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Abstract: Sesamol, is well-known antioxidant and can reduce the rate of oxidation and prolong
expiration date. It is also potentially antimutagenic and antihepatotoxic, the detection of sesamol is
important and remains a huge challenge. Herein, a new 3D alkaline earth Sr metal organic framework
[Sr(BDC)·DMAC·H2O]n (BDC = benzene-1,4-dicarboxylate; DMAC = N,N-dimethylacetamide) is
synthesized and a probe based on Tb3+ functionalized Sr-MOF. The Tb(3+)@Sr-MOF showed good
luminescence and thermal property. Due to the energy competition between sesamol and ligand,
the luminescence intensity of sesamol increases meantime luminescence intensity of Tb3+ decreases,
the ratio of the emission intensities (I344/I545) linearly increases with sesamol in concentrations
ranging from 1 × 10−7 to 8 × 10−4 M. Furthermore, the fluorescence-detected circular test shows
that the composite Tb(3+)@Sr-MOF can serve as ratiometric sensor for sensing of sesamol. This is the
first example for self-calibrated detecting sesamol based on metal-organic framework (MOF).

Keywords: Tb(III) functionalized; metal organic framework; self-calibrating and reusable luminescent
sensor; sesamol

1. Introduction

Sesame oil is a high-priced, high-quality health food that is popular in China and India because it
contains a number of bioactive phytochemical; it is very high in natural antioxidants in the form of
lignans. Antioxidant compounds in sesame seed oil that are beneficial impacts on health have attracted
increasing attention. Sesamol (3,4-methylenedioxyphenol) is a natural phenolic lignan found in sesame
seed or sesame oil as well as has shown promising antioxidant and neuroprotective effects [1,2].
Recently, tremendous research has shown that sesamol can weaken injury in endotoxemic rats, lower
serum lipids and blood pressure; it also has potentially anti-hypertensive and anti-inflammatory
activities in humans. Sesamol content plays an important role human health and the flavor of sesame
oil, therefore there is a need for sesamol determination for evaluate lignan content in sesame oil
or other food, meanwhile, determination of sesamol in different environment with high selectivity
and sensitivity has also become a major research topic. Some detection methods for sesamol have
been developed [3,4] such as high-performance liquid chromatography (HPLC) or ultraviolet (UV)
detection ultraviolet (UV) detection. However, many disadvantages have various limitations such as
time-consuming, cost, complicated preparation process, and the need for professionals. Therefore,
it is exigent to explore a kind of simple, rapid, highly selective, and sensitive access for detecting
sesamol [5].

Metal-organic frameworks (MOFs), are crystalline porous architectures that are composed of
metal ions or clusters and organic ligand, have been emerging as very promising materials which can
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be applied in various fields due to their unique properties, such as high surface areas, controllable
pore size. MOFs have been proposed to be promising in many applications, such as gas storage
and separation [6–11], catalysis [12–15], energy storage [16,17], and biomedical applications [18–23].
Among luminescent MOFs, Ln-MOFs have huge advantages in sensing due to their fascinating
luminescence characteristics, such as high luminescence quantum yield, long luminescent life time,
high color purity, and big stoke shifts. The prominent luminescent properties and various structures
of Ln-MOFs provide a facile and easy method for detection [24–26] such as metal ions [27,28],
anions [29–32], small molecule [33–36], and temperature [37,38]. Due to the high coordination number
and multiple coordination modes of lanthanide ions, the design and preparation of the desired
lanthanide MOF is also a huge challenge. Poststsynthetic modification method of MOFs provide an
effective tool to perform the fluorescence sensing properties of lanthanide MOFs by introduction of
Ln3+ into MOFs, which can exploit and expand their application [39–41]. In comparison to the reports
on other metal organic framework, alkaline earth metals have been rarely reported, but alkaline earth
metals have applied in many field of materials science because of some advantages (low-cost, avirulent).
Based on aforementioned reasons, alkaline earth salts are usually used as commercial materials, which
are extensively used in daily life and industry production, such as common medicament, dyes,
and pigments. Some studies about alkaline earth metal complexes should be performed. Mg and
Al based MOFs exhibit excellent hydrogen storage ability because of low density, high surface areas,
and controlled structures [42,43].

In addition, MOF sensors depends on the fluorescent intensity of single emission which usually
influenced by many uncontrollable factors such as drift of light source and sensor concentration.
Therefore, dual-emissive luminescent probe should be one breakthrough because this type of signal
by making a comparison of the emission intensities of two different luminescent center to form
self-calibrating mechanism that can avoid external factor such as fluctuations of light source, voltage,
show improved sensitivity, and to the intended analyte [44–47]. However, there is no report for
self-calibrating MOF-based luminescent probe that can selectively detect antioxidant sesamol molecule.

