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Abstract: Graphene is an ideal material in the reinforcement of metal-matrix composites owing
to its outstanding mechanical and physical properties. Herein, we have investigated the surface
enhancement of iron via a computational nanoindentation process using molecular dynamics
simulations. The findings of our study show that graphene can enhance the critical yield strength,
hardness and elastic modulus of the composite to different degrees with the change of the number
of graphene layers. In the six tested models, the composite with trilayer graphene on the surface
produces the strongest reinforcement, with an increased magnitude of 432.1% and 169.5% in the
hardness and elastic modulus, respectively, compared with pure iron. Furthermore, it is revealed that
high temperature could weaken the elastic bearing capacity of the graphene, resulting in a decrease
on the elastic mechanical properties of the graphene/Fe composite.
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1. Introduction

Since its discovery [1], graphene has been the most attractive material to be explored because of
its remarkable electronic and physical properties due to the quantum confinement [2–5]. In particular,
graphene has shown great potential in matrix reinforcement in recent years owing to its outstanding
strength over 1 TPa [5]. In general, a low modulus matrix can be significantly reinforced by the
presence of high-modulus graphene, which is called filler in composites [6]. The common assumption
that the filler modulus is independent of the matrix has been proved incorrect, considering the wide
range of reinforcement on polymer matrices by high-modulus graphene [6]. Many factors influence
the mechanical properties of graphene-based nanocomposites, including the structure of the filler,
the synthetic method of the composite, the concentration of the filler in the matrix, the interactions
between the filler and the matrix, and the orientation of the filler. Even with a very small amount
of graphene, the composite’s Young’s modulus, tensile strength and toughness can have sharp
increases [7,8].

Extensive studies have been conducted on metal matrix composites, including Fe, Al, Cu, Mg
and Ni [9–13]. Iron is by far the most commonly used industrial metal on account of its great
range of desirable properties and low cost. Dislocations play an important role in revealing the
remarkable mechanical properties of iron matrix composite, about which a punch-out mechanism
has been proposed to explain the formation of interstitial dislocation loops [14]. The study on
the interaction between edge dislocations and graphene nanosheets in graphene/Fe composites
by molecular dynamics (MD) simulations revealed an increase of 107% and 1400% in shear modulus
and yield stress, respectively [9]. Meanwhile, the enhancement of surface hardness on iron is another
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crucial issue in broad industrial applications of graphene. Graphene is an excellent choice for the
surface reinforcement of pure iron matrix due to the relatively simple industrial process, the study on
which can offer guidance to the manufacture and application of the graphene/Fe composite. However,
relevant efforts have been rarely reported.

Nanoindentation is an approach widely used to measure elastic modulus and hardness of
nanocomposites [15,16]. In this study we investigated the enhancement of hardness and elastic
modulus of iron by graphene additives. The amount of graphene measured by the number of layers
was explicitly examined using nanoindentation modeling. We recorded the load-displacement data
during the nanoindentation process of the graphene/Fe composite made by a diamond indenter.
By analyzing the load-displacement curves, we compared the hardness and elastic modulus between
the pure iron matrix and composites with graphene on the surface and in the superficial zone.
In addition, the influence of different loading speeds and temperatures on the elastic mechanical
properties of the composite were also discussed.

2. Method

2.1. Model

The MD method was used to examine the influence of graphene in the graphene/Fe composite at
the atomic level. The large-scale atomic/molecular massively parallel simulator (LAMMPS) software
was employed to calculate the MD simulations. The simulation cells are shown in Figure 1. The x and
y directions are set the periodic boundary condition and the z direction is fixed.
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Figure 1. (a) Simulation cell of pure iron matrix; (b) simulation cell of composite with graphene on
the surface of the matrix, the graphene could be monolayer, bilayer and trilayer; (c) simulation cell
of composite with graphene in the superficial zone of the matrix, the graphene could be monolayer,
bilayer and trilayer.

