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Abstract: Band-gap alignment engineering has now been extensively studied due to its high potential
for application. Here we demonstrate a simple route to synthesize two metal oxide layers and
align them together according to their bandgaps on the surface of crystalline silicon (c-Si) solar
cells. The metal oxide layers not only extend absorption spectrum to generate extra carriers but
also more efficiently separate electron–hole pairs. As a consequence, the photovoltaic performance
of SnO2/CdO/Si double-layer solar cell (DLSC) is highly improved compared to the controlled
Si solar cell, CdO/Si and SnO2/Si single-layer solar cells (SLSCs). Via alignment engineering, the
SnO2/CdO/Si DLSC produces a short circuit photocurrent (Jsc) of 38.20 mA/cm2, an open circuit
photovoltage (Voc) of 0.575 V and a fill factor (FF) of 68.7%, a conversion efficiency (η) of 15.09%
under AM1.5 illumination.

Keywords: silicon solar cells; semiconductors; electron–hole pairs

1. Introduction

Solar cells have been developing for more than five decades. From the very first generation
solar cell to the latest one, the conversion efficiency of the solar cell itself has been largely improved.
The update conversion efficiency of GaInP/GaAs solar cells have broken 40% [1–4]. However, these
high efficiency solar cells still have many disadvantages, such as stability issues and high cost, so
that they can hardly be put into large-scale production. At this point, with the combination of high
purity, natural abundance, a matching insulator, and maturity of production [5,6], crystalline silicon
(c-Si) solar cells show their unique advantageous properties. However, there still are several defects
of c-Si solar cells, such as optical loss, recombination, and thermal or quantum losses. Among them,
optical loss and recombination are deemed to be the two most vital factors. Many efforts have been
made by researchers to solve these problems. Silicon nanowires [7–9], ZnO nanowires [10], and
CuO nanoleaves [11] are some of those extraordinary attempts. The power conversion efficiency has
been improved through light trapping enhancement and photocarrier collection facilitation [12,13].
The TiO2 half-prolates light trapping schemes were designed to optimize photonic elements on top of
unstructured planar absorber layers in the Si cells’ front [14]. An Al2O3 nanopatterned point structure
was used to achieve the rear passivation [15]. It has opened up new opportunities to achieve higher
energy conversion efficiency at lower fabrication costs.

Although many textured structures have been made to enhance absorptance of c-Si solar cells,
c-Si is still an indirect band-gap semiconductor with a bandgap of 1.12 eV, which is able to utilize only
a small fraction of the solar spectrum. Currently, the tandem solar cell is considered to be one of the
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most promising approaches of the third generation solar cells to solve this problem. It is fabricated
with two or more sub-cells which are tandemed according to their bandgaps [16]. The overall open
circuit voltage (Voc) is the sum of those from all individual sub-cells, while the current is the same as
that in a single sub-cell once their currents are matched [17–19]. As a result, tandem solar cell have
broadened absorption spectrum effectively, so that they can tackle absorption and thermalization losses
simultaneously by absorbing the higher energy photons, improving the conversion performance.

By using the concept of tandem solar cells for reference, band-gap alignment engineering has
been developed for various applications, such as quantum dot solar cells through band alignment
engineering [20]. Here we applied CdO and SnO2 semiconductors to c-Si solar cells. CdO is one of the
transparent conducting oxides (TCOs) that has moderate band-gap and high electrical conductivity.
Because of high mobility, CdO is also believed to have large potential for the use in active electronic
devices [21,22]. SnO2 has wide bandgap of 3.5–4.0 eV and terrific electronic conductivity. It has
a great prospect in solar cells. SnO2 nanostructures were used as the buffer layer of Sb2Se3 solar
cell [23]. In our research, we have tried to synthesize different nano-structured films of CdO and SnO2

semiconductors on the surface of c-Si substrate, respectively. To comparatively investigate the electrical
properties and the photovoltaic performance, CdO/Si single-layer solar cell (SLSC), SnO2/Si SLSC,
and SnO2/CdO/Si double-layer solar cell (DLSC) were prepared. The controlled Si solar cell without
any deposition was also prepared as a reference. The comparison of the controlled cell, two SLSCs,
and SnO2/CdO/Si DLSC demonstrates the impact of different layers with different bandgaps on the
absorption region and the charge-transfer efficiency. As a result, the short-circuit current (Jsc) and the
open circuit voltage were improved, leading to the enhancement of power conversion efficiency (PCE).
SnO2/CdO/Si DLSC offers broad-band light harvesting and super high minority carrier lifetime. We
believe that this cost effective technology can be easily applied in the industrial scale production of Si
solar cells.

