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Abstract: Recently, several research groups have reported on anomalous enhancement of the self-field
critical currents, Ic(sf,T), at low temperatures in superconductor/Dirac-cone material/superconductor
(S/DCM/S) junctions. Some papers attributed the enhancement to the low-energy Andreev bound
states arising from winding of the electronic wave function around DCM. In this paper, Ic(sf,T) in
S/DCM/S junctions have been analyzed by two approaches: modified Ambegaokar-Baratoff and
ballistic Titov-Beenakker models. It is shown that the ballistic model, which is traditionally considered
to be a basic model to describe Ic(sf,T) in S/DCM/S junctions, is an inadequate tool to analyze
experimental data from these type of junctions, while Ambegaokar-Baratoff model, which is generally
considered to be a model for Ic(sf,T) in superconductor/insulator/superconductor junctions, provides
good experimental data description. Thus, there is a need to develop a new model for self-field
critical currents in S/DCM/S systems.

Keywords: the self-field critical current; induced superconductivity in Dirac-cone materials; single
layer graphene; multiple-band superconductivity

1. Introduction

Intrinsic superconductors [1] of rectangular cross-section (with width 2a and thickness 2b) exhibit
non-dissipative temperature dependent transport self-field critical current, Ic(sf,T) (i.e., when no
external magnetic field applies), which is given by the following universal equation [2–4]:

Ic(sf, T) = φ0
π·µ0
·

[
ln(1+

√
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·

(
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where T is sample temperature, φ0 = 2.067 × 10−15 Wb is the magnetic flux quantum, µ0 = 4·π ×
10−7 H/m is the magnetic permeability of free space, λab(T) and λc(T) are the in-plane and out-of-plane
London penetration depths respectively, κc(T) = λab(T)/ξab(T), ξab(T) is the in-plane coherence length,
and γ(T) = λc(T)/λab(T) is the electron mass anisotropy. It has been shown in previous research that
Equation (1) quantitatively and accurately describes Ic(sf,T) in more than 100 superconductors, ranging
from elemental Zn with Tc = 0.65 K to highly-compressed H3S with Tc & 200 K [2–4], and samples
dimensions from several Å to about 1 mm [5].

All intrinsic superconductors [1] can induce a superconducting state in non-superconducting
materials by the Holm-Meissner effect [6]. However, a universal equation for non-dissipative
self-field critical transport current, Ic(sf,T), in superconductor/non-superconductor/superconductor
junctions is still unknown. Ambegaokar and Baratoff (AB) [7,8] were the first who proposed an
equation for Ic(sf,T) in superconductor/insulator/superconductor (S/I/S) systems [9]. Later, Kulik and
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Omel’yanchuk (KO) [10–12] proposed two models for different types of superconductor/normal
conductor/superconductor junctions (which are known as KO-1 [10] and KO-2 [11]).

In general, superconductor/normal metal/superconductor (S/N/S) junctions are classified by the
comparison of the device length (L) to two characteristic length scales of the junction, which are the
mean free path of the charge carriers, le, and the superconducting correlation length, ξs. These length
scales classify whether the junction is in short (L� ξs) or long (i.e., L� ξs) regime and ballistic (L� le)
or diffusive (L� le) limit, respectively.

For about one decade, the KO-1 model was considered to be the primary model to describe
Ic(sf,T) in superconductor/graphene/superconductor (S/G/S) junctions (a detailed review of different
models for Ic(sf,T) in S/G/S junctions was given by Lee and Lee [13]). However, recent technological
progress in fabricating high-quality S/G/S junctions demonstrates a large difference between the KO-1
model and experimental Ic(sf,T) data [14]. A detailed discussion of all models, including a model
by Takane and Imura [15], which was proposed to describe Ic(sf,T) in superconductor/Dirac-cone
material/superconductor (S/DCM/S) junctions, is given by Lee and Lee [13].

It should be noted that a universal quantitatively accurate equation for critical currents at the
applied magnetic field, B, is unknown to date for intrinsic superconductors [16–20] and for Josephson
junctions [13,21,22]. However, the discussion of these important problems, as well as the discussion of
interface superconductivity [23–25] and generic case of two-dimensional (2D) superconductivity [26–50],
is beyond the scope of this paper.

The primary task for this work is to show that Ic(sf,T), in a variety of S/DCM/S junctions in the
ballistic regime, cannot be described by the KO-based model. To prove this, experimental Ic(sf,T)
datasets in S/DCM/S junctions were analyzed by two models: the modified Ambegaokar-Baratoff

model [51,52] and ballistic Titov-Beenakker model [53].
It needs to be noted that some S/DCM/S junctions show the Ic(sf,T) enhancement at a reduced

temperature of T ≤ 0.25·Tc. For instance, the enhancement in atomically-thin MoRe/single layer
graphene (SLG)/MoRe junction was first reported by Calado et al. [54]. Raw experimental Ic(sf,T) data
reported by Borzenets et al. [55] in nominally the same MoRe/SLG/MoRe junctions also shows the
enhancement at T ≤ 0.25·Tc. Based on this, the Ic(sf,T) enhancement at low reduced temperatures
in Nb/BiSbTeSe2-nanoribon/Nb reported by Kayyalha et al. [56] cannot be considered as a unique
property of superconductor/topological insulator/superconductor (S/TI/S) junctions, but is rather the
demonstration of a general feature of S/DCM/S devices and atomically thin superconducting systems.
Additionally, it is important to mention that Kurter et al. [57] were the first who reported Ic(sf,T)
enhancement in S/TI-nanoribbon/S junction at reduced temperature of T ≤ 0.25·Tc.

As a result of the performed Ic(sf,T) analysis in this paper, it is shown that a new model is needed
to describe dissipation-free transport currents in S/DCM/S junctions.

