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Abstract: With increasing applications of metal-organic frameworks (MOFs) in the field of
gas separation and catalysis, the preparation and performance research of encapsulating metal
nanoparticles (NPs) into MOFs (M@MOF) have attracted extensive attention recently. Herein, an
Ru@UiO-66 catalyst is prepared by a one-step method. Ru NPs are encapsulated in situ in the
UiO-66 skeleton structure during the synthesis of UiO-66 metal-organic framework via a solvothermal
method, and its catalytic activity for CO2 methanation with the synergy of cold plasma is studied.
The crystallinity and structural integrity of UiO-66 is maintained after encapsulating Ru NPs
according to the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and
scanning electron microscopy (SEM). As illustrated by X-ray photoelectron spectroscopy (XPS), high
resolution transmission electron microscopy (HRTEM), and mapping analysis, the Ru species of
the hydration ruthenium trichloride precursor are reduced to metallic Ru NPs without additional
reducing processes during the synthesis of Ru@UiO-66, and the Ru NPs are uniformly distributed
inside the Ru@UiO-66. Thermogravimetric analysis (TGA) and N2 sorption analysis show that
the specific surface area and thermal stability of Ru@UiO-66 decrease slightly compared with that
of UiO-66 and was ascribed to the encapsulation of Ru NPs in the UiO-66 skeleton. The results
of plasma-assisted catalytic CO2 methanation indicate that Ru@UiO-66 exhibits excellent catalytic
activity. CO2 conversion and CH4 selectivity over Ru@UiO-66 reached 72.2% and 95.4% under 13.0 W
of discharge power and a 30 mL·min−1 gas flow rate (VH2 :VCO2 = 4:1 ), respectively. Both values
are significantly higher than pure UiO-66 with plasma and Ru/Al2O3 with plasma. The enhanced
performance of Ru@UiO-66 is attributed to its unique framework structure and excellent dispersion
of Ru NPs.
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1. Introduction

Metal-organic frameworks (MOFs) are a series of porous crystal materials self-assembled by metal
ions and organic ligands through coordination bonds [1–3]. The properties of specific surface area,
porosity, and tunable functional structure make MOFs promising candidates in many applications
such as gas storage and separation, drug delivery, chemical sensing, and catalysis [4–8]. As a typical
Zr-based MOF, UiO-66 was first synthesized by Cavka et al. [9] and named after the University of Oslo.
It has a perfect Zr6O4(OH)4 octahedral framework structure and exhibits exceptional thermal stability.
In addition, UiO-66 has been widely utilized in the separation and conversion of CO2 [6,10–13].

The utility of UiO-66 as a support for metal catalysts (M/UiO-66, M=Cu, Au, Pd, Pt, Ru, etc.)
has been extensively studied by researchers recently [14–19]. For example, Milet et al. [18] reported
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Pt/UiO-66 catalysts prepared by the double solvent method: impregnation of the UiO-66 support with
the aqueous solution of H2PtCl6, and then reduction with NaBH4 solution. The Pt/UiO-66 exhibited
excellent performance for CO2 methanation. The CO2 conversion and CH4 selectivity were as high as
50% and 36% at 350 ◦C with a CO2:H2 molar ratio of 1:5.2 and 1650 h−1 gas hourly space velocity (GHSV),
respectively. Compared with the simple impregnation method, encapsulating metal nanoparticles
(MNPs) into the skeleton structure of the MOF template can adjust the size distribution of MNPs and
prepare high-performance MNPs@MOF catalysts [20]. Li et al. [21] synthesized UiO-66-encapsulated
nano-palladium catalysts (Pd@UiO-66). As described, the Pd(acac)2 was first prepared, and then 1 g of
UiO-66 and Pd(acac)2 solutions were mixed to synthesize Pd@UiO-66. Small Pd NPs (2.2 nm) were
obtained due to the confinement of the small pore structure of UiO-66. The synthesized Pd@UiO-66
exhibited high catalytic activity and stability for continuous catalytic upgrading of ethanol to n-butanol.
The ethanol conversion and the n-butanol selectivity over the best Pd@UiO-66 catalyst was 49.9%
and 50.1%, respectively, during a 200-h evaluation. The high performance was attributed to the
close synergy of highly distributed Pd NPs and coordinatively unsaturated Zr sites in UiO-66. Dong
et al. [22] encapsulated Pd NPs in UiO-66 with a microwave-assisted method. The pores of UiO-66
were activated, and the metal precursors were reduced at the same time in the presence of NaBH4.
The obtained Pd@UiO-66 exhibited high catalytic activity for Suzuki–Miyaura coupling reactions
at mild conditions. Therefore, using MOFs with tunable porous structures as supports, growth of
the metal NPs could be confined due to the encapsulation [23]. Consequently, high-performance
MOFs supported metal catalysts with small size and high dispersion metal NPs can be generally
obtained [24–26]. However, to synthesize the above MOFs-supported metal catalysts, there are two
or more steps required, the synthesis of the MOF support and the impregnation, and the reduction
of the supported/encapsulated metal precursors in the presence of reducing agents [18]. Therefore,
this process is generally sophisticated and time-consuming.

