therefore, in our
research, we decided against using any surfactants or toxic chemicals.

3.2. Ex Vivo Investigations of Tissue-Implants Samples

All the rats not only survived the procedure but the in vivo tests did not reveal any postoperative
complications or external symptoms of inflammation, e.g., reddening and irritation in both types
of implants. After the 30-day postoperative period, the fur was growing back on the implantation
site, whereas after 3 months the spot was fully covered in hair (Figure 5). There were no signs of
scars or stitching left. Having removed the skin, the tissue with the area of surgery was visible. After
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30 days a so-called “lens”—the place where the tissue collapsed—was easy to identify. From 90 days of
implantation, the tissue looked absolutely ordinary. No macroscopic differences were to be observed
between the two types of implants.

The internal organs of the rats were examined too. No changes in morphology were noted in
kidneys, spleen, liver or intestines. The tissue samples were extracted for further microscopic and
histochemical observations.
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Figure 5. Implantation site after 30 days (left), 90 days (center) and 180 days for otoimplant/AgNPs.

3.3. Histochemical Analysis

The in vivo histochemical tests (OCC and AP) conducted on the animals answered the questions
concerning the cytotoxicity of the implanted material. OCC is an enzyme with high sensitivity to
xenobiotics and its normal activity shows that the presence of an implant or ions released from its
surface does not inhibit the metabolism of surrounding tissues. AP activity tests were carried out
to demonstrate the intensity of inflammation caused by the presence of the implant in the tissue.
The surgical insertion of the material resulted in an immunological response—first, it was the reaction
to the surgery itself, then to the implanted material. In our study, moderate inflammation was observed
around both types of implants (Figure 6). The presence of immune cells (granulocytes, macrophages
and lymphocytes) involved in healing processes and the rejection of a foreign body was observed.
As a result, the granulation phenomenon took place. The granulation tissue was being gradually
replaced by the regenerating muscles and—subsequently—with the mature fully-developed muscles.
The scar tissue formed only in the place of surgical incisions.

In some cases, there was an acute inflammatory infiltration. It is worth noting that both kinds of
implants (ABS and ABS/AgNPs) led to similar immunological reactions, i.e., a lownumber of mast
cells and eosinophiles. The observed inflammation resulted from the tissue damage and was the
natural response to a foreign body. The local inflammation was observed around the prosthesis in the
tissue samples obtained a month after the surgery and sectioned for histochemical analysis (Figure 6).
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Figure 6. Cross-sections of tissues with otoimplant (on the left) and otoimplant/AgNPs (on the right)
after 30, 90, 180 and 360 days of implantation in the rats’ muscles, acid phosphatase (AP) and cytochrome
c oxidase (OCC) staining, objective 4, 20×. NOTE: The following symbols are used to describe
the tissue cross-sections: M—muscle tissue, G—granulation tissue, IN—inflammatory infiltration,
MR—regenerating muscle.

The C Reactive Protein tests (CRP) did not show any local inflammatory findings, as the AgNPs
prostheses were too small to cause a negative response in blood. No inflammation or toxic effect was
observed, which means that the concentration level of bioactive particles was safe. The mean value of
CRP acute protein concentration was below the lower reference value in all the five investigated cases.
CRP values in the investigated group were determined to be below 1 (reference value < 5.0). These values
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proved the lack of inflammation signals in the tested blood after 30 days of the implantation, which
confirmed that the low concentration of silver ions could not affect the metabolic parameters of the blood.
Therefore, no more CRP tests were conducted for longer experimental series. The elevated CRP, beyond
being a biomarker of inflammation, may reflect the molecular disease mechanisms. For example, the
CRP production by hepatocytes—the main source of the acute-phase reactant—appears to be regulated
primarily by the proinflammatory cytokines interleukin (IL)-6 and IL-1. Furthermore, CRP itself has the
ability to activate the complement system and enhance phagocytosis via opsonization [32].