2. Models Description

The amplitude of dissipation-free transport current, Ic(sf,T), in S/I/S junction was first given by
Ambegaokar and Baratoff (AB) [7,8]:

Ic(sf, T) =
π·∆(T)
2·e·Rn

·tanh
(

∆(T)
2·kB·T

)
, (2)

where ∆(T) is the temperature-dependent superconducting gap, e is the electron charge, Rn is the
normal-state tunneling resistance in the junction, and kB is the Boltzmann constant. In one research [51],
it was proposed to substitute ∆(T) in Equation (2) by the analytical expression given by Gross et al. [58]:

∆(T) = ∆(0)·tanh

π·kB·Tc

∆(0)
·

√
η·
(∆C

C
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·

(Tc

T
− 1
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where ∆(0) is the ground-state amplitude of the superconducting band, ∆C/C is the relative jump in
electronic specific heat at the transition temperature, Tc, and η = 2/3 for s-wave superconductors [56].
In the result, Tc, ∆C/C, ∆(0), and normal-state tunneling resistance, Rn, of the S/I/S junction, or in
the more general case of S/N/S junction, can be deduced by fitting experimental Ic(sf,T) datasets to
Equation (2), for which the full expression is [51]:

Ic(sf, T) =
π·∆(0)·tanh
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π·kB·Tc
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C
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C

)
·

(
Tc
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))
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, (4)

It should be noted that direct experiments performed by Natterer et al. [59] showed that the
superconducting gap does exist in graphene, which is in proximity contact with superconducting
electrodes. The gap amplitude, ∆(T), has a characteristic decaying length [59], which is the expected
behavior from primary idea of the proximity effect [6]. As a direct consequence, clear physical meaning
remains for the relative jump in electronic specific heat at the transition temperature, ∆C/C, due to
this parameter is an essential thermodynamic consequence for the appearance of the superconducting
energy gap, ∆(T). As was shown in another study [51], ∆C/C is the fastest decaying parameter of the
superconducting state in S/N/S junctions, over the junction length, L, while Tc is the most robust one.

In References [51,52], it was shown that S/SLG/S and S/Bi2Se3/S junctions exhibit two- decoupled
band superconducting state. Thus, for the general case of N-decoupled bands, the temperature-
dependent self-field critical current, Ic(sf,T), can be described by the following equation:

Ic(sf, T) =
∑N

i=1

π·∆i(T)
2·e·Rn,i

·θ(Tc,i − T)·tanh
(

∆i(T)
2·kB·T

)
, (5)

where the subscript i refers to the i-band, θ(x) is the Heaviside step function, and each band has its
own independent parameters of Tc,i, ∆Ci/Ci, ∆i(0), and Rn,i. Equation (5) was also used to analyze
experimental Ic(sf,T) data for several S/DCM/S junctions [60].

Titov and Beenakker [53] proposed that Ic(sf,T) in S/DCM/S junction at the conditions near the
Dirac point can be described by the equation:

Ic(sf, T) = 1.33·
e·∆(T)

} ·
W
π·L

, (6)

where W is the junction width. In this paper, analytical equation for the gap (Equation (3) [57]) is
substituted in Equation (6):

Ic(sf, T) = 1.33·
e·∆(0)·tanh

(
π·kB·Tc

∆(0) ·

√
η·
(

∆C
C

)
·

(
Tc
T − 1

))
} ·

W
π·L

, (7)

with the purpose to deduce Tc, ∆C/C, and ∆(0) values in the S/DCM/S junctions from the fit
of experimental Ic(sf,T) datasets to Equation (7). For a general case of N-decoupled bands,
temperature-dependent self-field critical current Ic(sf,T) in S/DCM/S junctions can be described
by the following equation:

Ic(sf, T) = 1.33·
e
π·} ·

W
L
·

∑N

i=1
∆i(T)·θ(Tc,i − T), (8)

Based on a fact that W and L can be measured with very high accuracies, Equation (7) has the
minimal ever proposed number of free-fitting parameters (which are Tc, ∆C/C, ∆(0)) to fit to the
experimental Ic(sf,T) dataset. However, as we demonstrate below, the ballistic model (Equation (6) [53])
is not the most correct model to describe Ic(sf,T) in S/DCM/S junctions. It should be noted that Equation
(4) utilizes the same minimal set of parameters within the Bardeen-Cooper-Schrieffer (BCS) theory [60],
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i.e., Tc, ∆C/C, ∆(0), to describe superconducting state in S/N/S junction and Rn as a free-fitting parameter
to describe the junction.

It should be stressed that a good reason must be presented for requiring a more complex model
than is needed to adequately explain the experimental data [61,62].

In the next section, Equations (4), (5), (7), and (8) will be applied to fit experimental Ic(sf,T) datasets
for a variety of S/DCM/S junctions with the purpose to reveal the primary superconducting parameters
of these systems and by comparison deduced parameters with weak-coupling s-wave BCS limits we
show that the modified Ambegaokar and Baratoff model (Equations (4) and (5)) [51,52] describes the
superconducting state in S/DCM/S junctions with higher accuracy.

3. Results

3.1. Micrometer-Long Tantalum/Graphene/Tantalum (Ta/G/Ta) Junction

Jang and Kim [63] reported experimental Ic(sf,T) datasets and fit to KO-1 model (in their
Figure 2d [63]) for micrometer long ballistic Ta/G/Ta junctions. The Ic(sf,T) fit to KO-1 model
(Figure 2d [63]) and deduced parameters are in disagreement with experimental values based on IcRn

product. In Figure 1, we show Ic(sf,T) datasets for Device 1 [63] (recorded at gate voltage Vg = 10 V)
and fits to single-band ballistic model, Equation (7) (in Figure 1a) and single-band modified AB model
Equation (4) (Figure 1b). Device 1 has W = 6 µm, L = 1 µm, and ξs = 16 µm [63]. This means that the
ballistic limit of L << ξs is satisfied for these junctions.

Results of fits to both models are presented in Table 1.

Table 1. Deduced parameters for tantalum/graphene/tantalum (Ta/G/Ta) junction from fit to single-band
Titov and Beenakker (TB) [53] and Ambegaokar and Baratoff (AB) [7,8] models.

Parameter TB Model AB Model

Tc (K) 1.052 ± 0.002 1.06 ± 0.01
∆C/C 17.7 ± 0.6 1.15 ± 0.07

∆(0) (meV) 1.03 ± 0.01 0.095 ± 0.002
2·∆(0)/kB·Tc 22.7 ± 0.3 2.1 ± 0.1

Deduced parameters from the fit to ballistic model (Equation (7)) in Figure 1a are in remarkable

disagreement with any physical-backgrounded expectations, i.e., the ratio of 2·∆(0)
kB·Tc

= 22.7 (which

should be comparable with s-wave BCS weak coupling limit of 2·∆(0)
kB·Tc

= 3.53) and ∆C
C = 17.7 (which

should be comparable with s-wave BCS weak coupling limit of ∆C
C = 1.43).