2. Materials and Methods

2.1. Materials and Methods

Slices (3.0 × 3.0 cm2) of c-Si wafers without Si3N4 antireflection layer were applied in this work.
The thickness of wafers is ~200 µm with a bulk p-n junction. Before growing any film on the surface of
Si wafer, it was cleaned by rinsing with double distilled water and ethanol to eliminate any impurities.
Firstly, two depositing solutions were prepared as solution A and B. Solution A is Cd(CH3COO)2

solution with the concentration of 0.05 M. In solution B, the concentration of SnCl4 is 0.01 M, and the 1:1
ethanol:water mixture is as solvent to prohibit hydrolysis. In order to grow CdO layer on the surface
of Si wafers, the dried Si wafer was immersed in solution A for 2 min and was dried again in a drying
oven at 80 ◦C. This procedure was repeated for over four times to ensure the CdO seeds were fully
distributed on the silicon’s surface. The deposited Si wafer was thermal treated at 500 ◦C for 3 min,
then the CdO/Si was completed. SnO2/Si was synthesized through a spin-coating method. In this
step, 0.05 mL of 0.01 M Stannic chloride aqueous ethanol solution were dropped onto Si surface under
the speed of 1500 rpm for 40 s, and this operation was conducted five times to ensure the Sn-precursor
fully covered on the substrate. The deposited Si wafer was treated under 900 ◦C in muffle furnace for
5 min to form SnO2 film. Combining the above two procedures, SnO2/CdO/Si was prepared. SnO2

was deposited on the surface of as-synthesized CdO/Si composited cell and anneal at 900 ◦C for 5 min.
For electrochemical analysis, two electrodes were made on the above three deposited Si wafers. Ag
grids were then screen-printed on front side, followed by rapid thermal annealing. Chemical vapor
deposition (CVD) was employed to deposit Al on the reverse side of the c-Si substrates.

2.2. Characterization

Field emission scanning electron microscopy (FESEM HitachiS-4800, Hitachi High-Technologies
GLOBAL, Tokyo, Japan) was used to evaluate the morphology and contents of the layers.
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The absorption spectra were measured on a Cary500 UV–vis–NIR spectrophotometer (Hitachi
High-Technologies GLOBAL, Tokyo, Japan) using BaSO4 as a reference. The minority carrier lifetime of
the samples was measured using the Si wafer life-time SEMILAB WT-2000 PVN (SEMILAB, Budapest,
Hungary). The current density–voltage (J-V) characteristics of the solar cells were measured using
a Zennium electrochemical workstation (Zahner elektrik GmbH & Co.KG, Thüringer Str. 12 96317
Kronach, Germany) under 100 mW cm−2 calibration which is performed using a Class A AM 1.5 G
spectral distributed Sun 2000 Solar Simulator (Abet Technologies, Inc., Milford, CT, USA). The external
quantum efficiency were conducted by using a QTest Station (CROWNTECH, Inc., Indianapolis,
IN, USA). The impedance measurements were performed on an external potentiostat (XPOT) of an
electrochemical Zennium workstation (Zahner elektrik GmbH & Co.KG, Kronach, Germany) with a
frequency ranging from 100 KHz down to 0.1 Hz at forward bias potentials between 0 and 0.5 V (with
a 5 mV sinusoidal AC perturbation). The resulting impedance spectra were analyzed with ZSipWin
software (v3.10, EChem Software, eDAQ Inc., Colorado Springs, CO, USA).

