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Abstract: Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the
nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent
and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in
significant advantages and is a viable technique for such synthesis. This study probes the efficacy
of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard
electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly
negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent
crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal
formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate
the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline
phase of a certain metal species, particularly when the magnitude of this parameter is relatively high.
However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will
form Cu2O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.
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1. Introduction

Carbon nanotube–metal nanohybrids (NHs) are being considered for large scale use as electro-
and photo-catalysts [1] and are studied for electronics [2], gas sensing [3], biosensing [4], and laser [5]
applications. With the increased commercial value, the bulk synthesis of these NHs is attracting
interest. A simple sol-gel technique can be a viable process that can produce 100s of mg of multiwalled
carbon nanotube (MWNT)–metal NHs [6]. Both zero-valent and oxides of metals can be formed on
MWNT surfaces. However, the choice of the metal and its inherent electronic properties will dictate
the resulting crystalline phases. Since preserving the oxidation state of the metal crystals is crucial to
render their reactive properties [7,8], understanding the mechanism of nanocrystal formation with
a particular crystal phase is thus necessitated.

When preparing metallic nanomaterials, achieving a high degree of crystallinity
(of the synthesized materials) is essential to extract the desired optical, electronic, and chemical
properties [9]. The rate of nucleation during crystal formation on a surface is a strong function of
the surface energy as well as the thermodynamic driving force. The former (i.e., the surface energy)
is influenced by the surface moieties (e.g., carboxyl groups on crystalline or polymeric [10–12]
materials), and the latter (i.e., the thermodynamic driving force) [13], which is described as the
difference in Gibbs free energy between the crystal phase and the surrounding liquid, is a function of
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the precursor amount present during synthesis. Thus, the synthesis methods and operating conditions
(e.g., temperature [14], reducing agent [15], and precursor amount [13]) are critical elements that
need to be adjusted appropriately for the preparation of metal nanocrystals with a high degree of
crystallinity [14] and a desired redox state in the metal species [16]. Calcination can facilitate the
preparation of ordered structures, but the feasibility of applying such a high temperature of 500 ◦C or
higher can be limited when carbon nanotubes are involved in the mix [6,17]. The chemical attachment
of metallic nanocrystals can facilitate MWNT oxidation and lower the MWNT oxidation temperature
via the chemical modification of the MWNT surface. [6] However, such processes are conducive to
oxide formation; hence, synthesizing zero-valent nanocrystals can be challenging.

In sol-gel synthesis, strong reducing agents (e.g., borohydride salts) are typically added to
form zero-valent nanocrystals [15,18]. However, the addition of reducing agents drives the reaction
toward zero-valent metal formation (rather than chemical attachment), which leads to isolated and
unassociated (from MWNTs) nanocrystal formation. The excess unassociated metal particles then
require rigorous post-treatment of the materials to separate the NHs from the unattached nanocrystals.
Furthermore, some of the metals, because of the elemental electron properties, present further
challenges in zero-valent metal crystal formation.

The standard electron potential (SEP) of a metal species can dictate the reaction pathway,
and hence can control the oxidation state (i.e., metal vs. metal oxide) of the crystal grown on MWNT
surfaces. SEP values represent electron transfer capabilities between the oxidized and the zero-valent
metal forms (i.e., Mn+ + Ne− ↔ M, where M is the metal species and n is the number of electrons
involved in the exchange). Literature evidence suggests that metals with negative SEP preferentially
form oxides while those with positive values tend to form zero-valent forms of the same. Metal species
that are commonly reported to form oxides on carbon nanotube surfaces possess strongly negative
SEP values (Table S1). The following oxides are reported to have formed with metals: Al2O3 [19–21],
CeO2 [22,23], CoO3 [24,25], Eu2O3 [26,27], FexOy [28–31], HfO2 [32,33], MgO [34], MoO2 [35], NiO [36],
SiO2 [37–39], SnO2 [40], TiO2 [41,42], VxOy [43], ZnO [44], and ZrO2 [45]. On the other hand, Ag [46],
Au [47], Pt [48], and Pd [49] with a positive SEP are reported to form zero-valent metals on Carbon
Nanotube (CNT) surfaces. Cu and W (with positive SEP) and Fe (with negative SEP) are exceptions
to this trend; i.e., despite their positive SEP values, Cu [50] and W [51] are shown to form oxides,
whereas Fe with a negative SEP can form zero-valent metal nanocrystals [52]. The challenge, however,
is to comment on the role of SEP on forming zero-valent vs. oxide crystals when the sol-gel method is
employed to synthesize MWNT-based NHs.