It needs to be noted that the highest experimental value for phonon-mediated superconductors

of 2·∆(0)
kB·Tc

≈ 5 was measured for lead- and bismuth-based alloys [64,65], and the deduced value by the

ballistic model 2·∆(0)
kB·Tc

≈ 23 does not have a physical interpretation.
In contract, the fit to Equation (4) reveals superconducting parameters in expected ranges of

2·∆(0)
kB·Tc

= 2.1± 0.1 and ∆C
C = 1.15± 0.07, i.e., these parameters are slightly suppressed from s-wave BCS

weak-coupling limits as expected [52,60]. It should also be noted that free-fitting parameter Rn = 241 ±
7 Ω is in a good agreement with experimental measured value for this junction [63].

It can be seen (Figure 1), that there is an upturn in experimental Ic(sf,T) at T ~ 0.65 K, which is a
manifestation of the second superconducting band opening in this atomically thin S/N/S junction [51,52].
Thus, the experimental Ic(sf,T) dataset was fitted to two-band models (Equations (8) and (5)). Results
of these fits are shown in Figure 2 and deduced parameters are in Table 2.
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Table 2. Deduced parameters for tantalum/graphene/tantalum (Ta/G/Ta) junction at Vg = 10 V from fit
to two-band Titov and Beenakker (TB) [53] and Ambegaokar and Baratoff (AB) [7,8] models.

Parameter TB Model AB Model

Tc1 (K) 1.052 ± 0.001 1.053 ± 0.003
Tc2 (K) 0.61 ± 0.02 0.63 ± 0.03
∆C1/C1 17.1 ± 0.6 2.2 ± 0.8
∆C2/C2 2.9 ± 3.8 1.1 ± 0.9

2·∆1(0)/kB·Tc1 21 ± 1 3.0 ± 0.9
2·∆2(0)/kB·Tc2 3 ± 1 1.9 ± 0.3
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Figure 1. Experimental Ic(sf,T) for tantalum/graphene/tantalum (Ta/G/Ta) junction (Device 1) at gate
voltage of Vg = 10 V [63] and data fits to single-band ballistic model (Equation (7), Panel a) and
single-band modified AB model (Equation (4), Panel b) (a) Ballistic model. fit quality is R = 0.9948;
(b) modified AB model [51,52] fit quality is R = 0.9980.
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Figure 2. Experimental Ic(sf,T) for Ta/G/Ta junction (Device 1) at gate voltage of Vg = 10 V [63] and data
fits to two-band ballistic model (Equation (8), Panel a) and two-band modified AB model (Equation
(5), Panel b). (a) Ballistic model, fit quality is R = 0.9978; (b) modified AB model [51,52]. Derived
parameters: Rn1 = 429 ± 184 Ω, Rn2 = 603 ± 209 Ω, fit quality is R = 0.9994.

The fit reveals a large disagreement of parameters deduced by ballistic model with expected values
within frames for BCS theory. In contrast with this, deduced parameters by modified AB model [51,52]
are within weak-coupling limits of BCS. As shown in Reference [51], raw experimental Ic(sf,T) datasets
should be reasonably dense to deduce parameters by AB model with small uncertainties.

3.2. Planar Nb/BiSbTeSe2-Nanoribbon/Nb Junctions

Kayyalha et al. [56] reported Ic(sf,T) for five Nb/BiSbTeSe2-nanopribbon/Nb junctions at different
gate voltage, Vg. In this paper Ic(sf,T) datasets for Sample 1 at Vg =−20 V, 0 V and 45 V [56] were analyzed
by two-band models (Equations (5) and (8)), because it was already shown in Reference [60] that these
junctions exhibit two-band superconducting state. In Figure 3 experimental Ic(sf,T) dataset [56] and
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fits are shown. For this junction, L = 40 nm [56] and ξs = 640 nm [56]; thus, the ballistic regime, L << ξs,
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Figure 3. Experimental Ic(sf,T) for Nb/BiSbTeSe2-nanoribbon/Nb junction (Sample 1 [56]) at gate
voltage Vg = −20 V. (a) Ballistic model, fit quality is R = 0.990; (b) modified AB model [51,52]. Derived
parameters: Rn1 = 6.7 ± 1.6 kΩ, Rn2 = 0.75 ± 0.18 kΩ, fit quality is R = 0.9953.

Despite the fact that fits to both models have a similar quality, deduced parameters of the

superconducting state (Table 3), i.e., ∆Ci/Ci, ∆i(0), and 2·∆i(0)
kB·Tc,i

, for the case of the ballistic models
(Figure 3a), similar to the case of Ta/G/Ta junction (Figures 1 and 2), are remarkably different from
values expected from BCS theory. Additionally, there are two orders of magnitude difference between

deduced ∆Ci/Ci for two bands for the same sample, and one order of magnitude for 2·∆i(0)
kB·Tc,i

, which is
unavoidable evidence that the ballistic model needs to be reexamined. In contrast with this, the fit
to the modified AB model [51] (Figure 3b) reveals deduced parameters, including Rni values, in the
expected ranges. It should be noted that full analysis (within the modified AB model [52]) of Ic(sf,T)
datasets in junctions reported by Kayyalha et al. [56] can be found elsewhere [60].
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Table 3. Deduced parameters for Nb/BiSbTeSe2-nanoribbon/Nb junction (Sample 1 [56]) at Vg = −20 V
from fit to two-band Titov and Beenakker (TB) [53] and Ambegaokar and Baratoff (AB) [7,8] models.

