Supplementary Information

for

Explanation for the Multi-Component Scintillation of Cerium Fluoride Through the Equilibrium and Photophysical Investigation of Cerium(III)-Fluoro Complexes

Zsolt Valicsek 1, Máté Kovács 2,† and Ottó Horváth 1,*

- ¹ Department of General and Inorganic Chemistry, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; valicsek@almos.uni-pannon.hu (Z.V.)
- ² Department of Analytical Chemistry, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; mate.kovacs@richter.hu (M.K.)
- * Correspondence: horvath.otto@mk.uni-pannon.hu; Tel.: +36-88-624-000 / 6049 ext.
- Present affiliation: Gedeon Richter Plc. Research Analytical Department, Gyömrői út 19-21, H-1103 Budapest

Content	Page Nr.
Figure S1, Tables S1-2	2
Tables S3-5	3
Figure S2	4

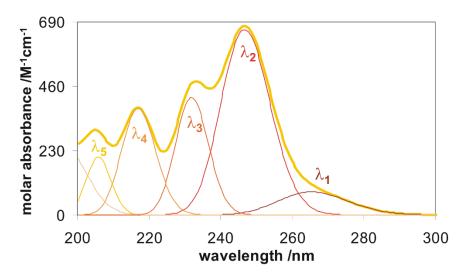


Figure S1. Analysis of the absorption spectrum of [CeF₃(H₂O)₆].

complex	x	[Ce] ³⁺	[CeF] ²⁺	[CeF ₂]+	[CeF ₃]
λ 1 / nm	absorption	296	294	290	265
	excitation	297	295	287	264
A / A = A	absorption	251	250	248	247
λ_2/nm	excitation	253	254	249	247
• •	absorption	237	235	233	232
λ3 /nm	excitation	241	238	230	231
λ4 /nm	absorption	221	220	218	217
	excitation	-	-	220	218
λ₅ /nm	absorption	210	209	206	206
	excitation	-	-	-	-

Table S1. Excitation bands of cerium(III)-fluoro complexes compared to the absorption ones from spectrum analysis. $[CeF_x(H_2O)_{9-x}]^{3-x}$ is abbreviated as $[CeF_x]^{3-x}$.

Table S2. Photophysical parameters for the cerium(III)-fluoride system, calculated by the method supposing equilibrium processes much slower than the photophysical ones. $[CeF_x(H_2O)_{9-x}]^{3-x}$ is abbreviated as $[CeF_x]^{3-x}$.

complex	[Ce] ³⁺	[CeF] ²⁺	[CeF ₂] ⁺	[CeF ₃]
$\Phi_{ m r}$	0.987	0.784	0.658	0.387
τ/ns	49.0	44.5	36.6	13.8
k _r /10 ⁷ s ⁻¹	2.01	1.76	1.80	2.80
k _{nr} /10 ⁷ s ⁻¹	0.0255	0.486	0.934	4.44
τ0=1/kr /ns	49.7	56.7	55.6	35.7
$k_d = 1/\tau / 10^7 \text{ s}^{-1}$	2.04	2.25	2.73	7.24

complex	[Ce] ³⁺	[CeF] ²⁺	[CeF ₂]+	[CeF ₃]
$\Phi_{ m r}$	0.990	0.769	0.604	0.377
τ/ns	49.1	44.2	32.2	10.9
k _r /10 ⁷ s ⁻¹	2.02	1.74	1.88	3.45
knr /107 s ⁻¹	0.0204	0.523	1.23	5.71
$\tau_0=1/k_r/ns$	49.6	57.4	53.2	29.0
$k_d=1/\tau/10^7 \ s^{-1}$	2.04	2.26	3.11	9.16

Table S3. Photophysical parameters for the cerium(III)-fluoride system, calculated by the method supposing equilibrium processes much faster than the photophysical ones. $[CeF_x(H_2O)_{9-x}]^{3-x}$ is abbreviated as $[CeF_x]^{3-x}$.