Herein, according to the above considerations and our previous work on Ln-metal organic
frameworks [48,49], a new 3D Sr metal-organic framework is designed and synthesized.
The Tb(3+)@Sr-MOF were successfully synthesized via encapsulating Tb3+ in Sr-MOF. When energy
competition exists between sesamol and ligand, which blocks the energy transfer from ligand to Tb3+,
hence the luminescent intensity of sesamol at 330 nm increases and Tb3+ ion at 545 nm decreases.
A linear relationship between the ratio of luminescent intensities (I343/I545) and the concentration of
sesamol. Thus, this composite Tb(3+)@Sr-MOF can be served as a promising self-calibrating sensor for
sesamol sensing.

2. Experimental Section

2.1. Synthesis of [Sr(BDC)·DMAC·H2O]n (Sr-MOF)

A mixture of SrCl2 (0.1 mmol, 15.7 mg) and H2BDC (0.1 mmol, 16.6 mg) were stirred in 3 mL
DMAC and added in a 15 mL Teflon cup and heated to 80 ◦C for 72 h then cooled to room temperature.
The colorless block single crystals were obtained, rinsed with DMAC and H2O, and dried in air (56%
yield based on BDC).

2.2. Synthesis of Tb(3+)@Sr-MOF

Powder of Sr-MOF (100 mg) is soaked in Tb (NO3)3·6H2O ethanol solution (10 mL, 2 mmol) for
1 day. The powder is isolated by centrifugation and washed with ethanol three times, the obtained
product dried in air for 24 h. The metal amount of Tb:Sr is 1:22.
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2.3. Detection of Sesamol

The obtained Tb(3+)@Sr-MOF (2.00 mg) dispersed in 4 mL ethanol and ultrasonicated for 5 min.
Different concentrations of sesamol ethanol solutions were prepared and mixed with suspension of
Tb(3+)@Sr-MOF for the detection of sesamol. For the selectivity of sesamol detection, 1 × 10−3 M
for sesamol, 4-Methylcatechol, catechol, guaiacol, carvacrol, paeonol, thymol, vanillin, resorcinol,
and 1,3-dichlorophenol were also prepared and added to each of the suspension of Tb(3+)@Sr-MOF,
respectively. In order to examine the cycle performance of Tb(3+)@Sr-MOF, the suspension is formed
by dispersing the sample (1 mg/mL) into ethanol. After detection of sesamol, the suspensions of
Tb(3+)@Sr-MOF/sesamol are obtained by filtration and rinsed several times with ethanol, then the
Tb(3+)@Sr-MOF was dried naturally and ready for the next cyclic test.

2.4. Materials and Characterization

Sesamol, 4-Methylcatechol, catechol, guaiacol, carvacrol, paeonol, thymol, vanillin, resorcinol,
1,3-dichlorophenol, terbium nitrate and Strontium chloride were purchased from Mackin (Macklin.
Shanghai. China). The metal ion content in Tb(3+)@Sr-MOF(Tb:Sr) were examined using inductively
coupled plasma mass spectrometry ICP-MS, Icap Qc (Thermo-Fisher, Massachusetts, MA, USA).
X-ray diffraction (XRD) patterns were characterized using a Rigaku Miniflex 600 X-ray diffractometer
(Rigadu, Tokyo, Japan) from 5◦ to 50◦. All the emission spectra for the Tb(3+)@Sr-MOF were recorded
by Horiba ihr320 fluorescence spectrophotometer(Horiba, Kyoto, Japan). An infrared spectrum was
recorded and taken on a IR Affinity-1 FT-IR spectrometer (Shimadzu, Kyoto, Japan) in the range of
400–4000 cm−1. Thermogravimetric analysis (TGA) results were measured from 50 ◦C to 700 ◦C under
nitrogen atmosphere on a Netzsch sta 449f3 (Netzsch, Bararia, Germany).

2.5. X-ray Crystallography

Crystal of Sr-MOF was collected from the mother liquor. Single-crystal data of Sr-MOF were
collected on a Rigaku Oxford CCD diffractometer equipped with graphite-monochromatic Mo-K
α radiation (λ = 0.71073 Å) at 293 K. The structure was solved by direct methods, and refined by
full-matrix least-square method with the SHELX-2016 program package. The crystallographic data
and refinements and the selected bond lengths and angles for Sr-MOF are listed in Tables 1 and 2.

Table 1. Crystal data and structure refinement for Sr-MOF.