During the studies, it became evident that the tissue response to the implant is largely dependent
on the prosthesis shape. The acute inflammatory infiltration was observed more frequently in the
antenna part than in the cup part of the implant. It seemed that the elaborate antenna design constricted
the flow of juvenile tissues into its interior, thus the proper tissue growth was hindered in the inner
part of the implant (Figure 7).
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staining, magnification 10×. The images show the differences in the reconstruction of tissues around
the implant parts: the antenna (A) and the cup (B).

During the first month, the inflammation occurred mainly due to the surgical procedures and
the implant presence. The implant instability—as it could still move inside the pouch in the rat
muscle—might have been another reason for the inflammation. During the recovery the muscles
were active and their constrictions would push the prosthesis outwards. The irritation of the muscle
tissue was also caused by the obvious firmness and rigidness of the foreign body as well as the
diversified shape of the implant. Still, despite the complex and gossamer design of the antenna, after
90 postoperative days, the granulation cells emerged in the spaces between the antenna elements.

The microscopic observations led to the conclusion that the inflammatory reaction was weaker for
the samples extracted after the 3-month implantation than for samples after 30 days of implantation.
There was a significant decrease in the granulation tissue area for otoimplant/AgNPs prosthesis.
(Figure 8). The regenerating muscle tissue was present at the implantation site and the first visible
differences were noted between the two implant types after three months. The continuing inflammation
was connected with the surgery and the presence of the foreign body, regardless of the material
properties. The tissues far from the implantation site were a properly ordered mosaic, typical for
skeletal muscles.

The implants were surrounded by the granulation tissuebut in some places were in close contact
with the regenerating muscle tissue. However, in the case of the AgNPs-modified otoimplant the
granulation tissue area was visibly smaller and it was getting replaced by the regenerating muscle
tissue, thus suggesting that the presence of silver nanoparticles facilitated the healing process.

The inflammation diminished significantly around the implant after 180 days of the implantation. In
the case of both the otoimplant and the silver-doped otoimplant, the granulation tissue areas diminished.
However, the area of granulation tissue seemed to be slightly smaller for the Ag-modified prosthesis.



Nanomaterials 2018, 8, 764 11 of 18

Nanomaterials 2018, 8, x FOR PEER REVIEW  11 of 18 

 

tissue areas diminished. However, the area of granulation tissue seemed to be slightly smaller for the 
Ag-modified prosthesis. 

 
Figure 8. Granulation area for otoimplant and otoimplant/AgNPs measured after 30, 90,180 and 360 
days of the implantation. Statistically significant differences (p < 0.05) between otoimplant and 
otoimplant/AgNPs after specific implantation time are indicated by *; between different 
implantation times for otoimplant and otoimplant/AgNPs—by a–b and A–C, respectively. 

After 360 days of the implantation, the granulation remained on a constant level in comparison 
to the measurement after 180 days. To prove that silver nanoparticles may accelerate healing 
processes the area of granulation was measured in the Image J program and presented in a diagram 
as the results of the average values (Figure 8).  

The in vitro tests revealed more numerous population of living cells and thus—lower 
cytotoxicity of the Ag-modified implants. The results indicated that the small number of nanosilver 
particles released into the surrounding tissue not only had a bactericidal effect but also stimulated 
the osteoblast proliferation, promoting better osteointegration [33–35]. 

A remarkable number of regenerating muscle fibres emerged in close proximity to the implant 
during the postoperative month. Such a phenomenon proved the healing process to be in progress, 
as the granulation tissues were being gradually replaced by the regenerating muscle fibres. 
Moreover, the presence of a small amount of the granulation tissue and the regenerating fibres 
adhering to the prosthesis confirmed not only the better muscle reconstruction but also more 
promising eventual osteointegration. The observed high OCC enzyme activity in the tissue directly 
around the implant proved the lack of biomaterial cytotoxicity. The regenerating muscle tissue was 
characterized by the proper morphology and the mature muscles displayed the desired mosaic 
arrangement.  