The CO2 methanation has great prospects in economic and environmental applications since
most of the fuel resources and one-carbon molecules (C1) can be regenerated from CO2 [27,28].
The emerging plasma-assisted activation of CO2 for methanation can provide the high energy for
CO2 decomposition and overcome the relatively harsh conditions and reaction devices required for
conventional thermochemical conversion [29–33]. Ru-based catalysts, due to their efficient activity, have
been applied in CO2 methanation extensively. This is because, in the process of CO2 hydrogenation,
the active Ru sites are more selective to the formation of methane, which can promote the reaction of
CO2 along the methanation path in the hydrogen-rich environment [34–37].

In this work, we report a simple and efficient method for synthesizing Ru@UiO-66 via in situ
encapsulation of Ru NPs by the reduction of the RuCl3 precursor during the growth of UiO-66
framework structure. The crystallinity and structural integrity of Ru@UiO-66 are similar to UiO-66.
The synthesized Ru@UiO-66 exhibits high performance for plasma-assisted catalytic CO2 methanation.

2. Experimental

2.1. Materials

Zirconium tetrachloride (ZrCl4, 98%), terephthalic acid (BDC, 99%) and hydrochloric acid
(HCl, 37%) were supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
N,N-dimethylformamide (DMF, 99%) and hydration ruthenium trichloride (RuCl3·xH2O, Ru content
37%) were purchased from Tianjin Zhiyuan Co., Ltd. (Tianjin, China) and Walixi Chemical Co., Ltd.
(Guangdong, China), respectively. Anhydrous methanol (CH3OH, 99.5%) was bought from Tianjin
Kermel Co., Ltd. (Tianjin, China). All chemicals were used without further purification. High purity
H2 (>99.999%) was generated by an HGH-500E hydrogen generator, and high purity CO2 and Ar
(>99.999%) were obtained from the Guangming Research & Design Institute of Chemical Industry Co.,
Ltd. (Dalian, China).
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2.2. Synthesis of UiO-66 and Ru@UiO-66

The strategy for preparing UiO-66 and Ru@UiO-66 is depicted in Figure 1. UiO-66 was prepared
by a solvent thermal method previously reported in [38]. In brief, 1.165 g of ZrCl4 and 0.831 g
of BDC were dissolved in 30 mL DMF, and then 0.8 mL of concentrated HCl (37%) was added.
The obtained mixture was placed in an ultrasonic reactor for 20 min and heated at 120 ◦C for 24 h in a
Teflon-lined steel autoclave. After cooling to room temperature, the obtained suspension of UiO-66
was centrifuged by a centrifuge machine (9000 rpm, 10 min), and rinsed with 25 mL of DMF and
25 mL of anhydrous methanol three times, respectively. The obtained UiO-66 was dried at 100 ◦C
under vacuum. The synthesis procedure of Ru@UiO-66 was similar to that of UiO-66. The difference
was that 0.415 g of RuCl3 with 1.165 g of ZrCl4 and 0.831 g of BDC were added into 30 mL of DMF.
The other parameters were the same as that for synthesizing the pure UiO-66. The mass fraction of Ru
determined by inductively coupled plasma optical emission spectrometer (ICP-OES) in Ru@UiO-66
was 2.83 wt%.
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Figure 1. Schematic illustration for the synthesis of UiO-66 and Ru@UiO-66.

2.3. Catalytic Evaluation

The catalytic activity of the UiO-66 supported Ru catalysts was evaluated via a dielectric barrier
discharge (DBD) plasma-assisted catalytic CO2 methanation reaction. The DBD plasma reactor is
composed of a coaxial quartz tube (inner diameter: 8 mm, outer diameter: 10 mm), copper rod
inner electrode (diameter: 2 mm) and 1 mm of a copper coil ground electrode. The discharge length
and discharge gap are 25 mm and 2.5 mm, respectively. Typically, 0.3 g of samples were placed
in the discharge area at a sinusoidal peak-to-peak voltage of 19.2 kV. The working gases of CO2

and H2 were mixed into the reactor after being measured by the mass flow meter (total flow rate
was 30 mL·min−1, VH2:VCO2 = 4:1), while the outlet gas flow rate was measured by a soap film
bubble flow meter. The gaseous products were analyzed online by a gas chromatograph (Tianmei
GC-7890, Shanghai, China) equipped with a thermal conductivity detector (TCD). A type of FLUKE
MT4 Max+ IR thermometer was used to monitor the temperature during the discharge process.
The temperature of the reaction was ca. 200 ◦C. To evaluate the performance of CO2 methanation
under cold plasma-assistance, CO2 conversion (XCO2), selectivity (S), and yield (Y) of the products
were calculated as the reference [39]:
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XCO2 =
FCO2 − F′CO2