3. Results and Discussion

Figure 1 shows the surface morphologies of both CdO and SnO2 films deposited on the surface
of polycrystalline silicon with p-n junction, respectively. As shown in Figure 1a, CdO film was
characterized by scanning electron microscope (SEM). The cross-sectional view indicates that the
thickness of the film is about 32 nm, and its surface is smooth with comparing top view pictures.
While in Figure 1b, SnO2 film shows a different surface morphology with many hollows, and it is
approximately 41 nm in thickness, slightly thicker than CdO film. With those pictures we can find that
both two films have a firm contact with Si substrates, which is beneficial in reducing contact resistance
and electron transfer. Figure 1c demonstrates the schematic of SnO2/CdO/Si DLSC. With spin-coating
method and annealing treatments, CdO layer and SnO2 layer were grown on Si substrate in sequence.
On one hand, the top layer with a rough surface of SnO2 can efficiently increase light trapping. On the
other hand, two layers are capable of utilizing utilize different regions of incident light.
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Figure 1. Cross-section and top views of SEM morphologies of (a) CdO; and (b) SnO2 films growing on
polycrystalline silicon substrates, respectively, and the cross-sectional views are the inset; (c) schematic
of SnO2/CdO/Si DLSC.

FESEM energy dispersive spectrometry (EDS) element mapping of composited SnO2/CdO/Si
DLSC was conducted to take deep research on the structure of layer-by-layer. Figure 2a is the scanning
region of SnO2/CdO/Si composited wafer, while Figure 2b is the element mapping of all detected
elements. Figure 2c–f refer to element Si, O, Sn, and Cd, respectively. From Figure 2c–f, we can find that
the elements are well-distributed on the surface of c-Si substrate which indicates that the layer-by-layer
structure was greatly formed by spin-coating and annealing procedures.
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Figure 2. (a) FESEM of the composited SnO2/CdO/Si DLSC , (b) the element mapping of all detected
elements, (c) Si, (d) O, (e) Sn, and (f) Cd elements.

According to different morphologies above, different absorption spectra were measured by
UV–vis–IR. In Figure 3, Si substrate with CdO layer shows almost the same absorption property as
Si wafer except the slight improvement between 300 and 450 nm. As to SnO2 layer, the absorption
value from 300 to 1100 nm is improved by about 16%. This phenomenon results from their different
surface structures. Because of the hollows on the surface, the film can cause optical resonance and
multiple scattering of the incident light, which can trap incident light and enhance absorptance
effectively [24–26]. In addition, due to its wide bandgap, SnO2 film is capable to utilize much more
light compared to c-Si wafer. In addition, the SnO2/CdO film coatings have an antireflection effect on
the solar irradiation. The SnO2/CdO coatings can reduce the reflections from the Si wafer surfaces and
then increase the absorption. Therefore, the SnO2/CdO DLSC has the best absorption in the range of
300–1000 nm.
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To further investigate photovoltaic properties of composited solar cells, external quantum
efficiency (EQE) spectra and J-V curves were conducted under the standard AM 1.5 G conditions.
Figure 4a shows that a broad value of 70–80% in the spectrum of pristine Si solar cell is observed
from 500–900 nm which corresponds to the wavelength range of Si light absorption. In contrast, the
spectrum of SnO2/Si SLSC exhibits a large increase in EQE spectrum for the wavelength between
300–550 nm, while CdO/Si SLSC is a little lower than that of SnO2/Si SLSC. On one hand, as two
semiconductors with wide bandgaps (EgCdO = 2.4 eV, EgSnO2 = 3.5 eV), CdO and SnO2 can effectively
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absorb spectrum wavelengths between 300 and 600 nm. That means the CdO layer and SnO2 layer
are able to use incident light from 300 to 600 nm and generate more high energy carriers. On the
other hand, according to UV–vis–IR absorption spectra, both CdO/Si SLSC and SnO2/Si SLSC have
been enhanced between 300 and 600 nm. As we know, if solar cells absorb more incident light, more
photons can be utilized to generate carriers, so the improvement of EQE can be also attributed to
the enhancement of absorption performance. Since the absorption in the range of 800–1000 nm is
increased due to the antireflection effect and the hollow structure of SnO2 layer, the EQE in the range
of 800–1000 nm is increased. Though the absorption in the range of 600–800 nm is also increased, the
sensitivity of Si cell to the 600–800 nm irradiation is not as good as that to the 800–1000 nm irradiation.
The EQE increase is not obvious in in the range of 600–800 nm. Finally, the EQE performance of
SnO2/CdO/Si DLSC matches the theory we discussed above as well.
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The detailed device performance is summarized in Table 1 and the J-V characteristic curves are
shown in Figure 4b. As a result, the PCE of CdO/Si SLSC reaches a value as high as 13.34%, with
Jsc of 36.12 mA cm−2, Voc of 0.556 V and FF of 66.42%, while values of SnO2/Si SLSC are 13.96%,
37.01 mA cm−2, 66.76%. Compared to pristine Si solar cell without any metal oxide film growing
on the top, the Voc performance are improved by 2.6% and 4.2%. Whereas as for current density,
three as-synthesized solar cells all have various increases compared to the controlled Si solar cell. The
short-circuit currents are mainly related with three factors as we concluded, and the first one is light
absorption. The photoactive layer in the solar device absorbs sunlight, raising an electron from the
ground state to a higher energy state and then generates an energy bearing electron–hole pair, called
an excition [27]. As we know, c-Si is an indirect band-gap semi-conductor with a band-gap of 1.12 eV
and the perfect light spectra region for absorption of c-Si is approximately 700 ~ 1100 nm which is only
a small part of the whole solar spectrum. In order to maximize Jsc, it is necessary to make full use of the
solar spectrum. The more solar spectrum is utilized, the more photo-generated carriers are produced.
However, a large part of these photo-generated carriers are wasted directly through recombination.
It indicates that if electron–hole pairs can be efficiently separated before recombination, Jsc value is
supposed to be enhanced to a large extend. In addition, to ensure an efficient collection of charge
carriers, carrier transporting layers are required to have high mobility as well as long diffusion lengths
for electrons and holes [28–30], and the resistance is also a factor affecting current flowing. In our
research, Jsc of CdO/Si and SnO2/Si solar cells are increased to 36.12 mA cm−2 and 37.01 mA cm−2.
The increase can be ascribed to absorption enhancement as shown in Figure 3a and charge carrier
lifetime increase as shown in Figure 5.
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Table 1. Photovoltaic performance parameters of blank c-Si solar cell and as-synthesized CdO/Si and
SnO2/Si SLSCs and SnO2/CdO/Si DLSC.