During the experiment a small capsule of the connective tissue was revealed close to the 
implant, resulting from the fast proliferation of fibroblasts. It was an adverse phenomenon, possibly 
leading to the implant encapsulation and constriction. It is worth noting that the connective tissue 
overgrowth influences the proper bone/implant fixation; thus, it should be limited or eliminated in 
the middle ear implantations where the surrounding environment are bone structures [36,37]. 
Although the tested prostheses are supposed to reconstruct the bones, it was purposeful to conduct 
the experiments on the muscles, as soft tissues reveal more severe immunological reaction to a 
foreign body [38].  
  

Figure 8. Granulation area for otoimplant and otoimplant/AgNPs measured after 30, 90,180 and
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otoimplant/AgNPs after specific implantation time are indicated by *; between different implantation
times for otoimplant and otoimplant/AgNPs—by a–b and A–C, respectively.

After 360 days of the implantation, the granulation remained on a constant level in comparison to
the measurement after 180 days. To prove that silver nanoparticles may accelerate healing processes
the area of granulation was measured in the Image J program and presented in a diagram as the results
of the average values (Figure 8).

The in vitro tests revealed more numerous population of living cells and thus—lower cytotoxicity
of the Ag-modified implants. The results indicated that the small number of nanosilver particles
released into the surrounding tissue not only had a bactericidal effect but also stimulated the osteoblast
proliferation, promoting better osteointegration [33–35].

A remarkable number of regenerating muscle fibres emerged in close proximity to the implant
during the postoperative month. Such a phenomenon proved the healing process to be in progress, as
the granulation tissues were being gradually replaced by the regenerating muscle fibres. Moreover,
the presence of a small amount of the granulation tissue and the regenerating fibres adhering to the
prosthesis confirmed not only the better muscle reconstruction but also more promising eventual
osteointegration. The observed high OCC enzyme activity in the tissue directly around the implant
proved the lack of biomaterial cytotoxicity. The regenerating muscle tissue was characterized by the
proper morphology and the mature muscles displayed the desired mosaic arrangement.

During the experiment a small capsule of the connective tissue was revealed close to the implant,
resulting from the fast proliferation of fibroblasts. It was an adverse phenomenon, possibly leading to
the implant encapsulation and constriction. It is worth noting that the connective tissue overgrowth
influences the proper bone/implant fixation; thus, it should be limited or eliminated in the middle ear
implantations where the surrounding environment are bone structures [36,37]. Although the tested
prostheses are supposed to reconstruct the bones, it was purposeful to conduct the experiments on the
muscles, as soft tissues reveal more severe immunological reaction to a foreign body [38].

3.4. Micro-CT Observations

The micro-CT results confirmed that the muscle tissue regeneration was faster for the implants
modified with silver nanoparticles (Figure 9). It was particularly evident in the course of time, after
longer implantation periods. Thirty days after the operation there was definitely more granulation
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tissue around the Ag-doped implant than around the pure polymer implant. In both types of prostheses,
the muscles were damaged during the surgery so they did not resemble the proper mosaic. However,
after 90 days the correct reconstruction of the muscles was noticeable for both types of implants.
The micro-CT after 30 days revealed the bigger granulation area of the otoimplant/AgNPs samples,
which confirmed the results of histochemical observations obtained at the same time (Figure 8). Three
months after the operation it was observed that the area of granulation tissue was decreasing rapidly for
the silver-modified implant. In the case of the non-modified implant, the area of granulation tissue was
also higher in comparison to the results taken after 30 days. After 180 days, the micro-CT reconstruction
revealed that tissue rebuilding was less evident for the otoimplant/AgNPs. However, having analyzed
histochemical results along with the Image J evaluation and the micro-CT reconstruction, it may be
assumed that after 360 days of the implantation the tissue area around AgNPs enriched implant was
comparable to the one after 180 days. The micro-CT showed granulation tissue together with other
tissues, therefore, it was necessary to compare the micro-CT results to the histochemical reactions. The
CT results were less specific than the histochemical tests. The micro-computed tomography offered
more comprehensive and accurate information than traditional methods [39,40]. The 3D visualization
based on micro-CT allowed us to observe the implant behaviour in the tissue via the ex vivo imaging.
Therefore, the ex vivo observations clearly showed how the muscles surrounding the implants were
regenerating with time and both the composition of the implant material and the prosthesis shape
facilitated the muscle tissue regeneration. Silver nanoparticles accelerated the healing process. Both
the micro-CT imaging and microscopic observations confirmed that the regeneration around the cup
was much faster than around the antenna whose complex structure hindered the process. The natural
reaction of the muscles to the foreign object also made the implant unstable. The prosthesis of an
unusual shape and certain density and stiffness irritated the surrounding tissue.