The graphene/Fe composite models are shown in Figure 1b,c. In this study the BCC α-Fe matrix
is an area of 10 × 10 × 10 nm with a lattice constant of 2.85 Å, which is shown in Figure 1a. Figure 1b
shows the composite model with graphene on the surface of the matrix. The composite with graphene
in the superficial zone of the matrix is shown in Figure 1c, where the distance between the graphene
layer and the top surface is 0.5 nm. All balls with a radius of 2 nm consisting of carbon atoms in
diamond structure have the same velocity moving down to make a nanoindentation on the surface of
the composite or pure iron matrix.

2.2. Molecular Dynamics Simulations

The accuracy of the MD simulation results is determined by the selection of potential function.
We used the Brenner-generation reactive empirical bond-order potential to model the C-C bonded
interaction [17]. The C-C AIREBO potential has a widespread application in graphene-based
materials [18,19], which is composed of three terms:

E =
1
2 ∑ i ∑ j 6=i

[
EREBO

ij + ELJ
ij + ∑ k 6=i,j ∑ l 6=i,j,kETORSION

kijl

]
, (1)
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where the Eij
REBO term describes the short-ranged interactions (r < 2 Å) between carbon atoms, the Eij

LJ

term adds longer-ranged interactions (2 Å < r < cutoff) using a form similar to the standard Lennard
Jones potential, and the Ekijl

TORSION term describes various dihedral angle preferences in hydrocarbon
configurations, which is an explicit 4-body potential.

The embedded-atom method (EAM) potential was used to compute pairwise interactions between
iron atoms [20]. The total energy Ei of an atom i is specified as

Ei = Fα

(
∑ j 6=iρβ

(
rij
))

+
1
2 ∑ j 6=i∅αβ

(
rij
)
, (2)

where Fα is the embedding energy which is a function of the atomic electron density ρβ. Φαβ is the
pair potential interaction between atoms I and J, as a function of the distance rij between atom I and
atom J. α and β are atomic element types. The C-Fe interaction between iron and carbon atoms of both
diamond indenter and graphene layers was described by the classical Lennard Jones (LJ) potential,
as shown in Equation (3)

E = 4ε
[(σ

r

)12
−
(σ

r

)12
]

r < rc, (3)

where rc is the cutoff distance. The σ and ε for the C-Fe interaction are 2.221 Å and 0.043 eV [21],
respectively. The LJ potential was also used to model the interaction between the graphene layers and
diamond indenter with the σ and ε value of 3.4 Å and 0.00284 eV [22], respectively.

We set a downward velocity of 30 m/s on the balls and kept the temperature at 300 K by the
Nose-Hoover algorithm [23]. After the energy minimization, the downward movement would continue
until a preset depth and then the ball moved upward. The timestep was 0.001 ps. The displacement and
the force in the z-direction of the diamond indenter imposed by the composite matrix were recorded.

2.3. Nanoindentation

The Hertzian contact analysis theory guided our model. To understand the influence of graphene
sheets on the hardness and elastic modulus of the iron matrix, the load-displacement data was recorded
for analysis. The load-displacement relation is described by [24]

P =
4
3

√
REr

(
h− h f

) 3
2 , (4)

where P is the z-direction force of diamond indenter, h is the max depth of the nanoindentation,
hf is the final displacement of the plastic unloading process. R is defined by R = (1/R1 + 1/R2)−1,
where R1 is the radius of diamond indenter, R2 is the radius of the spherical hole in the surface of the
substrate [24]. The induced modulus Er is given by [25]

1
Er

=

(
1− ν2)

E
+

(
1− ν2

i
)

Ei
, (5)

where E and ν are Elastic modulus (Young’s modulus) and Poisson’s ratio of the composite matrix,
Ei and νi are the same parameters of the diamond indenter. The hardness is defined by

H =
Pmax

Ac
, (6)

where Pmax is the max force at the initial unloading point, and Ac is the contact area of spherically
curved surface [25].
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3. Results