Table S4. Rate constants for fluorescence decay and excited-state equilibrium processes in the cerium(III)-fluoride system, calculated by the method supposing equilibrium processes much slower than the photophysical ones. Additionally, the excited-state stability constants are given. $[CeF_x(H_2O)_{9-x}]^{3-x}$ is abbreviated as $[CeF_x]^{3-x}$.

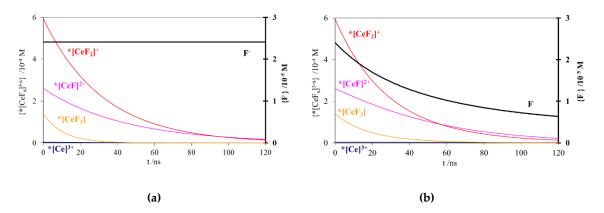

complex	$k_{d,i} / 10^7 \ s^{-1}$	$k_{i+}/10^{7} M^{-1} s^{-1}$	* $k_{i-}/10^7 \ s^{-1}$	lg *K _i /M ⁻¹
[Ce] ³⁺	2.05	_	-	_
[CeF] ²⁺	2.21	0.0392	0.000000754	5.72
[CeF ₂]+	5.58	0.000561	2.91	-3.71
[CeF3]	9.79	2.11	0.0587	1.56

Table S5. Rate constants for fluorescence decay and excited-state equilibrium processes in the cerium(III)- fluoride system, calculated by the method supposing equilibrium processes are much faster than the photophysical ones. Additionally, the excited-state stability constants are given. $[CeF_x(H_2O)_{9-x}]^{3-x}$ is abbreviated as $[CeF_x]^{3-x}$.

complex	k d,i /10 ⁷ s ⁻¹	*ki+ /107 M ⁻¹ s ⁻¹	$k_{i-}/10^{7} s^{-1}$	lg *Ki /M-1
[Ce] ³⁺	2.09	_	-	_
[CeF] ²⁺	0.000741	67600000	94500	2.85
[CeF ₂]+	0.00560	21600	34.5	2.80
[CeF ₃]	7.87	199000000	3130	4.80

Comparing to the ground-state situation, in the case of the assumption of slower equilibrium processes, the monofluoro cerium(III) complex will be more and more dominant in the luminescence because the di- and trifluoro complexes decay much faster (Fig. S2a), besides, $[CeF_2(H_2O)_7]^+$ is very dissociative (compared to the ground-state complex). The decay rate constants of $[Ce(H_2O)_9]^{3+}$ and $[CeF(H_2O)_8]^{2+}$ are very close, hence, their emission decay curves must be almost parallel, even if it cannot be seen in Fig. S2a because of the very low fraction of $[Ce(H_2O)_9]^{3+}$. Due to the slow equilibrium processes, the concentration of the free fluoride remains constant.

Figure S2. The change of the concentration of each species in the system ($c(Ce^{3+})=1.0$ mM and $c(F^{-})=1.9$ mM) during the 120-ns period after the laser excitation, due to the evaluation method assuming (a) slower or (b) faster equilibrium processes than the luminescence decay. [CeF_x(H₂O)_{9-x}]^{3-x} is abbreviated as [CeF_x]^{3-x}.

In the case of the faster equilibrium processes, one may expect the same lifetime for each complex species, i.e., parallel decay curves. However, due to the stabilities of the excited-state complexes and the extremely high decay rate constants, $[CeF_2(H_2O)_7]^+$ disappears rather fast after the excitation (Fig. S2b), while the stability of the $[CeF_3(H_2O)_6]$ species increased (compared to the ground-state situation). Hence, its decay is much slower than that of $[CeF_2(H_2O)_7]^+$, due to the continuous supply from the excited-state complex equilibrium. Also in this case, the decay of $[CeF(H_2O)_8]^{2+}$ is the slowest one.