Solar Cell Voc (V) Jsc (mA cm−2) FF (%) η (%) ∆η (%)

c-Si 0.542 34.68 65.33 12.28 –
CdO/Si 0.556 36.12 66.42 13.34 8.6
SnO2/Si 0.565 37.01 66.76 13.96 13.6

SnO2/CdO/Si 0.575 38.20 68.70 15.09 22.8
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Figure 5. Carrier density, Hall mobility, and minority carrier lifetime properties of (A) c-Si solar cell,
(B) CdO/Si SLSC, (C) SnO2/Si SLSC, and (D) SnO2/CdO/Si DLSC.

In Figure 5, we can also see that carrier density values of three kinds of as-synthesized solar cells
are all enhanced. As we discussed above, because of good solar spectrum absorption property and
band-gap alignment engineering, the composited solar cells are able to make better use of solar spectra
and thus produce more photo-generated carriers. Carrier density is an important parameter to measure
the utilized efficiency of absorbed photons. CdO owns a wider bandgap than c-Si, so short wavelength
irradiation is fully used according to the results of UV–vis–IR absorption and EQE property shown
in Figure 3. For the same reason, as bandgap of SnO2 is even wider, the EQE and UV–vis–IR results
indicate the carrier density enhancement which is correspondent with that measured in Figure 5.
Moreover, Hall mobility is highly related to electrical conductivity. The result in Figure 5 (red line)
shows that the speed of carrier transport is not decayed but improved instead, due to the CdO layer
and SnO2 layer deposited on top of c-Si substrates. This phenomenon demonstrates that CdO layer
and SnO2 layer we have synthesized play a role as good electron transport layers. When CdO and
SnO2 were made to grow on surface of c-Si substrates by a spin coating method, homogeneous films
were produced through tuning spinning speed and coating time. After annealing at 500 ◦C and 900 ◦C
respectively, firm Ohmic contact thin oxide films and c-Si substrates were formed, which is supposed to
decrease the series resistance. A blue line is put to demonstrate the change of minority carrier lifetime.
The result shows that, after being covered by different oxide layers, the lifetime of the minority carrier
is highly increased. The effective carrier lifetime (τeff) is directly related to the bulk lifetime (τbulk)
and the surface life time (τsurf) and the τbulk dominates the τeff [31]. The increase in Jsc and Voc partly
resulted from improved minority carrier lifetime can be understood by the relations below [32]