3.1. Monolayer Graphene Enhancement

The results of the simulated nanoindentation process are revealed by the load-displacement
curves. Figure 2a shows the load-displacement curves of the three cases, i.e., pure iron, monolayer
graphene on the surface and monolayer graphene in the superficial zone of the graphene/Fe composite.
The max displacement of the diamond indenter is 4.5 nm. These results indicate that the monolayer
graphene has a significant reinforcement on iron matrix both in surface and superficial zone cases.
In the initial 1 nm displacement, the load of the three cases shares almost the same growth rate,
indicating that graphene has no evident effect on iron matrix in the early stage of loading. After that,
the pure iron loading curve gradually levels off, while the curves of the other two composites keep
growing. The difference in curves indicates that graphene acts as a strong deterrent for the yield of
the composite. From Figure 2a, we can see that the graphene has increased the yield strength of the
composites obviously. The sharp drop points of the curves indicate that the load bearing capability of
the graphene has reached its maximum and then the graphene is fracted. After that, the load curves of
the three cases begin to converge. We made the loading-unloading processes of those three cases in
their plastic deformation stages. The load change of the three cases is shown in Figure 2b. The arrows
indicate the loading and unloading processes. The serration in the curve of pure iron is mainly related
to the potential we adopted to describe the C-Fe interaction. The elastic modulus and hardness of
pure iron and the two composite cases with monolayer graphene were calculated according to the
loading-unloading curves. The hardness of pure iron is 8.1, very close to the experimental value of
8.2 [26]. The elastic modulus of pure iron is 150.1 GPa, a little lower than the experimental value
of 200 GPa [26] and a MD result in shear modulus of 56.4 GPa [9], which is associated with the
potentials used in the simulation. The two parameters of the composite with monolayer graphene
on the surface are 19.4 and 218.4 GPa, an increase of 139.5% and 45.5%, respectively, compared with
the pure iron case. In the case of composites with graphene in the superficial zone, the hardness and
elastic modulus are 18.4 and 201.1 GPa, an increase of 127.2% and 33.3%, respectively. In general,
the monolayer graphene has greatly increased the hardness and elastic modulus of the composite due
to its remarkable load bearing capability. Meanwhile, the composite with graphene on the surface
produces a better reinforcement. The local stress and interspace would be produced as the graphene
embedded into the iron matrix, which enhances the flexural rigidity and weakens the elastic bearing
capacity of the graphene, resulting in a decrease of the hardness and elastic modulus.
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by adding more graphene layers. The critical nanoindentation depth is also extended from 2.7 to 3.2 
nm, owing to the enhancement of elastic deformation capacity of the composite, as the graphene 
increases from monolayer to trilayer. Figure 2d shows the loading-unloading curves of the three 
surface cases. The hardness and elastic modulus of composite with bilayer graphene on the surface 
shown in Figure 3 are 28.9 and 286.5 GPa, with increases of 256.8% and 90.9%, respectively, compared 
with the pure iron case. The same parameters of composite with trilayer graphene on the surface are 
43.1 and 404.5 GPa, corresponding to increases of 432.1% and 169.5%, respectively, compared with 
the pure iron case. The results suggest that the graphene layers have an effective improvement on the 
elastic mechanical properties of the iron matrix. With the increase of graphene layers, the max load 
increases significantly while the contact area changes slightly, leading to the proportional increase of 
hardness and elastic modulus. Figure 2e shows the loading processes of the composites with 
graphene in the superficial zone. The relationship between yield strength and graphene layers is 
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Figure 2. (a) Load-displacement curves of pure iron, composite with monolayer (ML) graphene
on surface and in superficial zone; (b) loading-unloading curves of pure iron and composite with
monolayer graphene; (c) load-displacement curves of pure iron and composite with different numbers
of layers on the surface (ML, bilayer (BL), trilayer (TL)); (d) loading-unloading curves of three surface
composite cases; (e) load-displacement curves of pure iron and composite with different number layers
in superficial zone; (f) loading-unloading curves of three superficial composite cases.