Parameter TB Model AB Model

Tc1 (K) 1.76 ± 0.01 1.74 ± 0.04
Tc2 (K) 0.236 ± 0.003 0.31 ± 0.02
∆C1/C1 0.019 ± 0.03 0.84 ± 0.18
∆C2/C2 1.8 ± 0.3 0.19 ± 0.07

2·∆1(0)/kB·Tc1 0.83 ± 0.04 2.5 ± 0.5
2·∆2(0)/kB·Tc2 10.0 ± 0.3 2.85 ± 0.70

In Figure 4, experimental Ic(sf,T) dataset [56] and fits to two models for Sample 1 at gate voltage
Vg = 0 V also demonstrate that the ballistic model is an inadequate tool to analyze experimental data in
S/DCM/S junctions (deduced parameters are given in Table 4).Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 14 
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Figure 4. Experimental Ic(sf,T) for Nb/BiSbTeSe2-nanoribbon/Nb junction (Sample 1 [56]) at gate voltage
Vg = 0 V. (a) Ballistic model, fit quality is R = 0.992; (b) modified AB model [51,52]. Derived parameters:
Rn1 = 3.9 ± 0.4 kΩ, Rn2 = 0.81 ± 0.15 kΩ, fit quality is R = 0.9965.
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Table 4. Deduced parameters for for Nb/BiSbTeSe2-nanoribbon/Nb junction (Sample 1 [56]) at Vg = 0 V
from fit to two-band Titov and Beenakker (TB) [53] and Ambegaokar and Baratoff (AB) [7,8] models.

Parameter TB Model AB Model

Tc1 (K) 2.10 ± 0.01 2.07 ± 0.03
Tc2 (K) 0.252 ± 0.005 0.33 ± 0.02
∆C1/C1 0.014 ± 0.001 0.6 ± 0.2
∆C2/C2 1.5 ± 0.2 0.20 ± 0.06

2·∆1(0)/kB·Tc1 0.94 ± 0.04 1.6 ± 0.2
2·∆2(0)/kB·Tc2 9.5 ± 0.3 3.1 ± 0.7

The same conclusion can be made for Sample 1 at Vg = 45 V (Figure 5 and Table 5).Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 14 
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Figure 5. Experimental Ic(sf,T) for Nb/BiSbTeSe2-nanoribbon/Nb junction (Sample 1 [56]) at gate
voltage Vg = 45 V. (a) Ballistic model, fit quality is R = 0.994; (b) modified AB model [51,52]. Derived
parameters: Rn1 = 3.5 ± 0.3 kΩ, Rn2 = 630 ± 110 Ω, fit quality is R = 0.998.
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Table 5. Deduced parameters for for Nb/BiSbTeSe2-nanoribbon/Nb junction (Sample 1 [56]) at Vg = 45
V from fit to two-band Titov and Beenakker (TB) [53] and Ambegaokar and Baratoff (AB) [7,8] models.

Parameter TB Model AB Model

Tc1 (K) 2.21 ± 0.01 2.19 ± 0.03
Tc2 (K) 0.274 ± 0.006 0.34 ± 0.01
∆C1/C1 0.027 ± 0.002 0.6 ± 0.1
∆C2/C2 3.4 ± 0.4 0.30 ± 0.08

2·∆1(0)/kB·Tc1 1.22 ± 0.01 1.9 ± 0.2
2·∆2(0)/kB·Tc2 12.3 ± 0.5 3.1 ± 0.7

3.3. Planar Nb/Bi2Se3/Nb Junction [56]

In Figure 6, temperature-dependent self-field critical currents, Ic(sf,T), in Nb/Bi2Se3/Nb (W = 1000
nm, L = 100 nm) reported by Kurter et al. [57] is shown. For this junction, 300 nm < ξs < 1,000 nm [57],
and thus, the ballistic regime condition, L << ξs, is well satisfied.
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Figure 6. Experimental Ic(sf,T) for Nb/Bi2Se3/Nb junction [57]. (a) Ballistic model, fit quality is R
= 0.994; (b) modified AB model [51,52]. Derived parameters: Rn1 = 240 ± 100 Ω, Rn2 = 92 ± 33 Ω.
Fit quality is R = 0.9991.
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There is a large difference between experimental data and the fit to ballistic model (Figure 6 and
Table 6). In addition, deduced parameters from the ballistic model fit have no physical interpretation.
The fit to the modified AB model reveals parameters in the expected ranges (Figure 6).

Table 6. Deduced parameters for for Nb/Bi2Se3/Nb junction [57] from fit to two-band Titov and
Beenakker (TB) [53] and Ambegaokar and Baratoff (AB) [7,8] models.

Parameter TB Model AB Model

Tc1 (K) 1.55 ± 0.02 1.73 ± 0.05
Tc2 (K) 0.51 ± 0.03 0.51 ± 0.03
∆C1/C1 4.0 ± 0.5 0.22 ± 0.06
∆C2/C2 15 ± 7 0.26 ± 0.05

2·∆1(0)/kB·Tc1 22 ± 5 2.1 ± 0.8
2·∆2(0)/kB·Tc2 15 ± 7 2.2 ± 0.8

There is a large difference between experimental data and the fit to ballistic model (Figure 6 and
Table 6). In addition, deduced parameters from ballistic model fit have no any physical interpretation.
The fit to modified AB model reveals parameters in expected ranges (Figure 6 and Table 6).

4. Discussion

One of the most important questions that can be discussed herein is as follows: what is the origin
for such dramatic incapability of ballistic model to analyze the self-field critical currents in S/DCM/S
junctions? From the author’s point of view, the origin is the primary concept of the KO theory, in that
Ic(sf,T) in the S/N/S junctions is:

Ic(sf, T) = max
ϕ

(I(ϕ, sf, T)) (9)

where ϕ is the phase difference between two superconducting electrodes of the junction. Despite this
assumption is a fundamental conceptual point of the KO theory, there are no physically background or
experimental confirmations that this assumption should be a true. In fact, the analysis of experimental
data by a model within this assumption (we presented herein) shows that Equation (9) is in remarkably
large disagreement with experiment.