VOC =
kt
q

ln(
∆n(ND,A + ∆n)

ni
2 ) (1)

Jsc = qG(Ln + Lp) (2)

where kt/q is the thermal voltage, ND,A is the donor or acceptor concentration of the wafer, ∆n is
the excess carrier concentration, ni is the intrinsic carrier concentration, q is the magnitude of the
electrical charge on the electron, G is the generation rate, and Ln and Lp are electron and hole diffusion
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lengths, respectively. We can find that Voc and Jsc strongly depend on excess carrier concentration and
diffusion lengths which are directly proportional to the τeff. That is to say, the increase of minority
carrier lifetime gives rise to the enhancement of Jsc and Voc, which in the end contribute to power
conversion efficiency.

To further investigate the mechanism of charge-transfer and electron–hole separation, we here
illustrate the schematic diagram representing charge-transfer and electron–hole separation process in
Scheme 1. As shown in the diagram, the conduction band (CB) of SnO2 lies at a more negative potential
than that of CdO, while the valence band (VB) of CdO is more negative than that of SnO2. Under solar
irradiation, photo-generated electrons in the conduction band of SnO2 go to the conduction band of
CdO, and hole transfer occurs from the valence band of CdO to that of SnO2. At the same time, with a
similar reason for c-Si substrate, electrons from conduction band of CdO transfer to that of c-Si, and
holes transfer from valence band of CdO to that of c-Si. The simultaneous transfer of electrons and
holes in SnO2/CdO/Si system increase both the yield and the lifetime of charge carriers by separating
the photo-induced electrons and reducing charge recombination in the electron-transfer process [33].
In our research, the results of minority carrier lifetime, carrier density, and short current density are
able to perfectly support the schematic diagram we discussed above.
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SnO2/CdO/Si DLSC.

X-ray photoelectron spectroscopy (XPS) was also conducted to study the compositions and
chemical states of as-synthesized SnO2/CdO/Si composited solar cell. Figure 6a,b compare the XPS
survey spectrum of CdO/Si and SnO2/CdO/Si. In comparison to CdO/Si, the XPS survey spectrum
of SnO2/CdO/Si exhibits four additional Sn peaks, and two strongest peaks refer to Sn 3d3/2 and Sn
3d5/2. When focusing on Cd 3d, we can find that peaks of Cd 3d in Figure 6b are apparently much
weaker than that in Figure 6a. Because of a ~40 nm thickness SnO2 layer covered on top of CdO layer
with spin-coating method, XPS signal of Cd was heavily blocked by SnO2 layer. The Cd 3d core level
spectra of CdO/Si solar cell and SnO2/CdO/Si solar cell are shown in Figure 6c. For CdO/Si, peaks of
Cd 3d center at 405.42 eV and 412.17 eV which are consistent with the values reported for Cd2+, while
peaks of Cd 3d5/2 and Cd 3d3/2 are located at 405.81 eV and 412.57 eV respectively for SnO2/CdO/Si
solar cell [34]. There is an approximate 0.4 eV increase in binding energy of Cd 3d between CdO/Si
and SnO2/CdO/Si, which illustrates that the extraction of nuclei and electrons becomes stronger.
It is believed that SnO2 crystalline and CdO crystalline are affected by each other and formed a
kind of hetero-structure. This new formation of structure gives a vital impact on carrier-transport
between different layers and also leads to a drastic improvement in the photovoltaic performance of
SnO2/CdO/Si DLSC.
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4. Conclusions

In conclusion, we investigated the photovoltaic performance of crystalline silicon solar cells
using different metal oxide layers by band-gap alignment engineering that act as wavelength
broadening layers for optical absorption and effective carrier separation and transport layers.
The photovoltaic performance of as-synthesied SnO2/Si SLSC, CdO/Si SLSC, and SnO2/CdO/Si
DLSC were considerably improved in comparison with original c-Si solar cells. The highest PCE value
was 15.09% for SnO2/CdO/Si DLSC as measured while 12.28% for original c-Si solar cells. In addition,
the recombination of photogenerated carriers was greatly restrained, resulting in a high minority
carrier lifetime value. It is believed that by using band-gap alignment engineering, crystalline silicon
solar cells still have deeper potential for further exploration.
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