FCO2

× 100% (1)

SCO =
F′CO

FCO2 − F′CO2

× 100% (2)

SCH4 =
F′CH4

FCO2 − F′CO2

× 100% (3)

Y = X × S× 100% (4)

where F and F′ are the inlet and outlet gas flow rates, respectively.

2.4. Catalysts Characterization

The X-ray diffraction (XRD) patterns were completed using a DX-2700 (Dandong, China)
diffractometer with Cu Kα radiation (λ = 1.54178 Å) at 40 kV and 30 mA, and the step size of
the measurement was 0.03◦. Fourier transform infrared (FTIR) spectra were recorded in the range
of 400–4000 cm−1 on a Nicolet AVATAR 370 (Waltham, MA, USA) infrared spectrometer. A Zeiss
Sigma 500 (Jena, Germany) scanning electron microscope (SEM), operating at 10 kV, was utilized
to characterize the morphology of the sample crystals. The X-ray photoelectron spectroscopy (XPS)
spectra were recorded on a Thermo ESCALAN 250 spectrometer (Waltham, MA, USA) with Al Kα

(1486.6 eV). The high-resolution transmission electron microscopy (HRTEM) and mapping were
measured on a Tecnai G2 f20 s-twin (Hillsboro, OR, USA) transmission electron microscope. Binding
energies were calibrated using C1s (284.6 eV) as the standard. The spectra were deconvoluted by
the XPSPEAK41 program. N2 adsorption-desorption isotherms of the samples were performed on a
NOVA 2200e analyzer (Boynton Beach, FL, USA) at a temperature of 77 K. The thermal stability of the
samples was recorded by a Mettler TGA/DSC3+ thermal analyzer (Schwerzenbach, Switzerland) with
a heating rate of 5 ◦C·min−1. Inductively coupled plasma optical emission spectrometer (ICP-OES)
determination was executed on an Agilent 700 (Santa Clara, CA, USA) instrument.

3. Results and Discussion

Figure 2 illustrates the XRD patterns of Ru@UiO-66 and UiO-66. Obviously, the main diffraction
peaks of Ru@UiO-66 at 2θ = 7.3◦, 8.5◦ and 25.7◦ match well with UiO-66, revealing that no significant
loss is observed in UiO-66 crystallinity after the introduction of RuCl3 in the synthesis of UiO-66.
No diffraction peaks corresponding to Ru species can be detected in Ru@UiO-66, which may be
ascribed to the low loading amount of Ru species, and/or the encapsulation of the Ru species into the
UiO-66 skeleton structure.
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FTIR spectra of Ru@UiO-66 and UiO-66 were measured, as illustrated in Figure 3. The FTIR
spectra of Ru@UiO-66 and UiO-66 display the same peaks in the region of 4000 to 400 cm−1. The broad
absorption band in the region of 3700 to 3200 cm−1 corresponding to the stretching vibration of O-H, to a
large extent, is attributed to the residual solvent and adsorbed water [1,40]. In addition, it can also be
induced by the OH from deprotonation of the carboxylate groups. The bands centered at ca. 1700 cm−1

and 1400 cm−1 correspond to the symmetrical stretching vibrations of the C=O bond in the -COO-
group in the framework. The bands at 1506 cm−1 and 1581 cm−1 are assigned to the C=C stretching
vibration of the phenyl ring. These indicate that the main functional groups in the BDC organic linker
have been kept for Ru@UiO-66 and UiO-66. Furthermore, the peak at 745 cm−1 is consistent with the
symmetric vibration peak of O-Zr-O and the symmetric vibration peak of O-Zr-O at 663 cm−1 [7,10].
All spectra have weak absorption bands in the region of 600–400 cm−1 pertaining to the in-plane and
out-of-plane bending vibrations of -COO-. It was proven that Zr, as the coordination center in the
organic framework, is formed by bridging with the organic ligand terephthalic acid through the bond
of µ3-O [41]. However, the vibration peaks related to ruthenium cannot be detected from the FTIR
spectra, suggesting that the ruthenium does not exist as a combined state in the UiO-66 skeleton.
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The typical SEM images of Ru@UiO-66 and UiO-66 are shown in Figure 4. Ru@UiO-66 exhibits a
similar morphology with UiO-66 in spite of the introduction of ruthenium in its skeleton. Furthermore,
there are no obvious differences in the grain sizes of Ru@UiO-66 and UiO-66 according to the
SEM images. The average grain size distribution for Ru@UiO-66 (202 ± 29 nm) is close to UiO-66
(201 ± 22 nm). Both values demonstrate that in situ addition of the Ru precursor during the fabrication
of UiO-66 has no effect on the formation and uniform growth of the grains of Ru@UiO-66.