This article aims to evaluate the efficacy of sol-gel process for in situ formation of metal vs.
metals oxides onto MWNT surfaces with no extra addition of reducing or oxidizing agents. The study
judiciously choses three metal species, namely Zn, Ag, and Cu; Zn and Ag has strong negative and
positive SEP values (Zn with -0.763 V and Ag with +0.799 V SEP values), respectively, while Cu lies in
the positive range, but with a much lower magnitude (SEP of +0.345 V) compared to Ag. Transmission
electron microscopy is used to evaluate the NH morphology, while X-ray diffraction (XRD) is utilized
to characterize the materials before and after calcination. The design of the study is carefully carried
out (e.g., synthesizing and characterizing in absence of air to avoid oxidation) and tests the efficacy of
sol-gel method to form nanocrystals with both types of crystal phases.

2. Materials and Methods

2.1. Chemicals and Reagents

Pristine MWNTs (O.D. 8–15 nm) were procured from Cheap Tubes Inc. (Brattleboro, VT, USA).
Concentrated nitric acid, sulfuric acid, and copper (II) nitrate monohydrate were purchased from
Sigma Aldrich (St. Louis, MO, USA). Trace metal grade silver nitrate was purchased from Alfa
Aesar (Haverhill, MA, USA). Isopropanol and dimethylformamide (DMF) were obtained from Fisher
Scientific (Pittsburgh, PA, USA) while zinc (II) nitrate hexahydrate was purchased from J.T Baker
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(Center Valley, PA, USA). For preparing all aqueous suspensions and solutions, 18.2 mΩ (Milli-Q)
water was used unless otherwise stated.

2.2. Nanohybrid Synthesis

All materials were synthesized using a modified sol-gel method [6]. In brief, MWNTs (1 g)
were acid-etched by ultrasonication (Qsonica LLC, Newtown, CT, USA) in 300 mL of concentrated
nitric and sulfuric acid mixture (1:1 volume basis). Upon sonication, the mixture was refluxed at
100 ◦C for 3 h under continuous stirring. The oxidized MWNTs were subsequently filtered until the
pH of the filtrate reached >5.5 and then were dried for 48 h in a desiccator. After drying, the oxidized
MWNTs were re-suspended in isopropanol with an ultrasonic dismembrator (Qsonica, Newtown,
CT, USA) and transferred into a round bottom flask. Appropriate amounts, i.e., 123 mg of Zn, 85 mg
of Cu and 71 mg of Ag precursors, were added to 10 mL of isopropanol and introduced drop wise
to the MWNT-isopropanol suspension at 0.301 mL/min with a peristaltic pump (Ismatec, Wertheim,
Germany). The slow rate of precursor addition was maintained to provide sufficient mixing time.
The entire suspension was refluxed at 80 ◦C for 3 h in a nitrogen environment. Water was added drop
wise into the reaction vessel to promote hydrolysis, where necessary. Afterwards, the refluxed mixture
was washed 4 times with isopropanol (as a purification step), which removed any unreacted reagent.
Finally, isopropanol was evaporated, the dry materials were powdered using a mortar and pestle,
and the resultant materials were calcined at 400 ◦C for 3 h under nitrogen to facilitate crystal formation.

2.3. Physical Morphology and Elemental Composition

The physical morphology of the NMs was determined using a JEOL 2010F high resolution
transmission electron microscopy (HRTEM, JEOL, Tokyo, Japan) equipped with energy dispersive
spectroscopy (EDS). Electron micrographs were obtained at an acceleration voltage of 200 kV.
The details of the HRTEM methodology are described elsewhere [6,53–59]. In brief, drops of
aqueous dispersions of NHs were placed on lacey carbon coated copper TEM grids (SPI Supplies,
West Chester, PA, USA) and air-dried over a few minutes. Several micrographs were taken to obtain
representative images.

The elemental composition of the dry MWNT and NH samples was evaluated with a Kratos
X-ray Photoelectron Spectrometer-Axis Ultra DLD, equipped with a monochromated Al Kα X-ray
source (1.486 KeV) and a concentric hemispherical analyzer [6]. A thin layer of powdered sample was
placed on a double-sided copper taped stainless steel bar. The bar was then placed in the analysis
chamber and degassed for at least 3 h. The X-ray photoelectron spectroscopy (XPS) analysis was then
performed to obtain the survey spectra as well as the spatial high-resolution spectra and the data was
analyzed by fitting the high-resolution element specific peaks with CasaXPS software (Version 2.3.19).
To ensure reproducibility and overall homogeneity, a total of 9 samples for each material (MWNT and
three NHs) were analyzed (3 samples each in triplicate batches for all NHs).