Compound Sr-MOF

Chemical Formula C12H15NO6Sr
Formula weight 356.87
Crystal system Orthorhombic

Space group Pnma
a (Å) 10.9304 (3)
b (Å) 6.96110 (10)
c (Å) 19.0421 (4)
α (◦) 90
β (◦) 90
γ (◦) 90

V (Å3) 1488.87
Z 4

Dc (g/cm3) 1.636
µ (mm−1) 1.347

T (K) 293 (2)
Mo Kalpha 1.54178

F (000) 720
Crystal size (mm) 0.23 × 0.19 × 0.15

θ range (◦) 4.64 to 67.08
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Table 1. Cont.

Compound Sr-MOF

Index ranges −11 ≤ h ≤ 12
−6 ≤ k ≤ 8
−22 ≤ l ≤ 22

Reflections collected 6263
Independent reflections 1398[Rint = 0.0326]

Parameters 109
Goodness-of-fit on F2 1.112
R1 indices [I > 2σ(I)] 0.0340

wR2 indices [I > 2σ(I)] 0.0878
R1 indices [all data] 0.0369

wR2 indices [all data] 0.0902

Table 2. Bond lengths [A] and angles [deg] for Sr-MOF.

Main Coordination Modes Bond Length

Sr(1)-O(2)#1 2.490(2)
Sr(1)-O(2)#2 2.490(2)

Sr(1)-O(3) 2.496(4)
Sr(1)-O(4) 2.570(3)
Sr(1)-O(1) 2.642(2)

Sr(1)-O(1)#3 2.642(2)
Sr(1)-O(2)#4 2.689(2)
Sr(1)-O(2)#5 2.689(2)
Sr(1)-C(6)#4 2.971(5)
O(2)-Sr(1)#8 2.490(2)
O(2)-Sr(1)#9 2.689(2)

Symmetry transformations used to generate equivalent atoms:
#1 −x + 1/2, −y + 1, z − 1/2 #2 −x + 1/2, y + 1/2, z − 1/2

#3 x, −y + 3/2, z #4 x − 1/2, y, −z + 1/2 #5 x − 1/2, −y + 3/2, −z + 1/2
#6 −x, −y + 1, −z #7 −x, −y + 2, −z #8 −x + 1/2, −y + 1, z + 1/2

#9 x + 1/2, y, −z + 1/2

3. Results and Discussion

The crystals of Sr-BDC belong to the orthorhombic space group Pnma, the asymmetric unit is
made up of half a Sr2+ ion, half a BDC2− ligand, half a DMA, and half a water molecules (Figure 1a).
The Sr2+ ion is bound to eight O atoms from one H2O, one DMAC and four BDC2− ligands, which form
an octahedron which adopted distorted bicapped coordination. The DMAC and H2O are monodentate,
and the COO− of a BDC2− adopted two coordination modes with Sr2+ ions: η1:η1 and η2:η2—bridging
mode, which link one and three Sr2+ ion. In Figure 1b, in the bicapped octahedron, the Sr-O bond
distance vary from 2.490(6) to 2.687(5) Å. A zigzag chain is formed by adjacent octahedra along
the b axis, and the chains are connected by the BDC2− (µ4,η1:η1:η2:η2-bridging mode) forming a
three-dimensional framework, (Figure 1), which form quadrangular channel (two kinds of triangular
channels), DMAC molecules are filled and connected directly to the Sr2+ ions in the channels.

The XRD patterns of simulated and as-synthesized Sr-MOF, Tb(3+)@Sr-MOF are shown in Figure 2.
All the diffraction peaks (the Sr-MOF and Tb(3+)@Sr-MOF) were well corresponded to those in the
simulated PXRD pattern of Sr-MOF(CCDC:1551141). The introduction of Tb3+ will not influence the
crystal form of Sr-MOF.
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As shown in Figure 3, the TG measurement show that Tb@Sr-MOF and Sr-MOF similar thermal
stability and exhibit three events of mass (Tb@Sr-MOF and Sr-MOF) reduction. The TG curve shows
that Tb@Sr-MOF and Sr-MOF starts to reduce mass at ~130 ◦C due to the removal of water molecules
and complete dehydration is at about 200 ◦C. The second plateau of reducing mass start from 200 ◦C
to 310 ◦C corresponds to the loss of DMAC. The decomposition of the organic ligand begins at 580 ◦C
and ends at 630 ◦C. The final stage of reducing mass start from 630 ◦C corresponds to oxide.
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As shown in Figure 4, the broad band at 3300−3500 cm−1 is assigned to the characteristic
stretching vibrations of O−H in H2O. The peak at 1560 cm−1 belongs to υC-O. After incorporating
Tb3+ into the Sr-MOF, the absorption band of Tb(3+)@Sr-MOF agrees with those of Sr-MOF. The result
shows that the introduction of Tb3+ does not affect the crystalline integrity, as shown in Figure 2.Nanomaterials 2018, 8, x FOR PEER REVIEW  7 of 15 
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Figure 4. IR spectra of Sr-MOF and Tb(3+)@Sr-MOF.