One of the simplest ways to show that Equation (9) is incorrect is to note that when the length of
the junction, L, goes to zero, Equation (6) shows:

Ic(sf, T) = lim
L→0

(
1.33·

e·∆(T)
} ·

W
π·L

)
∝ lim

L→0

(1
L

)
→∞. (10)

Herein, the simplest available function [53] that was proposed for the S/DCM/S junction in the
Equation (9) was chosen as an example. However, other proposed functions for Equation (9) (for which
we refer the reader to Reference [12]) have identical unresolved problem, because, as this was shown
for about 100 weak-link superconductors [2–5,66], the limit should be (Equation (1)):

Ic(sf, T) = lim
L→0

(
1.33· e·∆(T)} ·

W
π·L

)
=

φ0
π·µ0
·

[
ln(1+

√
2·κc(T))

λ3
ab(T)

·

(
λc(T)

b ·tanh
(

b
λc(T)

))
+

ln(1+
√

2·γ(T)·κc(T))
√
γ(T)·λ3

ab(T)

(
λab(T)

a tanh
(

a
λab(T)

))]
·(a·b). (11)

This means that the primary dissipation mechanism, which governs DC transport current limit
in S/N/S, is not yet revealed. However, as we show herein, it is irrelevant to achieving values within
the primary concept of KO theory, Equation (9). It should be mentioned that the Density Functional
Theory (DFT) calculations [67,68] are currently unexplored powerful techniques, which can be used to
reveal dissipation mechanism in S/DCM/S junctions.
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5. Conclusions

In this paper, Ic(sf,T) data for S/DCM/S junctions were analyzed by applying two models: the
ballistic and the modified Ambegaokar-Baratoff model. It was shown that the ballistic model [10–12,53]
cannot describe the self-field critical currents in S/DCM/S junctions. In conclusion, the ballistic model
should be reexamined in terms of its applicability to describe dissipation-free self-field transport
current in S/DCM/S junctions.

Funding: This research was funded by the State Assignment of Minobrnauki of Russia, theme “Pressure” No.
AAAA-A18-118020190104-3, and by Act 211 Government of the Russian Federation, contract No. 02.A03.21.0006.

Conflicts of Interest: The funders had no role in the design of the study, in the collection, analyses, or interpretation
of data, as well as in the writing of the manuscript, or in the decision to publish the results.

References

1. Hirsch, J.E.; Maple, M.B.; Marsiglio, F. Superconducting materials classes: Introduction and overview.
Physica C 2015, 514, 1–8. [CrossRef]

2. Talantsev, E.F.; Tallon, J.L. Universal self-field critical currents for thin-film superconductors. Nat. Commun.
2015, 6, 7820. [CrossRef] [PubMed]

3. Talantsev, E.F.; Crump, W.P.; Tallon, J.L. Thermodynamic parameters of single-or multi-band superconductors
derived from self-field critical currents. Ann. Phys. 2017, 529, 1700197. [CrossRef]

4. Talantsev, E.F.; Crump, W.P. Weak-link criterion for pnictide and cuprate superconductors. Supercond. Sci.
Technol. 2018, 31, 124001. [CrossRef]

5. Talantsev, E.F.; Crump, W.P.; Tallon, J.L. Universal scaling of the self-field critical current in superconductors:
From sub-nanometre to millimetre size. Sci. Rep. 2018, 7, 10010. [CrossRef] [PubMed]

6. Holm, R.; Meissner, W. Messungen mit Hilfe von flüssigem Helium. XIII. Kontaktwiderstand zwischen
Supraleitern und Nichtsupraleitern (Measurements using liquid helium. XIII. Contact resistance between
superconductors and non-superconductors). Zeitschrift für Physik 1932, 74, 715–735. [CrossRef]

7. Ambegaokar, V.; Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 1963, 10, 486–489.
[CrossRef]

8. Ambegaokar, V.; Baratoff, A. Errata: Tunneling between superconductors. Phys. Rev. Lett. 1963, 11, 104.
[CrossRef]

9. Josephson, B.D. Possible new effects in superconductive tunneling. Phys. Lett. 1962, 1, 251–253. [CrossRef]
10. Kulik, I.O.; Omel’yanchuk, A.N. Contribution to the microscopic theory of the Josephson effect in

superconducting bridges. JETP Lett. 1975, 21, 96–97.
11. Kulik, I.O.; Omel’yanchuk, A.N. Properties of superconducting microbridges in the pure limit. Sov. J. Low

Temp. Phys. 1977, 3, 459–462.
12. Kulik, I.; Omelyanchouk, A. The Josephson effect in superconducting constructions: Microscopic theory.

J. Phys. Colloq. 1978, 39. [CrossRef]
13. Lee, G.H.; Lee, H.J. Proximity coupling in superconductor-graphene heterostructures. Rep. Prog. Phys. 2018,

81, 056502. [CrossRef] [PubMed]
14. Park, J.; Lee, J.H.; Lee, G.-H.; Takane, Y.; Imura, K.-I.; Taniguchi, T.; Watanabe, K.; Lee, H.-J. Short ballistic

Josephson coupling in planar graphene junctions with inhomogeneous carrier doping. Phys. Rev. Lett. 2018,
120, 077701. [CrossRef]

15. Takane, Y.; Imura, K.-I. Quasiclassical theory of the Josephson effect in ballistic graphene junctions. J. Phys.
Soc. Jpn. 2012, 81, 094707. [CrossRef]

16. Strickland, N.M.; Long, N.J.; Talantsev, E.F.; Hoefakker, P.; Xia, J.A.; Rupich, M.W.; Zhang, W.; Li, X.;
Kodenkandath, T.; Huang, Y. Nanoparticle additions for enhanced flux pinning in YBCO HTS films.
Curr. Appl. Phys. 2008, 8, 372–375. [CrossRef]

17. Talantsev, E.F.; Strickland, N.M.; Hoefakker, P.; Xia, J.A.; Long, N.J. Critical current anisotropy for second
generation HTS wires. Curr. Appl. Phys. 2008, 8, 388–390. [CrossRef]