2.4. Analysis of Crystallinity

The crystallinity of the metal oxide (MO) on the NH surfaces was evaluated with an XRD.
A 600 W Rigaku MiniFlex 600 (Rigaku, Tokyo, Japan) with a Cu–Kα irradiator (0.154 nm wavelength)
and a graphite monochromator was used at a step width of 0.02◦ (between 2θ values of 20◦ to 60◦)
and a scanning rate of 2◦/min. For MWNT–Cu/Cu2O samples, the samples were inserted into an
airtight XRD sample holder under vacuum before their measurement. This method for the XRD of
MWNT–Cu/Cu2O samples was carried out in order to eliminate air exposure of the materials while
performing XRD on them. The scattering was detected using a scintillation counter.

2.5. Measuring Oxidation-Reduction Potentials (ORPs)

ORPs were measured with a portable ultrameter (Myron L Company, Carlsbad, CA). Two reaction
mixtures, i.e., MWNT + isopropanol + Cu (NO3)2·H2O and MWNT + DMF + Cu (NO3)2·H2O were
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heated to 70 ◦C for 1 h. After calibrating the ultrameter, 1 mL of the samples was placed in the ORP
measurement chamber separately and the ORP was recorded.

3. Results and Discussion

3.1. Physical Morphology and Composition

Representative TEM micrographs of the NHs show tubular structures with spherical features
(darker contrast) on the tubes (Figure 1). The higher magnification images (i.e., Figure 1b,d,f)
show lattice fringes on the sphere-like features, indicating crystalline structures, while the exterior
walls of the MWNTs are also observed in these images. The size of the nanocrystals is found to be
larger for both the oxides (i.e., 8–10 nm for ZnO and 5–8 nm for Cu2O); the zero-valent crystals are
smaller (i.e., 2–4 nm) and also are higher in density on the MWNT–Ag NH surfaces. These features
are found to be distributed along the tubes. The composition of the samples is quantified with XPS,
which indicates a stronger presence of the zero-valent metal compared to the oxides (Table S2).
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3.2. Chemical Attachment of Zn onto MWNTs: Hydroxide to Oxide Formation Pathway

Nanocrystals growth on the MWNT surfaces was promoted by the negatively charged oxygen
moieties on MWNT surfaces. Electrostatic attraction between metal cations and anionic surface moieties
on MWNTs associate the Zn2+ with the MWNT surfaces. These ions then react with water molecules
(generated from the hydrated zinc nitrate salt) to form Zn(OH)2 on the MWNT surfaces, which serve as
nucleation sites for further growth of amorphous and mixed-phased Zn(OH)2 and ZnO. Nanocrystal
formation pathway for MWNT-ZnO is evaluated in this study with XRD characterization on the
materials, before and after calcination (Figure 2). XRD spectra before calcination shows evidence of
both the crystal phases (Figure 2a). During calcination at elevated temeperature (at 400 ◦C in this case),
the Zn(OH)2 likely loses the excess water and gets converted to ZnO crystal phases. XRD spectrum
on the NH after calcinaton shows no evidence of Zn(OH)2 phase (Figure 1b) and confirms this likely
crystal formation pathway. Literature reports on XRD patterns for amorphous Zn(OH)2 and ZnO
are used to relate peak positions with specific crystalline planes [60]. The likely reaction pathway for
MWNT-ZnO NH formation is shown below, which is similar to crystal formation pathway described
for TiO2 growth on MWNTs [41].

O−MWNT−
Zn(NO3)2→ O−MWNT−Zn2+ H2O→ MWNT− ZnO/Zn(OH)2(amorphous)

Heat→ MWNT− ZnO(crystalline)

3.3. Zero-Valent Metal Formation on MWNTs with no Reducing Agent

MWNT surfaces have successfully been enhanced with zero-valent Ag (with SEP of +0.799)
crystals, employing the modified sol-gel method. It is noteworthy that no additional reducing
agent was required for this synthesis. The XRD spectrum of the MWNT-Ag NH (Figure 3) shows
defined peaks at (111), (200), (220), and (311) crystal planes, which correspond to zero-valent Ag [61].
Earlier studies on large-scale MWNT-Ag synthesis though report high quantity of Ag-attachment
to MWNTs, the XRD spectrum show less-defined peaks, compared to the results presented in this
study [46]. Though this study formed Ag-crystals on poly(acrylic acid)-modified MWNT surfaces,
thus the underlying mechanism of these nanocrystal growth is likely quite different compared to those
grown on oxidized carbon surfaces.Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 11 
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Nanomaterials 2018, 8, 403 6 of 10

Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 11 

 

 
Figure 2. Representative XRD spectra of MWNT–ZnO NH (a) before and (b) after calcination at 400 
°C for 3 h. The peak positions are labeled to indicate the respective crystal planes. The XRD spectra 
were collected at a scanning rate of 2°/min. 