The XPS spectra of survey, Ru3p, Zr3d, and Cl2p over Ru@UiO-66 are shown in Figure 5.
The elements of carbon, oxygen zirconium, and ruthenium are observed clearly in Figure 5a. Among
these elements, carbon, oxygen, and zirconium constitute the catalysts. It is noted in Figure 5b that the
peak appearing at 462.4 eV is attributed to 3p3/2 of Ru0 [36]. This reveals that the Ru3+ ions from RuCl3
have been reduced into metallic Ru0 directly, without extra reduction processes. During the synthesis of
Ru@UiO-66, BDC and DMF serve as the skeleton of UiO-66 and solvent, respectively, and both of them
can provide redundant H species for reducing Ru3+ ions. As validation, Ni@UiO-66, Pt@UiO-66, and
Pd@UiO-66 have been successfully synthesized by the same method. The peak at 475 eV might be the
Auger electron of O KL1L1 and KL1L23, which does not belong to any Ru species [42]. As mentioned
in Figure 4, the peaks related to ruthenium are not detected in the FTIR spectrum of Ru@UiO-66,
which further suggests that ruthenium existed in the framework of Ru@UiO-66 as a metallic state.



Nanomaterials 2019, 9, 1432 6 of 11

The Zr3d5/2 and Zr3d3/2 in Ru@UiO-66 at 182.7 eV and 185.1 eV are attributed to the Zr4+ in O-Zr-O [7],
which is also confirmed by the FTIR result (Figure 3). As shown in Figure 5c, no Cl can be detected,
suggesting that the Cl- ions have been removed by washing during preparation of Ru@UiO-66.
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Figure 5. The X-ray photoelectron spectroscopy XPS spectra of (a) survey, (b) Ru3p, (c) Zr3d, and (d)
Cl2p over Ru@UiO-66 and UiO-66.

The HRTEM and mapping measurements were further completed to observe the structure of
Ru@UiO-66 as presented in Figure 6. Figure 6a,b clearly display that Ru NPs are regularly encapsulated
in the framework of UiO-66 and {101} lattice fringes with an interplanar spacing of 0.204 nm [43].
This is in accordance with the low content of Ru0 on surface XPS spectra in Figure 5. The Ru NPs size
distribution is presented in Figure 6c, it shows that Ru NPs have a small particle diameter of 1.66 nm
and central distribution in the framework of UiO-66. Mapping analysis in random areas in Figure 6d–h
reveals that C, O, and Zr elements abundantly exist in Ru@UiO-66, which are the main components of
UiO-66 skeleton. In addition, Ru elements are evenly distributed in Ru@UiO-66.
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Figure 7 gives the nitrogen adsorption-desorption isotherms and the classical
Barrett–Joyner–Halenda (BJH) pore size distribution curves of Ru@UiO-66 and UiO-66. The specific
surface area of Ru@UiO-66 is 766.4 m2

·g−1, as calculated by the Brunauer–Emmett–Teller (BET) method,
which is slightly lower than that of UiO-66 (996.9 m2