As seen in Figure 5, Tb(3+)@Sr-MOF exhibits characteristic emission of the Tb3+ ion when excited
294 nm. Tb(3+)@Sr-MOF exhibits three peaks at 489, 545, and 592 nm originated from 5D4→7FJ

(J = 6, 5, 4) transitions, respectively. The emission bands of the Tb(3+)@Sr-MOF at 545 nm show a
bright green light. The results suggested Tb(3+)@Sr-MOF can act as a luminescence sensor.

The sensing ability of the Tb(3+)@Sr-MOF was investigated in the presence of different molecules.
As shown in Figure 6, on the addition of 1 × 10−3 M of biomolecules (sesamol, 4-Methylcatechol,
catechol, guaiacol, carvacrol, paeonol, thymol, vanillin, resorcinol, and 1,3-dichlorophenol), however,
the luminescence intensity of Tb(3+)@Sr-MOF at 545 nm exhibit the strongest luminescence quenching
in the presence of sesamol, meantime, and luminescent intensity (the emission at 330 nm) increases
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significantly with the increasing the concentration of sesamol, We speculate that the emission spectrum
at 330 nm is ascribed to sesamol.
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biomolecules (λex = 294 nm).

In order to overcome such disadvantages of the traditional single emission sensing,
Tb(3+)@Sr-MOF were synthesized and could be served as ratiometric luminescent sensor for sesamol.
In Figure 7, the change of luminescent intensity (Tb(3+)@Sr-MOF) displayed with a concentration
of sesamol increases. The luminescent intensity at 330 nm increased meantime the fluorescence
intensity of Tb3+ at 545 nm decreased. The plot of the luminescent intensity ratio I330/I545 against the
concentration of added sesamol was shown in Figure 7a,b, the luminescent intensity ratio I330/I545

has a good linear relationship to the concentration of sesamol varying from 1 × 10−7 to 2 × 10−4

M and 3 × 10−4 to 8 × 10−4 M, which was described by calibrating function of I330/I545 = 0.00538 +
0.0184 × C and I330/I545 = 0.005 × Csesamol-0.18 with a correlation coefficient of 0.99966 and 0.9887.
Interestingly, when the concentration of sesamol reaches 3× 10−4 M, luminescent intensities of I330 and
I545 decreases, respectively. The luminescent intensity ratio I330/I545 also has a good linear correlation
to the concentration of sesamol in the range from 1 × 10−7 to 8 × 10−4 M calibrating function of
I330/I545 = 0.02 + 0.005 × C sesamol with a correlation coefficient of 0.9977. The limit of detection
(LOD = 3δ/S, δ represents the blank solution was measured ten times, and S stands for the slope
of the calibration curve was about 4.2 µM [50]. The above results illustrated that Tb(3+)@Sr-MOF
is an excellent candidate for self-calibrating luminescent sensor (sesamol) and is not influenced by
environmental factors.
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Figure 7. (a) Plot of I344/I545 versus the sesamol content (1 × 10−7 to 2 × 10−4 M) in ethanol solution
(λex = 294 nm); (b) Plot of I344/I545 versus the sesamol content (3 × 10−4 to 8 × 10−4 M) in ethanol
solution; (c) Emission spectra of Tb(3+)@Sr-MOF as a function of the sesamol concentration (from top:
1 × 10−7 to 2 × 10−4 M) in ethanol solution; (d) Emission spectra of Tb(3+)@Sr-MOF as a function of
the sesamol concentration (3 × 10−4 to 8 × 10−4 M) in ethanol solution; (e) Plot of I344/I545 versus the
sesamol content (1 × 10−7 to 8 × 10−4 M) in ethanol solution (λex = 294 nm).

The CIE (Commission International deLEclairage) diagram of the Tb(3+)@Sr-MOF treated with
different concentrations of sesamol was performed. As shown in Figure 8, luminescent color of
Tb(3+)@Sr-MOF tuned from blue to green when excited at 294 nm. The results show that the
luminescent ratio (I344/I545) is highly sensitive to the concentration of sesamol. The feature could be
used served for sensing of different concentrations of sesamol with high selectivity and sensitivity and
without any addition.
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Figure 8. CIE chromaticity coordinates.