 
Figure 3. Representative XRD spectra of CNT–Ag NHs. The peak positions are labeled to indicate the 
respective crystal planes. The spectrum was collected at a scanning rate of 2°/min. 

3.4. Intermediate SEP-Metal Cu: The Anomaly That Forces Oxide Formation 

With a positive SEP value, much like Ag, Cu should form zero-valent metals. However, Cu 
exhibits anomalous character and produces oxides during chemical attachment with MWNTs. This 
section attempts to overcome such oxide-forming propensity by using anoxic synthesis and 
characterization conditions, and results continue to be surprising. Following similar synthesis 
conditions (when compared to Zn and Ag), the Cu attachment resulted in a mixed Cu and Cu2O 
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3.4. Intermediate SEP-Metal Cu: The Anomaly That Forces Oxide Formation

With a positive SEP value, much like Ag, Cu should form zero-valent metals. However,
Cu exhibits anomalous character and produces oxides during chemical attachment with MWNTs.
This section attempts to overcome such oxide-forming propensity by using anoxic synthesis and
characterization conditions, and results continue to be surprising. Following similar synthesis
conditions (when compared to Zn and Ag), the Cu attachment resulted in a mixed Cu and Cu2O phases
as shown in the XRD spectrum (Figure 4a). Defined peaks at (111) and (200) planes (representing
zero-valent Cu) and at (220) and (111) (representing Cu2O phase) are consistent with the reported
literature [62]. Literature reports on nano-scale zero-valent copper suggest that such behavior can
stem from unavoidable oxidation during XRD characterization [50,51]. Some literature evidences also
suggest that such XRD patterns are typical for Cu/Cu2O core/shell nanocrystals [62].
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Figure 4. XRD spectrum of MWNT–Cu/Cu2O NH synthesized using the sol-gel process (a)
in isopropanol, (b) in oxygen-free conditions with isopropanol, and (c) in dimethylformamide (DMF).
An airtight XRD sample holder was used for XRD analysis for all the three materials. The peak positions
are labeled to indicate the respective crystal planes. The XRD spectra were collected at a scanning rate
of 2◦/min.
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To facilitate zero-valent Cu formation on MWNTs, synthesis conditions were modified to avoid
presence of ambient oxygen during the reaction (where, MWNT-isopropanol suspension was purged
with nitrogen for 1 h and sampling handling was done in a glove box) and calcination processes.
The synthesized NHs were also transferred into an airtight XRD sample holder to continue to avoid
exposure to oxygen to the synthesized NHs. It is interesting to note that the nanocrystals formed in
such anoxic reaction environment, continue to display Cu2O crystal planes, and with some additional
Cu2O planes in higher intensity (Figure 4b). The results indicate that the likely oxidation of Cu has
taken place, not during the XRD characterization, but likely during the synthesis process. The source
of oxygen is likely H2O or NO3

−, which could not be removed after the completion of the reaction
process. These results indicate that the use of a reducing agent may be unavoidable for the lower
magnitude SEP-metal Cu.

A solvent with a relatively higher reduction potential (compared to isopropanol), e.g., dimethyl
formamide (DMF), can potentially facilitate formation of zero-valent Cu in a sol-gel synthesis;
earlier studies have employed DMF for synthesizing Ag nanoparticles [63]. Following similar protocol
as noted earlier (in typical oxic environment), the nanocrystals formed with the aid of DMF exhibit
a lowering of the (111) Cu2O peak, while a complete elimination of the (220) peak observed earlier
(Figure 4c). To assess the reducing potency of the solvents ORP can be measured. The isopropanol
system has an ORP value of +597 mV compared to DMF’s +504 mV; which indicate a more conducive
reducing environment when DMF is used [64]. These findings strongly suggest that formation of
zero-valent crystals with a sol gel method may be challenging for metals with low magnitude SEP,
and may necessitate stronger reducing environment to facilitate this process.

4. Conclusions

Sol-gel synthesis can be utilized to form both zero-valent and oxides of metals on MWNT surfaces.
The resulting crystal phase is strongly dependent on the electronic properties of the metal species.
The SEP, which is a measure of energy required per unit charge to drive a redox reaction, can be used
as a guideline for the choice of metal to obtain nanocrystals with the desired crystalline phase. Results
suggest that metals with higher SEP values form either zero-valent or oxide phases, while those with
lower magnitude SEPs facilitate mixed-phase crystals. The sol-gel technique can be useful to form
zero-valent crystals without any reducing agent; however, such a reducing environment may become
necessary for oxidation-prone metals such as Cu.
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