The histochemical tests and micro-CT proved the AgNPs-modified implant to be better integrated
with the regenerated muscle tissue than the pure ABS prosthesis. The images of otoimplant/AgNPs
in subsequent time intervals showed that tissue around the implant was growing with the passage
of time.

3.5. Silver Ions Release by Modified Implants

The results obtained by the observation of implant tissue samples (Figures 6–9) were then
compared to the release of silver from AgNPs-implants over one year of incubation in water. Figure 10
shows that the Ag+ release depended on the immersion time, increasing as a function of time. However,
the highest increase was observed during the first month of incubation. The gradual silver ions
decrease was observed from the 3rd month on, whereas between the 6th and 12th month the release
was only marginal.

The similar behaviour was expected in the in vivo studies. The gradual release of silver seemed
to be an advantageous phenomenon, since the Ag-modified implant was surrounded by the juvenile
muscle tissue without the separating granulation layer. The research also proved that the amount of
silver released into the tissue was safe and probably advantageous for the faster muscle regeneration.
The literature has reported silver nanoparticles to be nontoxic to humans and very effective against
bacteria, viruses, and other eukaryotic micro-organisms at very low concentrations and without side
effects. Jeong S.H. et.al. [41] proved that for the silver nanoparticles in the content of 0.1% materials
exhibit excellent antibacterial effect (bacterial reduction of 99.9%), but for the micron-sized silver in
the content above > 0.5 the antibacterial activity was determined as good. A variety of dressings that
contain and release silver ions at the wound surface provide controlled release of ions through a slow
but sustained release mechanism, which prevents toxicity yet ensures delivery of a therapeutic dose of
silver ions to the wound [42].
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There was no strong polymer—filler interactions between AgNPs and the polymer matrix in the
nanocomposite networks. This phenomenon loosened the molecular packing of polymeric chains near
the nanoparticles and caused an increase in free volume in the nanocomposite networks [43]. The aqueous
medium easily diffused into the empty areas and led to the Ag oxidation. Therefore, the water diffusion
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in the composite sample was expected to result in the higher Ag+ release [44]. The long-term release
seemed to be an important factor in regard to practical applications. The subsequent release of silver
ions occurred in the interior part of the specimen where water had to cross the diffusion barrier, which
inhibited the oxidation process. Conversely, in some cases, polymers could be porous enough to allow
water to pass through the polymer and, subsequently, the silver nanoparticles could diffuse out of the
polymer [45]. Such a mechanism could be responsible for the prolonged antibacterial efficiency. On the
other hand, Helttunen et al. [46] as well as McShan et al. [47] proved that the extensive release of silver
from the Ag+ or AgNPs-doped materials was environmentally hazardous and toxic to humans. On the
contrary, our long-time observations revealed no toxicity. The research proved that using nanoparticles
as active components in composite materials instead of conventional chemical products, e.g., ethanol or
bleach, provided the long-lasting bactericidal efficiency with no toxic effect [48]. Therefore, the assumed
level of silver concentration in our implant revealed antibacterial efficacy, yet it was not toxic to animals
and humans.