3.2. Multilayer Graphene Enhancement

The mechanical properties of multiple graphene have received growing interest in recent
years [27,28]. To investigate the reinforcement of graphene/Fe composites with different numbers
of graphene layers, we explored monolayer, bilayer and trilayer graphene on the surface and in the
superficial zone. Figure 2c shows the loading processes of the composite with different numbers
of graphene layers on the surface. It was observed that the critical yield strength of the composite
increases with the number of graphene layers, due to the improvement of the load bearing capability
by adding more graphene layers. The critical nanoindentation depth is also extended from 2.7 to
3.2 nm, owing to the enhancement of elastic deformation capacity of the composite, as the graphene
increases from monolayer to trilayer. Figure 2d shows the loading-unloading curves of the three surface
cases. The hardness and elastic modulus of composite with bilayer graphene on the surface shown
in Figure 3 are 28.9 and 286.5 GPa, with increases of 256.8% and 90.9%, respectively, compared with
the pure iron case. The same parameters of composite with trilayer graphene on the surface are 43.1
and 404.5 GPa, corresponding to increases of 432.1% and 169.5%, respectively, compared with the pure
iron case. The results suggest that the graphene layers have an effective improvement on the elastic
mechanical properties of the iron matrix. With the increase of graphene layers, the max load increases
significantly while the contact area changes slightly, leading to the proportional increase of hardness
and elastic modulus. Figure 2e shows the loading processes of the composites with graphene in the
superficial zone. The relationship between yield strength and graphene layers is similar to the surface
cases. However, the max yield strength of bilayer graphene case is only a little smaller than the trilayer
case in the superficial zone cases. In the superficial trilayer case, the local stress was produced on the
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top layer and under the bottom layer graphene region, which caused the rugged surfaces under the top
graphene layer and on the bottom graphene layer. The middle layer graphene appeared to slip due to
the unbalanced van der Waals force from the other two graphene layers at the initial time. The degree of
distortion on the middle graphene layer is uneven during the nanoindentation process, which weakens
the loading bearing capacity in a way. As a result, the max yield strength of trilayer case did not
improve much more than the bilayer case. The loading-unloading curves of the three cases in superficial
zone are shown in Figure 2f. Figure 3 also shows the hardness and elastic modulus of composite with
different number layers graphene in superficial zone. The hardness and elastic modulus are 24.8 and
275.0 GPa for the bilayer case, 29.6 and 347.1 GPa for the trilayer case. The increments of those two
parameters are 206.2% and 83.2% for bilayer case, 265.4% and 131.2% for the trilayer case, compared
with the pure iron case. The variation tendency on elastic modulus and hardness of all the surface
and superficial cases are shown in Figure 3a,b, respectively. The two parameters of composite in
surface cases are higher than that in superficial zone cases to different degrees with the same number
of graphene layers, which is related to the local stress fields produced by lattice mismatch between
the graphene and iron matrix in the superficial situations. The stress fields reduce the flexibility of
graphene layers and lower the critical yield strength of the graphene/Fe composite.
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composite cases.

3.3. Effect of Loading Speed and Temperature

To investigate the influence of loading speed and temperature on the nanoindentation process
of the graphene/Fe composite, we explored the nanoindentation simulation of the composite with
monolayer graphene on surface at varied loading speeds and at different temperatures, as shown
in Figure 4a,b, respectively. It can be seen that the critical yield strength in the case with a loading
speed of 100 m/s is a little higher than the other two cases, which suggests that the change of loading
speed has a slight effect on the loading bearing capacity of the graphene. The situation for 10 m/s
resembles the 30 m/s case, and all the speed cases have almost the same critical nanoindentation depth,
which reveals that the elastic bearing capacity of the composite has no relationship with the loading
speed. Meanwhile, the effect of different temperatures is more obvious. The critical yield strength
and nanoindentation depth decreased significantly with the increase of temperature, which is related
to the effect on the crystal texture of the iron matrix and graphene by different temperatures. As the
temperature increases, the lattice vibration of graphene becomes intensified, which greatly reduces its
mechanical properties, resulting in a weakening of elastic bearing capacity [29]. Meanwhile, the high
temperature improves the atomic activity, lowers the grain boundary strength and reduces the lattice
resistance in the iron matrix region, which also has a negative effect on the loading bearing capacity of
the composite.
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