From a practical standpoint, the probe should have good response and high selectivity to the
detecting. As seen in Figure 9, to access the selectivity of Tb(3+)@Sr-MOF, the competitive experiment
was performed by adding 1 × 10−3 M sesamol to the Tb(3+)@Sr-MOF in the presence of 1 × 10−3

M other biomolecules (including 4-Methylcatechol, catechol, guaiacol, thymol, carvacrol, resorcinol,
vanillin, and paeonol). The addition of biomolecules will not influence the changed trend of the
ratio of I330/I545. (colorful columns in Figure 4), However, when added 1 × 10−3 M sesamol to the
Tb(3+)@Sr-MOF containing other biomolecules, the luminescent intensity ratio I330/I545 increased
remarkably (blue columns in Figure 4). Therefore, the results show that the Tb(3+)@Sr-MOF is a
reliable and high-efficient self-calibrating sensor for sesamol.
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Figure 9. Luminescence responses of Tb(3+)@Sr-MOF to various biomolecules. The color bars suggest
the relative ratio of luminescent intensities (I344/I545) treated with biomolecules. The blue bars suggest
the relative ratio of I344/I545 treated with other biomolecules and sesamol) (λex = 294 nm).

Furthermore, the cycling ability is an important indicator to access the sensor’s practicability.
The Tb(3+)@Sr-MOF can be reused five times (Figure 10). After five cycles, the results show that
the luminescence intensity of the recycled Tb(3+)@Sr-MOF almost agrees with those of the initial
Tb(3+)@Sr-MOF, Meanwhile, These results reveal that Tb(3+)@Sr-MOF displays well reusability of
sensing sesamol, suggesting its practical use in sesamol detection.
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Figure 10. Cyclic response of luminescence intensities (I344/I545) of the Tb(3+)@Sr-MOF for
detecting sesamol.

While the quenching mechanism for biomolecules is still not very clear, it is necessary to study
the possible quenching mechanism. (1) The emission spectra of sesamol was monitored when excited
294 nm, as shown in Figure 11, the I344 is consistent with I344 in Figure 7c,d. The result shows that
luminescent signal(I344) in Figure 7c,d is assigned to sesamol. (2) As shown in Figure S1, the excitation
spectra of the ligand within Tb(3+)@Sr-MOF is overlapped by the excitation spectra of sesamol,
which suggests an excitation energy competition between the ligand and sesamol exists. Sesamol
absorbs most of the energy and only a small fraction of energy will be transferred from the linker
to the Tb3+ ions. The PXRD patterns of the Tb(3+)@Sr-MOF treated with sesamol reveal that its
crystal structure is not changed and is consistent with the original Tb(3+)@Sr-MOF (as shown in
Figure S2). (3) To better understand why luminescent intensities of I344 and I545 decreases when
concentration of sesamol reached 3 × 10−4 M, we monitored the excitation spectra of Tb(3+)@Sr-MOF
treated with various concentrations of sesamol under the monitoring wavelength(545 nm). As shown
in Figure 12, with the increased concentration of sesamol, the intensities of excitation spectra of
Tb(3+)@Sr-MOF decreases and a blue shift in the excitation maxima(294 to280 nm) could be observed
for Tb(3+)@Sr-MOF treated with different concentrations of sesamol, leading to decline in luminescent
intensity(I344 and I545), respectively, the fluorescence intensity ratio I330/I545 has also a good linear
relationship to the concentration of sesamol vary from 1 × 10−7 to 8 × 10−4 M, The results suggested
that Tb(3+)@Sr-MOF can serve as a self-calibrating luminescent sensor for sesamol and is not influenced
by environmental factors.
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4. Conclusions

In summary, a new 3D alkaline earth Sr metal organic framework is synthesized and chosen as
a host to sensitize via encapsulating Tb3+ in Sr-MOF. Tb(3+)@Sr-MOF display excellent luminescent
property and thermal stability. Due to energy competition between sesamol and ligand, the luminescent
intensity of sesamol (I344) increases meantime luminescence intensity of Tb3+(I545) decreases.
The Tb(3+)@Sr-MOF can be used as ratiometric sensor for sesamol. It is the first time reported that
the rational design and preparation of luminescent MOFs for ratiometric sensing of sesamol relying
on the ratio of emission-peak-height of analyte (sesamol) to lanthanide ions (Tb3+) as the detectable
signals. In addition, this strategy may promote the development of lanthanide functionalized MOF for
self-calibrating sensing and broaden the application of alkaline earth metal organic framework.
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