18. Chepikov, V.; Mineev, N.; Degtyarenko, P.; Lee, S.; Petrykin, V.; Ovcharov, A.; Vasiliev, A.; Kaul, A.;
Amelichev, V.; Kamenev, A.; et al. Introduction of BaSnO3 and BaZrO3 artificial pinning centres into 2G HTS

http://dx.doi.org/10.1016/j.physc.2015.03.002
http://dx.doi.org/10.1038/ncomms8820
http://www.ncbi.nlm.nih.gov/pubmed/26240014
http://dx.doi.org/10.1002/andp.201700197
http://dx.doi.org/10.1088/1361-6668/aae50a
http://dx.doi.org/10.1038/s41598-017-10226-z
http://www.ncbi.nlm.nih.gov/pubmed/28855601
http://dx.doi.org/10.1007/BF01340420
http://dx.doi.org/10.1103/PhysRevLett.10.486
http://dx.doi.org/10.1103/PhysRevLett.11.104
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1051/jphyscol:19786245
http://dx.doi.org/10.1088/1361-6633/aaafe1
http://www.ncbi.nlm.nih.gov/pubmed/29451135
http://dx.doi.org/10.1103/PhysRevLett.120.077701
http://dx.doi.org/10.1143/JPSJ.81.094707
http://dx.doi.org/10.1016/j.cap.2007.10.034
http://dx.doi.org/10.1016/j.cap.2007.10.036


Nanomaterials 2019, 9, 1554 13 of 15

wires based on PLD-GdBCO films. Phase I of the industrial R&D programme at SuperOx. Supercond. Sci.
Technol. 2017, 30, 124001.

19. Paturi, P.; Malmivirta, M.; Hynninen, T.; Huhtinen, H. Angle dependent molecular dynamics simulation of
flux pinning in YBCO superconductors with artificial pinning sites. J. Phys. Condens. Matter 2018, 30, 315902.
[CrossRef]

20. Hänisch, J.; Iida, K.; Hühne, R.; Tarantini, C. Fe-based superconducting thin films—Preparation and tuning
of superconducting properties. Supercond. Sci. Technol. 2019, 32, 093001. [CrossRef]

21. Qu, D.-X.; Teslich, N.E.; Dai, Z.; Chapline, G.F.; Schenkel, T.; Durham, S.R.; Dubois, J. Onset of a
two-dimensional superconducting phase in a topological-insulator—Normal-metal Bi1−xSbx/Pt junction
fabricated by ion-beam techniques. Phys. Rev. Lett. 2018, 121, 037001. [CrossRef] [PubMed]

22. Li, C.-Z.; Li, C.; Wang, L.-X.; Wang, S.; Liao, Z.-M.; Brinkman, A.; Yu, D.-P. Bulk and surface states carried
supercurrent in ballistic Nb-Dirac semimetal Cd3As2 nanowire-Nb junctions. Phys. Rev. B 2018, 97, 115446.
[CrossRef]

23. Reyren, N.; Thiel, S.; Caviglia, A.D.; Kourkoutis, L.F.; Hammerl, G.; Richter, C.; Schneider, C.W.; Kopp, T.;
Rüetschi, A.-S.; Jaccard, D.; et al. Superconducting interfaces between insulating oxides. Science 2007, 317,
1196–1199. [CrossRef] [PubMed]

24. Gozar, A.; Logvenov, G.; Fitting Kourkoutis, L.; Bollinger, A.T.; Giannuzzi, L.A.; Muller, D.A.; Bozovic, I.
High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 2008,
455, 782–785. [CrossRef] [PubMed]

25. Di Castro, D.; Balestrino, G. Superconductivity in interacting interfaces of cuprate-based heterostructures.
Supercond. Sci. Technol. 2018, 31, 073001.

26. Wang, Q.-Y.; Li, Z.; Zhang, W.-H.; Zhang, Z.-C.; Zhang, J.-S.; Li, W.; Ding, H.; OU, Y.-B.; Deng, P.; Chang, K.;
et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3.
Chin. Phys. Lett. 2012, 29, 037402. [CrossRef]

27. Zhang, W.H.; Sun, Y.; Zhang, J.; Li, F.; Guo, M.; Zhao, Y.; Zhang, H.; Peng, J.; Xing, Y.; Wang, H.; et al. Direct
observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 2014, 31,
017401. [CrossRef]

28. Ge, J.F.; Liu, Z.L.; Liu, C.; Gao, C.L.; Qian, D.; Xue, Q.K.; Liu, Y.; Jia, J.F. Superconductivity above 100 K in
single-layer FeSe films on doped SrTiO3. Nat. Mater. 2015, 14, 285–289. [CrossRef]

29. Zhang, H.M.; Sun, Y.; Li, W.; Peng, J.P.; Song, C.L.; Xing, Y.; Zhang, Q.; Guan, J.; Li, Z.; Zhao, Y.; et al.
Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting
GaN(0001). Phys. Rev. Lett. 2015, 114, 107003. [CrossRef]

30. Xing, Y.; Zhang, H.M.; Fu, H.L.; Liu, H.; Sun, Y.; Peng, J.P.; Wang, F.; Lin, X.; Ma, X.C.; Xue, Q.K.; et al.
Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science 2015, 350, 542–545.
[CrossRef]

31. Navarro-Moratalla, E.; Island, J.O.; Mañas-Valero, S.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A.;
Quereda, J.; Rubio-Bollinger, G.; Chirolli, L.; Silva-Guillén, J.A.; Agraït, N.; et al. Enhanced superconductivity
in atomically thin TaS2. Nat. Commun. 2016, 7, 11043. [CrossRef] [PubMed]

32. Yankowitz, M.; Chen, S.; Polshyn, H.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A.F.; Dean, C.R. Tuning
superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064. [CrossRef] [PubMed]

33. Lucignano, P.; Alfè, D.; Cataudella, V.; Ninno, D.; Cantele, G. The crucial role of atomic corrugation on the
flat bands and energy gaps of twisted bilayer graphene at the “magic angle” θ ∼ 1.08◦. Phys. Rev. B 2019, 99,
195419. [CrossRef]

34. Fête, A.; Rossi, L.; Augieri, A.; Senatore, C. Ionic liquid gating of ultra-thin YBa2Cu3O7-x films. Appl. Phys. Lett.
2016, 109, 192601. [CrossRef]

35. Fête, A.; Senatore, C. Strong improvement of the transport characteristics of YBa2Cu3O7−x grain boundaries
using ionic liquid gating. Sci. Rep. 2017, 8, 17703. [CrossRef]

36. Paradiso, N.; Nguyen, A.-T.; Kloss, K.E.; Strunk, C. Phase slip lines in superconducting few-layer NbSe2

crystals. 2D Mater. 2019, 6, 025039. [CrossRef]
37. Guo, J.G.; Chen, X.; Jia, X.Y.; Zhang, Q.H.; Liu, N.; Lei, H.C.; Li, S.Y.; Gu, L.; Jin, S.F.; Chen, X.L.; et al.