·g−1). The pore diameter of Ru@UiO-66 (3.4 nm) is
equal to UiO-66. This indicates that the addition of the precursor RuCl3 in the synthesis of Ru@UiO-66
did not affect the growth of the UiO-66 skeleton structure, and the pore size and pore volume of
Ru@UiO-66 are similar to that of UiO-66.
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To evaluate the thermal stability of Ru@UiO-66 and UiO-66, thermo-gravimetric analysis (TGA)
was carried out in air, as shown in Figure 8. The weight loss of the three samples under 100 ◦C is
attributed to desorption of water and residual solvent adsorbed at the surface. The TGA curve of
UiO-66 declines rapidly at about 450 ◦C, suggesting the decomposition of the organic linker in the
framework [8,44,45]. In contrast, the decomposition temperature of Ru@UiO-66 (ca. 350 ◦C) is lower
than that of UiO-66 (450 ◦C), which may result from the presence of the Ru species. In other words,
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the interaction between -COO− and Zr4+ is weakened due to the existence of the Ru species, and the
Ru species facilitate the thermal decomposition of the framework at high temperature.
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The activity of Ru@UiO-66 and UiO-66 for plasma-assisted catalytic CO2 methanation were
tested, as illustrated in Figure 9. For comparison, the activity data of Ru/UiO-66 (UiO-66 supported
Ru prepared by incipient wetness impregnation method) taken from a previous work [38] was also
illustrated in Figure 9. The loading amount of Ru in Ru@UiO-66 and Ru/UiO-66 are close, and the
reaction was performed under the same experimental parameters. The CO2 conversion of Ru@UiO-66
is 3.6 times higher than UiO-66, and the CH4 selectivity over Ru@UiO-66 slightly increases and reaches
95.4% at steady state. Even more interesting is that the products’ selectivities of the two samples
are quite different. The primary product of Ru@UiO-66 is CH4, and the yield of CH4 reaches 68.9%.
While the product of UiO-66 was mainly CO, the yield of CH4 was less than 3%. Due to the one-step
preparation of Ru@UiO-66, the ruthenium in the precursor RuCl3 is directly reduced to the metallic Ru
and encapsulated in the skeletal structure of the UiO-66. Therefore, the Ru@UiO-66 catalyst with active
Ru species exhibits a perfect performance for plasma-assisted catalytic CO2 methanation. In addition,
the CO2 conversion over Ru/UiO-66 increased from 20.4% for pure UiO-66 to 41.3%. However, it is
still much lower than that over the Ru@UiO-66 catalyst (72.2%). Moreover, the CH4 selectivity over
Ru/UiO-66 reaches 86.5%, while it is only ca. 3% for pure UiO-66. In summary, the Ru/UiO-66
possess much higher CO2 conversion activity, CH4 selectivity, and yield than pure UiO-66 due to the
appearance of active Ru species. However, they exhibit poorer performance than the Ru@UiO-66
catalyst, which was mainly attributed to the encapsulation of highly dispersed active Ru species in the
UiO-66 skeleton. These indicate that not only the Ru species but also the preparation methods play
important roles in plasma-assisted CO2 conversion reactions.

The synergy of cold plasma and active Ru species play a vital role in the catalytic activity of CO2

methanation. Lee et al. [34] reported that the conversion of 5.369 wt% Ru/Al2O3 reached 23.2% under
the synergy of DBD plasma. This is beyond the conversion of pure plasma and catalysts. Although this
is the first report about the co-activation and conversion of CO2 by Ru-based catalysts with plasma,
the conversion of CO2 is unsatisfactory. As for UiO-66, with a strong adsorption ability of CO2, it can
serve as the carrier of the metal catalyst to effectively improve CO2 conversion. Unlike Ru/UiO-66, the
active Ru NPs are distributed in the framework of Ru@UiO-66 uniformly to participate in the CO2

methanation effectively. The high catalytic activity of Ru@UiO-66 is due to the high dispersion of Ru
NPs and the high CO2 adsorption ability of the UiO-66 skeleton.
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Figure 9. Dielectric barrier discharge (DBD) plasma-assisted CO2 conversion over UiO-66, Ru@UiO-66,
and Ru/UiO-66, Reproduced from [38], Copyright Hefei Institutes of Physical Science, Chinese Academy
of Sciences and IOP Publishing, 2019.

4. Conclusions

In summary, Ru@UiO-66 was successfully synthesized via a one-step solvothermal method. The
Ru species from the RuCl3 precursor was reduced directly and embedded into the framework of
UiO-66 during the synthesis of Ru@UiO-66, without an additional reducing process. The crystallinity
and structural integrity of UiO-66 were maintained well after encapsulating Ru NPs, and the Ru NPs
were uniformly distributed inside the framework of UiO-66. The results of the plasma-assisted CO2

methanation indicated that Ru@UiO-66 exhibited an unprecedented catalytic activity with the synergy
of plasma. CO2 conversion and CH4 selectivity over Ru@UiO-66 reached 72.2% and 95.4% under
13.0 W discharge power and 30 mL·min−1 gas flow rate (VH2 :VCO2 = 4:1 ). The high performance of
Ru@UiO-66 can be ascribed to the synergy of the Ru NPs and cold plasma. The high CO2 adsorption
ability of UiO-66 is essential for CO2 methanation. This work provides a simple method to synthesize
high-performance MOF-supported Ru catalysts via a one-step solvothermal method to reduce and
encapsulate the Ru NPs into the skeleton at the same time.
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