SUPPORTING INFORMATION

Two-step exfoliation of WS₂ for NO₂, H₂ and humidity sensing applications

Valentina Paolucci¹, Seyed Mahmoud Emamjomeh¹, Michele Nardone², Luca Ottaviano^{2,3} and Carlo Cantalini^{1,*}

- ¹ Department of Industrial and Information Engineering and Economics, Via G. Gronchi 18, University of L'Aquila, I-67100 L'Aquila, Italy; e-mail@e-mail.com
- ² Department of Physical and Chemical Sciences, Via Vetoio 10, University of L'Aquila, I-67100 L'Aquila, Italy; <u>e-mail@e-mail.com</u>
- ³ CNR-SPIN Uos L'Aquila, Via Vetoio 10 I-67100 L'Aquila, Italy; e-mail@e-mail.com

Supporting Figure S1. Schematic illustration of the exfoliation process. 2 g of WS2 commercial powder with 99% purity and average particle size of 2µm (a) were dispersed in 4 ml of Acetonitrile and ball milled (b) in a planetary milling machine at 400 rpm with with 30g Zirconium Oxide balls (D=3 mm) for 2 hours (steps of 15 min milling and 5 min idle to avoid excessive warming). The ACN residuals were then evaporated overnight (i.e. drying) at room temperature (c). After ACN evaporation, 0.05 g of the ball milled powder dispersed in 100 ml of pure ethanol and probe sonicated (d) for 90 minutes in a cool bath (T 25°C). Finally, the sonicated dispersion was centrifuged at 2500 rpm for 40 min at 20°C (e) and the supernatant collected (f) and spin coated on a proper substrate (g). Some drawings of this figure are distributed by "Servier Medical Art by Servier".

Supporting Figure S2. Schematic illustration of the substrate with drop cast exfoliated WS2: (a) Substrate front side showing the deposited area (light grey); (b) SEM picture of the Pt finger-type electrodes on Si3N4 substrate; (c) SEM picture of the 180°C annealed exfoliated WS2; (d) electrical connections to measure the resistance of the WS2 film by volt-amperometric technique.

The electrical resistance of the films was measured by an automated system. Thin film deposited on Si₃N₄ provided with Pt finger type electrodes was placed inside a Teflon chamber (500 cm³), provided with Teflon tubings and exposed to gaseous mixtures containing between 1 ppm to 500 ppm H₂, between 40 ppb to 10 ppm NO₂ in dry air carrier and air with relative humidity in the range 10-80% Relative Humidity (RH) at 500sccm/min flow rate. The average gas residence time inside the chamber is set at 1 min. Different gas concentrations were obtained by mixing certified H₂ and NO₂ mixtures (500 ppm H₂, and 10 ppm NO₂ in dry air carrier, by means of an MKS147 multi gas mass controller. Thin film electrical resistance was measured by means of the volt-amperometric technique (AGILENT 34970A) at different OTs in the temperature range 25°C-150°C by heating the Si₃N₄ substrate through back-side-circuit dc current injections (20–80 mA) as shown in Figure S2. The time scale for gas adsorption and air desorption was fixed at 1 h. Gas response properties have been discussed considering the following features: Base Line Resistance (BLR), i.e. the resistance in dry air at equilibrium; Relative Response (RR), i.e. the ratio (R_G/R_A) or (R_A/R_G) for a given concentration of oxidizing or reducing gases respectively.

Supporting Figure S3. XPS spectra of S 2p core level acquired respectively on (a) pristine WS₂ commercial powder (WS₂ PWD); (b) WS₂ exfoliated by ball milling, drying and sonication at 25 °C

The XPS analysis of the S 2p core level spectra reported in Figure S3 shows the presence of several chemically shifted components, composed of the $2p_{3/2}$ and $2p_{1/2}$ doublets. These components are very likely a consequence of the high reactivity and oxidation states number of sulfur. The spectra are characterized by three main components, assigned to WS₂ (component 1, at 162.3 eV), to SO₄ (component 2, at 168.8 eV) and to non-metallic disulfide compounds (S₂)²⁻ (component 3, at 163.7 eV). The presence of SO₄ and (S₂)²⁻ on the surface of the pristine powder is due to air oxidation processes. All the assignments of the S 2p components are in line with literature.[1,2]

Supporting Figure S4. Grazing incidence XRD spectra of the as-exfoliated WS₂; as-exfoliated WS₂ - 200°C annealed for 1 hour. Top right inset shows the close up of the 2 θ region characteristic of crystalline WO₃. Peaks of crystalline WO₃, according to ICDS 98-001-7003, are highlighted by dashed green lines. Notably that after annealing at 500 °C for 1 hour, WO₃ crystalline is formed, whereas the WS₂ peak located at 2 θ degree 29° disappears.

Supporting Figure S5. The electrical response of WS₂ post-annealed at 180 °C at different operating temperatures and 800 ppb NO₂ in dry air. Horizontal black dotted lines mark the base line resistances. NO₂ pulses are represented by the grey shaded rectangular plots. The time scale of the experiment consists of 1 hours conditioning in dry air and 1-hour exposure to NO₂ gases respectively.

Supporting Figure S6. Selectivity response of WS₂ post-annealed at 180°C at 150°C operating temperature, respect to 5ppm NO₂. WS₂ film shows satisfactory selectivity to both 5 ppm H₂ and NH₃ gases and to 250 ppm ethanol and acetone.

References

- [1] Perrozzi F, Emamjomeh S M, Paolucci V, Taglieri G, Ottaviano L and Cantalini C 2017 Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2 *Sensors Actuators, B Chem.* 243
- [2] Benoist L, Gonbeau D, Pfister-Guillouzo G, Schmidt E, Meunier G and Levasseur A 1995 X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films *Thin Solid Films* **258** 110–4
- [3] Jha R K and Guha P K 2016 Liquid exfoliated pristine WS ² nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors *Nanotechnology* **27** 475503