Quasi-two-dimensional superconductivity from dimerization of atomically ordered AuTe2Se4/3 cubes.
Nat. Commun. 2017, 8, 871. [CrossRef]

http://dx.doi.org/10.1088/1361-648X/aad02b
http://dx.doi.org/10.1088/1361-6668/ab1c00
http://dx.doi.org/10.1103/PhysRevLett.121.037001
http://www.ncbi.nlm.nih.gov/pubmed/30085782
http://dx.doi.org/10.1103/PhysRevB.97.115446
http://dx.doi.org/10.1126/science.1146006
http://www.ncbi.nlm.nih.gov/pubmed/17673621
http://dx.doi.org/10.1038/nature07293
http://www.ncbi.nlm.nih.gov/pubmed/18843365
http://dx.doi.org/10.1088/0256-307X/29/3/037402
http://dx.doi.org/10.1088/0256-307X/31/1/017401
http://dx.doi.org/10.1038/nmat4153
http://dx.doi.org/10.1103/PhysRevLett.114.107003
http://dx.doi.org/10.1126/science.aaa7154
http://dx.doi.org/10.1038/ncomms11043
http://www.ncbi.nlm.nih.gov/pubmed/26984768
http://dx.doi.org/10.1126/science.aav1910
http://www.ncbi.nlm.nih.gov/pubmed/30679385
http://dx.doi.org/10.1103/PhysRevB.99.195419
http://dx.doi.org/10.1063/1.4967197
http://dx.doi.org/10.1038/s41598-018-36166-w
http://dx.doi.org/10.1088/2053-1583/ab0bcc
http://dx.doi.org/10.1038/s41467-017-00947-0


Nanomaterials 2019, 9, 1554 14 of 15

38. Pan, J.; Guo, C.; Song, C.; Lai, X.; Li, H.; Zhao, W.; Zhang, H.; Mu, G.; Bu, K.; Lin, T.; et al. Enhanced
superconductivity in restacked TaS2 nanosheets. J. Am. Chem. Soc. 2017, 139, 4623. [CrossRef]

39. Ma, Y.; Pan, J.; Guo, C.; Zhang, X.; Wang, L.; Hu, T.; Mu, G.; Huang, F.; Xie, X. Unusual evolution of Bc2 and
Tc with inclined fields in restacked TaS2 nanosheets. NPJ Quantum Mater. 2018, 3, 34. [CrossRef]

40. Desrat, W.; Moret, M.; Briot, O.; Ngo, T.-H.; Piot, B.A.; Jabakhanji, B.; Gil, B. Superconducting Ga/GaSe layers
grown by van der Waals epitaxy. Mater. Res. Express 2018, 5, 045901. [CrossRef]

41. Liu, C.; Lian, C.-S.; Liao, M.-H.; Wang, Y.; Zhong, Y.; Ding, C.; Li, W.; Song, C.-L.; He, K.; Ma, X.-C.; et al.
Two-dimensional superconductivity and topological states in PdTe2 thin films. Phys. Rev. Mater. 2018, 2,
094001. [CrossRef]

42. Peng, J.; Yu, Z.; Wu, J.; Zhou, Y.; Guo, Y.; Li, Z.; Zhao, J.; Wu, C.; Xie, Y. Disorder enhanced superconductivity
toward TaS2 monolayer. ACS Nano 2018, 12, 9461–9466. [CrossRef] [PubMed]

43. De La Barrera, S.C.; Sinko, M.R.; Gopalan, D.P.; Sivadas, N.; Seyler, K.L.; Watanabe, K.; Taniguchi, T.;
Tsen, A.W.; Xu, X.; Xiao, D.; et al. Tuning Ising superconductivity with layer and spin-orbit coupling in
two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427. [CrossRef] [PubMed]

44. Liao, M.; Zang, Y.; Guan, Z.; Li, H.; Gong, Y.; Zhu, K.; Hu, X.-P.; Zhang, D.; Xu, Y.; Wang, Y.-Y.; et al.
Superconductivity in few-layer stanene. Nat. Phys. 2018, 14, 344–348. [CrossRef]

45. Wu, Y.; He, J.; Liu, J.; Xing, H.; Mao, Z.; Liu, Y. Dimensional reduction and ionic gating induced enhancement
of superconductivity in atomically thin crystals of 2H-TaSe2. Nanotechnology 2019, 30, 035702. [CrossRef]

46. Alidoust, M.; Willatzen, M.; Jauho, A.-P. Symmetry of superconducting correlations in displaced bilayers of
graphene. Phys. Rev. B 2019, 99, 155413. [CrossRef]

47. Talantsev, E.F.; Mataira, R.C.; Crump, W.P. Classifying superconductivity in Moiré graphene superlattices.
arXiv 2019, arXiv:1902.07410v2.

48. Rhodes, D.; Yuan, N.F.; Jung, Y.; Antony, A.; Wang, H.; Kim, B.; Chiu, Y.; Taniguchi, T.; Watanabe, K.;
Barmak, K.; et al. Enhanced superconductivity in monolayer Td-MoTe2 with tilted Ising spin texture. arXiv
2019, arXiv:1905.06508.

49. Yang, H.; Gao, Z.-Q.; Wang, F. Effect of defects in superconducting phase of twisted bilayer graphene. arXiv
2019, arXiv:1908.09555v2.