3.6. Physicochemical Properties of Prostheses

The scanning electron microscopy observation showed that the surface of both otoimplant and
otoimplant/AgNPs was smooth (Figure 11). Silver nanoparticles observed as a light area on SEM
images were homogenously distributed in the polymer matrix. The double-cycle injection moulding
and extrusion were applied to limit the aggregation of silver nanoparticles. Therefore, the size of
nanoparticles remained the same after their integration into polymer. However, even such a precise
technology could lead to the prevalence of small aggregates (red square on SEM images proved by EDX
spectrum). The observations performed after one year of incubating the samples in deionized water
(36 ◦C) revealed no changes on the surface and in the cross-section. SEM images of the cross-section of
polymeric and composite implants showed some porous microstructure (marked with arrows), which
could facilitate the silver ions release.
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Figure 11. SEM images showing the otoimplant and otoimplant/AgNPs before and after 12 months
incubation, surface and cross-section were collected alternately from left to right. On the right—the
EDX spectrum collected in the point of the thick red square indicated the presence of AgNPs.

As it was proved in our previous work [28], the long-term bactericidal effect was sustained
by the gradual release of silver due to the efficient dispersion of its nanoparticles in the polymer
matrix. On the other hand, the surfaces of both the pure implant and implant modified with AgNPs
were smooth, which inhibited the bacteria colonization. It is well-known from the literature that the
increased roughness facilitates adhesion of osteoblasts to the material surface [49,50]. Higher roughness
parameters promote adhesion of bacteria, microbial proliferation and formation of biofilms, which may
lead to inflammatory processes, cell necrosis and even rejection of the implanted material [51]. Our
assumption was to minimize the bacteria colonization thanks to a remarkably smooth surface. Even if
bacteria attached to the porous surface, the gradual silver ions release would guarantee antibacterial
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efficacy. The conducted mechanical tests proved that the force-elongation curves were similar for
both groups of materials—the pure polymers and the composites. Such results suggested that the
proposed technology of obtaining polymeric paddles by means of extrusion and injection moulding
did not impoverish the mechanical properties of the tested materials. Young’s modulus and tensile
strength (Figure 12) remained at the same level both for the samples before and after the incubation
in deionized water. The addition of 0.1 wt. % of AgNPs did not change tensile strength but slightly
decreased Young’s modulus of the composite samples. Therefore, AgNPs had no negative effects
on the mechanical properties of ABS. In addition, low concentrations of nanoparticles eliminated
agglomeration adversely affecting the material’s properties. Moreover, the mechanical properties
of composites depended on the amount and size of incorporated nanoparticles. Namely, smaller
nanoparticles were more effective against bacteria [52]. However, when the AgNPs were smaller than
3 nm, they were more cytotoxic than larger particles—25 nm [15]. On the other hand, the particles
measuring 50 nm or more increased the flexural strength of the composite containing 0.2 wt. % of
AgNPs. The 40 nm particles did not affect the mechanical parameters of these composites [53].
The findings proved that the mechanical properties of the otoimplant did not change after the
incorporation of AgNPs even after the 12-month incubation. Such results suggested that our prosthesis
would be stable in clinical performance.
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4. Conclusions

Nanotechnology offers great opportunities to improve properties of medical devices. Our in vivo
research has proven that the prosthesis made of ABS enriched with silver nanoparticles is biocompatible
with the surrounding tissue. Moreover, the AgNPs incorporated into the polymer medical devices
ensure a long-lasting antibacterial effect combined with the lack of inflammation or toxic reaction.
The addition of silver nanoparticles accelerates the healing process, which is crucial to the length
of convalescence after the ossicle chain reconstruction. The microstructural observations as well as
mechanical tests have proven the biostability of both prostheses. The low concentration addition of
AgNPs to the polymer matrix does not alter the material’s mechanical and microstructure properties.
The obtained results are the promising basis for further research on the implant prototype that may
become an alternative to the devices already available on the medical market.
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