50. Talantsev, E.F.; Crump, W.P.; Island, J.O.; Xing, Y.; Sun, Y.; Wang, J.; Tallon, J.L. On the origin of critical
temperature enhancement in atomically thin superconductors. 2D Mater. 2017, 4, 025072. [CrossRef]

51. Talantsev, E.F.; Crump, W.P.; Tallon, J.L. Two-band induced superconductivity in single-layer graphene and
topological insulator bismuth selenide. Supercond. Sci. Technol. 2018, 31, 015011. [CrossRef]

52. Talantsev, E.F. Classifying induced superconductivity in atomically thin Dirac-cone materials. Condensed
Matter 2019, 4, 83. [CrossRef]

53. Titov, M.; Beenakker, C.W.J. Josephson effect in ballistic graphene. Phys. Rev. B 2006, 74, 041401. [CrossRef]
54. Calado, V.E.; Goswami, S.; Nanda, G.; Diez, M.; Akhmerov, A.R.; Watanabe, K.; Taniguchi, T.; Klapwijk, T.M.;

Vandersypen, L.M.K. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 2015, 10,
761–764. [CrossRef] [PubMed]

55. Borzenets, I.V.; Amet, F.; Ke, C.T.; Draelos, A.W.; Wei, M.T.; Seredinski, A.; Watanabe, K.; Taniguchi, T.;
Bomze, Y.; Yamamoto, M.; et al. Ballistic graphene Josephson junctions from the short to the long junction
regimes. Phys. Rev. Lett. 2016, 117, 237002. [CrossRef]

56. Kayyalha, M.; Kargarian, M.; Kazakov, A.; Miotkowski, I.; Galitski, V.M.; Yakovenko, V.M.; Rokhinson, L.P.;
Chen, Y.P. Anomalous low-temperature enhancement of supercurrent in topological-insulator nanoribbon
Josephson junctions: Evidence for low-energy Andreev bound states. Phys. Rev. Lett. 2019, 122, 047003.
[CrossRef]

57. Kurter, C.; Finck, A.D.K.; Hor, Y.S.; Van Harlingen, D.J. Evidence for an anomalous current–phase relation in
topological insulator Josephson junctions. Nat. Commun. 2015, 6, 7130. [CrossRef]

58. Gross, F.; Chandrasekhar, B.S.; Einzel, D.; Andres, K.; Hirschfeld, P.J.; Ott, H.R.; Beuers, J.; Fisk, Z.; Smith, J.L.
Anomalous temperature dependence of the magnetic field penetration depth in superconducting UBe13.
Zeitschrift für Physik B Condensed Matter 1986, 64, 175–188. [CrossRef]

59. Natterer, F.D.; Ha, J.; Baek, H.; Zhang, D.; Cullen, W.G.; Zhitenev, N.B.; Kuk, Y.; Stroscio, J.A. Scanning
tunneling spectroscopy of proximity superconductivity in epitaxial multilayer graphene. Phys. Rev. B 2016,
93, 045406. [CrossRef]

http://dx.doi.org/10.1021/jacs.7b00216
http://dx.doi.org/10.1038/s41535-018-0107-2
http://dx.doi.org/10.1088/2053-1591/aab8c5
http://dx.doi.org/10.1103/PhysRevMaterials.2.094001
http://dx.doi.org/10.1021/acsnano.8b04718
http://www.ncbi.nlm.nih.gov/pubmed/30126279
http://dx.doi.org/10.1038/s41467-018-03888-4
http://www.ncbi.nlm.nih.gov/pubmed/29650994
http://dx.doi.org/10.1038/s41567-017-0031-6
http://dx.doi.org/10.1088/1361-6528/aaea3b
http://dx.doi.org/10.1103/PhysRevB.99.155413
http://dx.doi.org/10.1088/2053-1583/aa6917
http://dx.doi.org/10.1088/1361-6668/aa9800
http://dx.doi.org/10.3390/condmat4030083
http://dx.doi.org/10.1103/PhysRevB.74.041401
http://dx.doi.org/10.1038/nnano.2015.156
http://www.ncbi.nlm.nih.gov/pubmed/26214253
http://dx.doi.org/10.1103/PhysRevLett.117.237002
http://dx.doi.org/10.1103/PhysRevLett.122.047003
http://dx.doi.org/10.1038/ncomms8130
http://dx.doi.org/10.1007/BF01303700
http://dx.doi.org/10.1103/PhysRevB.93.045406


Nanomaterials 2019, 9, 1554 15 of 15

60. Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204.
[CrossRef]

61. Dyson, F. A meeting with Enrico Fermi. Nature 2004, 427, 297. [CrossRef] [PubMed]
62. Piantadosi, S.T. One parameter is always enough. AIP Adv. 2018, 8, 095118. [CrossRef]
63. Jang, S.; Kim, E. Short ballistic Josephson coupling in micrometer-long tantalum/graphene/tantalum junction.

Curr. Appl. Phys. 2019, 19, 436–439. [CrossRef]
64. Carbotte, J.P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 1990, 62, 1027–1157. [CrossRef]
65. Nicol, E.J.; Carbotte, J.P. Properties of the superconducting state in a two-band model. Phys. Rev. B 2005, 71,

054501. [CrossRef]
66. Talantsev, E.F. Evaluation of a practical level of critical current densities in pnictides and recently discovered

superconductors. Supercond. Sci. Technol. 2019, 32, 084007. [CrossRef]
67. Mackinnon, I.D.R.; Talbot, P.C.; Alarco, J.A. Phonon dispersion anomalies and superconductivity in metal

substituted MgB2. Comput. Mater. Sci. 2017, 130, 191–203. [CrossRef]
68. Alarco, J.A.; Talbot, P.C.; Mackinnon, I.D.R. Identification of superconductivity mechanisms and prediction

of new materials using Density Functional Theory (DFT) calculations. J. Phys. Conf. Ser. 2018, 1143, 012028.
[CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1038/427297a
http://www.ncbi.nlm.nih.gov/pubmed/14737148
http://dx.doi.org/10.1063/1.5031956
http://dx.doi.org/10.1016/j.cap.2019.01.012
http://dx.doi.org/10.1103/RevModPhys.62.1027
http://dx.doi.org/10.1103/PhysRevB.71.054501
http://dx.doi.org/10.1088/1361-6668/ab1a16
http://dx.doi.org/10.1016/j.commatsci.2017.01.011
http://dx.doi.org/10.1088/1742-6596/1143/1/012028
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Models Description 
	Results 
	Micrometer-Long Tantalum/Graphene/Tantalum (Ta/G/Ta) Junction 
	Planar Nb/BiSbTeSe2-Nanoribbon/Nb Junctions 
	Planar Nb/Bi2Se3/Nb Junction B56-nanomaterials-614318 

	Discussion 
	Conclusions 
	References

